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Theory of high-resolution tunneling spin transport on a magnetic skyrmion
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Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning
tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport
vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution
within the same theoretical framework. A connection between the conventional charge current SP-STM image
contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling
spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin
transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory
of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced
tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at
surfaces.

DOI: 10.1103/PhysRevB.97.174402

I. INTRODUCTION

Due to the electron’s intrinsic properties, electronic trans-
port includes both charge and spin transfer. Understanding
the mechanisms and increasing the efficiency of current-
induced magnetization switching (CIMS) have a large impact
on the ongoing development of magnetic spintronic devices.
Consequently, CIMS attracted considerable research interest
in metallic spin valves and magnetic tunnel junctions (MTJs)
in recent years [1]. So far, theoretical research of spin transport
partly focused on the calculation of the tunneling spin transfer
torque (STT) in symmetric or asymmetric planar MTJs. The
theoretical approaches cover free-electron models [2–4], a
transfer Hamiltonian method [5], tight-binding-based transport
models [6–10], and scattering methods [11], partly combined
with first-principles techniques [12,13]. The first direct mea-
surement of the out-of-plane and in-plane components of
the STT vector in a planar MTJ was provided by Sankey
et al. [14]. The tunability of the magnetotransport properties
in material combinations of current interest has also been
predicted recently [15].

Magnetic skyrmions in thin films are real-space spin tex-
tures possessing a topological charge [16], and in most of
the studied cases they show a preferred chirality due to
the emergence of the antisymmetric Dzyaloshinsky-Moriya
exchange interaction [17,18] in the magnetic layer with broken
inversion symmetry [19–23]. On the other hand, it has been
demonstrated that frustrated Heisenberg exchange interactions
may also lead to the stabilization of localized skyrmionic
spin configurations with different topologies [24–27]. A range
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of technological applications of isolated skyrmions has been
proposed for magnetic data storage and transfer [28–32]. The
finite temperature stability of skyrmions has been investigated
both experimentally [22,23,33] and theoretically [34–36], and
the annihilation of skyrmions has recently been extensively
studied by using minimum energy path calculations [36–40].

Magnetic skyrmions in ultrathin films can conveniently
be imaged by using spin-polarized scanning tunneling mi-
croscopy (SP-STM) [41–43], and first-principles calculations
have proven crucial in understanding the formation of these
spin structures through determining microscopic magnetic
interactions [44–47]. Over the last two decades, the powerful
capabilities of SP-STM have been demonstrated for obtaining
local information on spin-polarized tunneling charge transport
properties of a great variety of magnetic surfaces [48]. High-
resolution SP-STM is expected to further contribute, e.g., to
the proper understanding of the interaction of skyrmions with
defects that is currently an important challenge [49,50]. Re-
cently, there has been a growing interest in getting insight into
local STT properties in high spatial resolution in asymmetric
MTJs. Naturally, the tunneling STT, which is concomitantly
present with the charge current, contributes to local CIMS
effects [51]. Two recent examples on the atomic scale include
Refs. [19] and [52], where local current pulses with opposite
voltage polarities have been used with an STM tip to create and
annihilate individual magnetic skyrmions in different thin film
systems. However, the detailed microscopic mechanism of the
local tunneling STT and another spin transport component, the
longitudinal spin current (LSC) [53], is not clarified in these
processes yet.

In this paper the generalization of high-resolution STM
charge transport theories [54] is proposed to include vector
spin transport in STM junctions going beyond the assumption
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of collinear magnetic structure for both the surface and the
tip used in Ref. [55]. A combined electron tunneling theory
for the charge and vector spin transport in magnetic STM
junctions is presented considering complex noncollinear sur-
face magnetic structures within the three-dimensional (3D)
Wentzel-Kramers-Brillouin (WKB) electron tunneling frame-
work. The theory is implemented in the 3D-WKB-STM code
[56], which is an established and efficient method for the
simulation of spin-polarized scanning tunneling microscopy
[57–61] and spectroscopy [62,63] with an enhanced parameter
space for modeling tip geometries [64–66]. Besides the spin-
polarized charge current above complex magnetic textures in
SP-STM [43,57,59,67,68], the proposed method allows for the
high-resolution calculation of tunneling spin transport vector
quantities, the STT and the LSC. The connections between
the SP-STM image contrasts of the charge current and the
magnitudes of the STT as well as the LSC are highlighted,
and it is concluded that estimations on the tunneling spin
transport properties can be made based on experimental SP-
STM images. Moreover, a direct relationship between the
scalar spin polarization and the ratio of the out-of-plane and
the in-plane STT components is given, and it is proposed
that the measurement of the STT vector components would
enable the determination of the spin polarizations separately
for the sample surface and the tip. The influence of these spin
polarizations on the tunneling spin transport is also analyzed,
and a considerable tunability of the spin transport properties is
pointed out. Finally, theoretical considerations are reported on
the measurement of the STT and the LSC vectors.

The paper is organized as follows. The 3D-WKB combined
tunneling electron charge and vector spin transport theory in
magnetic STM considering noncollinear magnetic surfaces is
presented in detail in Sec. II A, where the dominating atomic
contributions for the interpretation of our results are described
in Sec. II B. Relationships between the charge current and
the magnitudes of the LSC and the STT are reported in
Sec. II C, and tunneling parameters and visualization remarks
are given in Sec. II D. The vector spin transport (LSC and
STT) properties of a skyrmion in relation to the spin-polarized
charge current are analyzed in Sec. III A, and the effect of the
spin polarizations is investigated in Sec. III B. Summary and
conclusions are found in Sec. IV, and spin transport vector
measurement considerations are given in the Appendix.

II. THEORY AND METHODS

A. 3D-WKB theory of combined electron charge
and spin tunneling

The 3D-WKB theoretical model for the combined tunneling
charge and vector spin transport in magnetic STM above com-
plex noncollinear magnetic surfaces is based on the recently
introduced electron tunneling model through STM junctions
built up from collinear magnetic surface and tip [55]. Note
that in the present paper we do not restrict the formalism
to fixed spin quantization axes of the sample and the tip,
as this would describe collinear magnets. Instead, the spatial
dependence of the local atomic spin quantization axes of the
noncollinear magnetic surface is allowed. For simplicity, we
omit the orbital dependence [58,60] of the electronic structure

taken into account in Ref. [55], and the low bias limit is
employed.

Consider the following normalized (dimensionless) density
matrices in spin space for the sample surface (S) atom labeled
by “a” and the tip (T ) apex atom at the corresponding Fermi
levels ES

F and ET
F [55,57,69]:

ρa

S

(
ES

F

) = I + Pa
S

(
ES

F

) · σ , (1a)

ρ
T

(
ET

F

) = I + PT

(
ET

F

) · σ , (1b)

where I is the 2×2 unit matrix and σ = (σ
x
,σ

y
,σ

z
) is a vector

composed of the Pauli matrices. Pa
S(ES

F ) = ma
S(ES

F )/na
S(ES

F )
is the spin polarization vector of the atom-projected density
of states (PDOS) of the sample surface atom “a,” where
ma

S(ES
F ) and na

S(ES
F ) denote the magnetization (vector) and

charge (scalar) character of the corresponding PDOS at ES
F ,

respectively. Similarly, PT (ET
F ) = mT (ET

F )/nT (ET
F ), where

PT (ET
F ), mT (ET

F ) and nT (ET
F ) denote the spin polarization

PDOS vector, magnetization PDOS vector, and charge PDOS
of the tip apex atom at ET

F . These quantities can be calculated
by using ab initio electronic structure methods [57] or can be
treated as parameters as in the present paper.

The coupled dimensionless transport quantities, the scalar
charge conductance (Ĩ ), and the generalized vector spin
torkance (T̃) of the electron tunneling between the sample
surface atom “a” and the tip apex atom at the common Fermi
levels ES

F = ET
F = EF (zero bias limit) can be represented by

traces in spin space, and they depend on the tunneling direction
tip → sample (T → S) or sample → tip (S → T ) as

Ĩ a,T →S(EF ) = 1
2 Tr

(
ρ

T
(EF )Iρa

S
(EF )

)
= Ĩ a,S→T (EF ) = 1

2 Tr
(
ρa

S
(EF )Iρ

T
(EF )

)
= Ĩ a(EF ) = 1 + Pa

S(EF ) · PT (EF ), (2a)

T̃a,T →S(EF ) = 1
2 Tr

(
ρ

T
(EF )σρa

S
(EF )

)
= Pa

S(EF ) + PT (EF )

+iPa
S(EF ) × PT (EF ), (2b)

T̃a,S→T (EF ) = 1
2 Tr

(
ρa

S
(EF )σρ

T
(EF )

)
= Pa

S(EF ) + PT (EF )

−iPa
S(EF ) × PT (EF ). (2c)

Since Pa
S(EF ) · PT (EF ) = [P a

S (EF )sa
S] · [PT (EF )sT ] =

P a
S (EF )PT (EF ) cos φa with φa the angle between the classical

spin unit vectors of the sample surface atom “a” (sa
S = Sa

S/|Sa
S |)

and the tip apex (sT = ST /|ST |), where Sa
S and ST are the

corresponding spin moments, the charge conductance formula
is formally equivalent to the spin-polarized Tersoff-Hamann
model [67,68,70,71]:

Ĩ a(EF ) = 1 + P a
S (EF )PT (EF ) cos φa. (3)

Here, the first and second term is the nonmagnetic and magnetic
(spin-polarized) part of the dimensionless charge conductance
at zero bias voltage, respectively.
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The in-plane and out-of-plane components of the general-
ized vector spin torkance formula are obtained as the real and
imaginary parts of Eqs. (2b) and (2c), respectively:

T̃a,in−pl.(EF ) = Pa
S(EF ) + PT (EF )

= Re
{
T̃a,T →S(EF )

}
= Re

{
T̃a,S→T (EF )

}
, (4a)

T̃a,out−pl.(EF ) = Pa
S(EF ) × PT (EF )

= Im
{
T̃a,T →S(EF )

}
= −Im

{
T̃a,S→T (EF )

}
. (4b)

Here, the in-plane component T̃a,in−pl. lies in the plane
spanned by the Pa

S(EF ) and PT (EF ) (or sa
S and sT ) vectors,

depending on the considered lattice site a. However, the
direction of T̃a,in−pl. is not necessarily perpendicular to the spin
moment (ST or Sa

S) on which the generalized torkance is acting.
Therefore, T̃in−pl. can be decomposed into a dimensionless
longitudinal spin conductance part denoted by L, parallel
to the spin moment directions: sT or local sa

S unit vectors
and into a dimensionless spin torkance part denoted by ‖,
perpendicular to the spin moment directions [11]. The decom-
position reads T̃a,in−pl.(EF ) = T̃a,j,L(EF ) + T̃a,j,‖(EF ) with
j ∈ {T ,S}, where ‖ denotes that this in-plane (Slonczewski or
dampinglike) torkance vector is in the Sa

S–ST (or sa
S–sT ) plane.

The corresponding components are

T̃a,T ,L(EF ) = [T̃a,in−pl.(EF ) · sT ]sT

= (
P a

S (EF ) cos φa + PT (EF )
)
sT , (5a)

T̃a,T ,‖(EF ) = T̃a,in−pl.(EF ) − T̃a,T ,L(EF )

= P a
S (EF )

(
sa
S − sT cos φa

)
= P a

S (EF )sT × (
sa
S × sT

)
, (5b)

T̃a,S,L(EF ) = [
T̃a,in−pl.(EF ) · sa

S

]
sa
S

= (
P a

S (EF ) + PT (EF ) cos φa

)
sa
S, (5c)

T̃a,S,‖(EF ) = T̃a,in−pl.(EF ) − T̃a,S,L(EF )

= PT (EF )
(
sT − sa

S cos φa

)
= PT (EF )sa

S × (
sT × sa

S

)
. (5d)

Here, the T or S indices denote the tip or sample side of
the tunnel junction, on which the longitudinal spin conductance
and the in-plane torkance are acting. As it is clear from Eq. (4a),
these quantities are independent of the actual current flow
direction T → S or S → T ; for experimental evidence for the
in-plane torkance, see, e.g., Fig. 3(a) in Ref. [14].

The out-of-plane component in Eq. (4b), T̃a,out−pl., is
perpendicular to the plane spanned by the Pa

S(EF ) and PT (EF )
(or sa

S and sT ) vectors, and the dimensionless out-of-plane
(fieldlike) torkance vector can be identified as [11]

T̃a,⊥(EF ) = T̃a,out−pl.(EF ) = P a
S (EF )PT (EF )sa

S × sT

= T̃a,T →S,⊥(EF ) = −T̃a,S→T ,⊥(EF ). (6)

According to Eq. (4b), the out-of-plane torkance vector
changes sign by reversing the current flow direction; for

experimental evidence see, e.g., Fig. 3(a) in Ref. [14]. Note
that throughout the paper the out-of-plane torkance and torque
are purely current-induced, resulting from electron tunneling
through the vacuum barrier, and the equilibrium torque [6]
is not taken into account. Combining Eqs. (4a), (4b), (5b),
(5d), and (6), the following dimensionless torkance vectors
are obtained:

T̃a,T →S,T (EF ) = T̃a,T ,‖(EF ) + T̃a,⊥(EF ), (7a)

T̃a,S→T ,T (EF ) = T̃a,T ,‖(EF ) − T̃a,⊥(EF ), (7b)

T̃a,T →S,S(EF ) = T̃a,S,‖(EF ) + T̃a,⊥(EF ), (7c)

T̃a,S→T ,S(EF ) = T̃a,S,‖(EF ) − T̃a,⊥(EF ), (7d)

where T̃a,T →S,T and T̃a,S→T ,T act on the spin moment of the
tip apex atom at T → S and S → T tunneling, respectively.
Similarly, T̃a,T →S,S and T̃a,S→T ,S act on the spin moment of the
sample surface atom “a” at the indicated tunneling directions.

Assuming elastic electron tunneling, the signed charge
current (Is) can be obtained from the charge conductance
within the 3D-WKB theory by the superposition of atomic
contributions from the sample surface (sum over “a”) [57] at
the tip apex position RT and at bias voltage V in the low bias
limit as

Is(RT ,V ) = e2

2πh̄
V

∑
a

h(RT − Ra)Ĩ a(EF ). (8)

The transmission function,

h(r) = exp[−
√

8m�/h̄2|r|] (9)

(with the electron’s mass m, the reduced Planck constant h̄, and
the effective work function �), depends on the relative position
of the tip apex atom and the sample surface atom “a” (RT −
Ra), and in the transmission all electron states are considered as
exponentially decaying spherical states [68,70,71], neglecting
orbital dependence [58].

The signed longitudinal spin current (LSC) vector (TL
s )

and the signed spin transfer torque (STT) vector components
(T‖

s and T⊥
s ) acting on the spin moment of the tip apex atom

can be calculated from the corresponding longitudinal spin
conductance and torkance components, respectively, as

TT L
s (RT ,V ) = eV

∑
a

h(RT − Ra)T̃a,T ,L(EF ), (10a)

TT ‖
s (RT ,V ) = eV

∑
a

h(RT − Ra)T̃a,T ,‖(EF ), (10b)

TT →S,T ⊥
s (RT ,V ) = eV

∑
a

h(RT − Ra)T̃a,T →S,⊥(EF ),

(10c)

TS→T ,T ⊥
s (RT ,V ) = eV

∑
a

h(RT − Ra)T̃a,S→T ,⊥(EF ).

(10d)

Similarly, the signed LSC vector and the signed STT vector
components acting on the spin moment of surface atom “a” at
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position Ra are obtained as

TaSL
s (Ra,V ) = eV h(RT − Ra)T̃a,S,L(EF ), (11a)

TaS‖
s (Ra,V ) = eV h(RT − Ra)T̃a,S,‖(EF ), (11b)

Ta,T →S,S⊥
s (Ra,V ) = eV h(RT − Ra)T̃a,T →S,⊥(EF ), (11c)

Ta,S→T ,S⊥
s (Ra,V ) = eV h(RT − Ra)T̃a,S→T ,⊥(EF ). (11d)

In Eqs. (8), (10a)–(10d), and (11a)–(11d) the signed charge
current and the signed LSC and STT vectors have the correct
dimensions by multiplying the dimensionless atomic charge
conductance, spin conductance, and torkance contributions
with proper factors, i.e., Is = e2

2πh̄
V Ĩ and TL/‖/⊥

s = eV T̃L/‖/⊥,
where e is the elementary charge and V is the bias voltage.

Taking the sign convention of the bias voltage into account,
i.e., V > 0 at T → S and V < 0 at S → T tunneling, we find
that the LSC and the in-plane STT vectors actually change
sign and the out-of-plane STT vectors do not change sign by
reversing the bias polarity, thus the direction of the current flow.
These are clearly seen in Eqs. (10a)–(10d) and (11a)–(11d): In
TL/‖

s V changes sign and according to Eq. (4a) T̃L/‖ do not,
and in T⊥

s both V and T̃⊥ change sign, the latter according
to Eq. (6). These findings are in agreement with previous spin
transport interpretations [1]. The absolute charge current is
independent of the tunneling direction and can be calculated
as

I (RT ,V )

= Is(RT ,V > 0) = −Is(RT ,V < 0)

= e2

2πh̄
|V |

∑
a

h(RT − Ra)
(
1 + P a

S (EF )PT (EF ) cos φa

)
.

(12)

Similarly, the spin transport vectors acting on the spin moment
of the tip apex atom are obtained from Eqs. (10a)–(10d) as

TT L(RT ,V )

= TT L
s (RT ,V > 0) = −TT L

s (RT ,V < 0)

= e|V |
∑

a

h(RT − Ra)
(
P a

S (EF ) cos φa + PT (EF )
)
sT ,

(13a)

TT ‖(RT ,V )

= TT ‖
s (RT ,V > 0) = −TT ‖

s (RT ,V < 0)

= e|V |
∑

a

h(RT − Ra)P a
S (EF )sT × (

sa
S × sT

)
, (13b)

T⊥(RT ,V )

= TT →S,T ⊥
s (RT ,V > 0) = TS→T ,T ⊥

s (RT ,V < 0)

= e|V |
∑

a

h(RT − Ra)P a
S (EF )PT (EF )sa

S × sT , (13c)

TT →S,T (RT ,V > 0)

= T⊥(RT ,V ) + TT ‖(RT ,V ), (13d)

TS→T ,T (RT ,V < 0)

= T⊥(RT ,V ) − TT ‖(RT ,V ), (13e)

and the spin transport vectors acting on the spin moment of
surface atom “a” are obtained from Eqs. (11a)–(11d) as

TaSL(Ra,V )

= TaSL
s (Ra,V > 0) = −TaSL

s (Ra,V < 0)

= e|V |h(RT − Ra)
(
P a

S (EF ) + PT (EF ) cos φa

)
sa
S, (14a)

TaS‖(Ra,V )

= TaS‖
s (Ra,V > 0) = −TaS‖

s (Ra,V < 0)

= e|V |h(RT − Ra)PT (EF )sa
S × (

sT × sa
S

)
, (14b)

Ta⊥(Ra,V )

= Ta,T →S,S⊥
s (Ra,V > 0) = Ta,S→T ,S⊥

s (Ra,V < 0)

= e|V |h(RT − Ra)P a
S (EF )PT (EF )sa

S × sT , (14c)

Ta,T →S,S(Ra,V > 0)

= Ta⊥(Ra,V ) + TaS‖(Ra,V ), (14d)

Ta,S→T ,S(Ra,V < 0)

= Ta⊥(Ra,V ) − TaS‖(Ra,V ), (14e)

where the notations TT L and TaSL for the LSC vectors, TT ‖
and TaS‖ for the in-plane STT vectors, and T⊥ = ∑

a Ta⊥ for
the out-of-plane STT vectors have been introduced.

The LSC and the STT acting on the sample for the scanning
tip at position RT are defined as the sum of the vector spin
transport quantities acting on the different surface atoms “a,”

TSL(RT ,V )

= e|V |
∑

a

h(RT − Ra)
(
P a

S (EF ) + PT (EF ) cos φa

)
sa
S,

(15a)

TS‖(RT ,V )

= e|V |
∑

a

h(RT − Ra)PT (EF )sa
S × (

sT × sa
S

)
, (15b)

T⊥(RT ,V )

= e|V |
∑

a

h(RT − Ra)P a
S (EF )PT (EF )sa

S × sT , (15c)

TT →S,S(RT ,V > 0)

= T⊥(RT ,V ) + TS‖(RT ,V ), (15d)

TS→T ,S(RT ,V < 0)

= T⊥(RT ,V ) − TS‖(RT ,V ). (15e)

As discussed in Sec. II B, these values are dominated by the
contributions coming from the closest surface atom A below
the STM tip. Note also the equivalence of Eqs. (13c) and (15c).

Throughout the paper the reported electronic charge and
vector spin transport quantities correspond to a scanning tip at
position RT and to Eqs. (12), (13a)–(13e), and (15a)–(15e).
These are key results of the present paper. The transport
components in a simplified fashion are summarized below for
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a better overview:

I (RT ) ∝
∑

a

h(RT − Ra)(1 + PSPT cos φa), (16a)

TT L(RT ) ∝
∑

a

h(RT − Ra)(PT + PS cos φa)sT , (16b)

TSL(RT ) ∝
∑

a

h(RT − Ra)(PS + PT cos φa)sa
S, (16c)

TT ‖(RT ) ∝
∑

a

h(RT − Ra)PSsT × (
sa
S × sT

)
, (16d)

TS‖(RT ) ∝
∑

a

h(RT − Ra)PT sa
S × (

sT × sa
S

)
, (16e)

T⊥(RT ) ∝
∑

a

h(RT − Ra)PSPT sa
S × sT , (16f)

and the total STT vectors are

TT →S,T (RT ) = T⊥(RT ) + TT ‖(RT ), (17a)

TS→T ,T (RT ) = T⊥(RT ) − TT ‖(RT ), (17b)

TT →S,S(RT ) = T⊥(RT ) + TS‖(RT ), (17c)

TS→T ,S(RT ) = T⊥(RT ) − TS‖(RT ). (17d)

Here, it was assumed that P a
S (EF ) = PS for all surface

atoms, and the notation PT (EF ) = PT was used for simplicity.
Note that the effective spin polarization (Peff = PSPT ) only
enters the charge current [Eq. (16a)] and the out-of-plane
torque [Eq. (16f)] expressions and not the longitudinal spin
current or the in-plane torque. This means that Peff is not
sufficient to characterize the spin polarization of the magnetic
tunnel junction concerning spin transport quantities, and PS

and PT are independent parameters in our model. The effect
of these spin polarizations is investigated on the tunneling spin
transport properties of a magnetic skyrmion in Sec. III B.

B. Dominating atomic contributions

Due to the exponential decay of the tunneling transmission
in Eq. (9), the atomic sums in the tunneling charge and
vector spin transport quantities in Eqs. (8), (10a)–(10d), (12),
(13a)–(13c), (15a)–(15c), and (16a)–(16f) are convergent.
They are dominated, and thus can be approximated, by the
sum of the contributions from the closest surface atoms below
the tip position RT . Such a set of surface atoms can be
denoted by A(RT ). The selection of surface atoms “a” in
the set of A(RT ) depends on a properly chosen convergence
criterion [62]. Consequently, Eqs. (8), (10a)–(10d), (12),
(13a)–(13c), (15a)–(15c), and (16a)–(16f) can be interpreted as
RT -dependent weighted averages over the set of surface atoms
A(RT ), e.g., Is(RT ,V ) ≈ e2

2πh̄
V ĨA(RT )(EF ) with ĨA(RT )(EF ) =∑

a∈A(RT ) h(RT − Ra)Ĩ a(EF ). Although in the paper the sum
over “a” is performed for all sample atoms in the simulated
area (for more details see Sec. II D), for the interpretation of the
results the dominating contribution is considered to come from
the closest surface atom below the STM tip, which is denoted
by A and characterized by the spin unit vector sA

S . Clearly, all
quantities denoted by A depend on the lateral position of the

tip, just as above: A(RT ). Following this, the tunneling electron
charge and vector spin transport components can be written as

I (RT ,V ) ∝ 1 + PSPT cos φA, (18a)

TT L(RT ,V ) ∝ (PS cos φA + PT )sT , (18b)

TSL(RT ,V ) ≈ TASL(RA,V )

∝ (PT cos φA + PS)sA
S , (18c)

TT ‖(RT ,V ) ∝ PSsT × (
sA
S × sT

)
, (18d)

TS‖(RT ,V ) ≈ TAS‖(RA,V )

∝ PT sA
S × (

sT × sA
S

)
, (18e)

T⊥(RT ,V ) ≈ TA⊥(RA,V )

∝ PSPT sA
S × sT , (18f)

with cos φA = sA
S · sT , and the magnitudes of the vector spin

transport quantities are

|TT L(RT ,V )| ∝ |PS cos φA + PT |, (19a)

|TSL(RT ,V )| ≈ |TASL(RA,V )|
∝ |PT cos φA + PS |, (19b)

|TT ‖(RT ,V )| ∝ |PS sin φA|, (19c)

|TS‖(RT ,V )| ≈ |TAS‖(RA,V )|
∝ |PT sin φA|, (19d)

|T⊥(RT ,V )| ≈ |TA⊥(RA,V )|
∝ |PSPT sin φA|, (19e)

|TT (RT ,V )| ∝ |PS sin φA|
√

1 + P 2
T , (19f)

|TS(RT ,V )| ≈ |TAS(RA,V )|
∝ |PT sin φA|

√
1 + P 2

S , (19g)

where |TT | = |TT →S,T | = |TS→T ,T |, |TS | = |TT →S,S | =
|TS→T ,S |, and |TAS | = |TA,T →S,S | = |TA,S→T ,S |. Note that
both STT components (‖ and ⊥), and thus the STT, obey the
expected sin φA dependence.

C. Connections between the charge current and the magnitudes
of the LSC and the STT

Following the previous section for the dominating atomic
contributions to the tunneling electron transport properties,
simple relationships between the charge current and the
spin transport magnitudes can be derived. Let us assume
that the charge current can be measured at opposite tip
magnetization directions sT and −sT . This results in the
charge currents I (sT ) ∝ 1 + PSPT cos φA and I (−sT ) ∝ 1 −
PSPT cos φA, from which the spin-polarized contribution [59]
to the current (also known as magnetic asymmetry [63], AI )
can be expressed as

AI = PSPT cos φA = I (sT ) − I (−sT )

I (sT ) + I (−sT )
. (20)

This quantity takes values between −1 and +1 and can
directly be obtained in experiments in the differential magnetic
mode [72] of SP-STM, or in simulations employing, e.g., the
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above-described 3D-WKB model. Note that similar magnetic
asymmetry quantities can be defined for the longitudinal
spin currents, see Appendix. Following the above, cos φA =
AI/(PSPT ), |sinφA| =

√
P 2

S P 2
T − A2

I /|PSPT |, and the charge
and spin transport magnitudes assuming an sT tip magnetiza-
tion direction can be written as

I ∝ 1 + AI , (21a)

|TT L| ∝ |PT + AI/PT |, (21b)

|TSL| ∝ |PS + AI/PS |, (21c)

|TT ‖| ∝
√

P 2
S P 2

T − A2
I /|PT |, (21d)

|TS‖| ∝
√

P 2
S P 2

T − A2
I /|PS |, (21e)

|T⊥| ∝
√

P 2
S P 2

T − A2
I , (21f)

|TT | ∝
√

P 2
S P 2

T − A2
I

√
1 + 1/P 2

T , (21g)

|TS | ∝
√

P 2
S P 2

T − A2
I

√
1 + 1/P 2

S . (21h)

These equations establish a direct connection between the
magnitudes of the spin transport components and the charge
current through the spin-polarized contribution of the latter,
AI .

Considering the lateral (x,y) dependence of a scanning
tip, the approximate φA can be replaced by an effective
φ(x,y) in a continuum description, which exactly repro-
duces the electron transport components in Eqs. (16a)–(16f),
and the above derivation also applies in a point by point
fashion for high-resolution images using the AI (x,y) ex-
pression based on Eq. (20): AI (x,y) = PSPT cos φ(x,y) =
[I (x,y,sT ) − I (x,y,−sT )]/[I (x,y,sT ) + I (x,y,−sT )].

D. Model parameters and visualization remarks

In the following we report on computational parameters
used in the electron charge and spin tunneling model. The
spin structure of the noncollinear magnetic surface is an input
parameter of the 3D-WKB-STM code. The considered spin
structure of a skyrmion was taken from Ref. [27], where it was
relaxed on a single-layer triangular lattice with C3v crystallo-
graphic symmetry containing 128×128 = 16 384 lattice sites
using spin dynamics simulations. The underlying magnetic
interaction parameters of Fe in the (Pt0.95Ir0.05)/Fe/Pd(111)
ultrathin film system were obtained from ab initio calculations
[47]. We note that the antisymmetric Dzyaloshinsky-Moriya
and the frustrated Heisenberg magnetic exchange interactions
are concomitantly present in this ultrathin magnetic film [27].

The absolute bias voltage is set to |V | = 1.5 meV and the
effective work function to � = 5 eV. Motivated by the reported
electronic structure of a recent work [73], PS = −0.5 together
with PT = −0.8 are chosen in Sec. III A, thus resulting in
Peff = +0.4, which value was also considered in previous
works discussing SP-STM characteristics of skyrmionic spin
textures with different topologies [43,74]. For investigating
the effect of the spin polarizations on the spin transport,
the combinations of the sets PS ∈ {−0.5,+0.5} and PT ∈
{−0.8,−0.4,+0.4,+0.8} are considered in Sec. III B.

FIG. 1. (a) Spin structure of a skyrmion obtained from Ref. [27],
and its constant-current SP-STM images [43] using (b) an out-of-
plane and (c) an in-plane magnetized tip (bright: higher, dark: lower
apparent height) according to Eq. (16a).

Tunneling charge and spin transport quantities are calcu-
lated in a scan area of 7.5 nm×6 nm. SP-STM images of
the charge current are shown in constant-current mode using a
white-brown-black color palette corresponding to maximum-
medium-minimum apparent heights. Employing the reported
parameters, the current value of I = 10−4 nA of the constant-
current contours corresponds to about 6 Å minimal tip-sample
distance and corrugation values between 30 and 40 pm [43].
The spin transport (STT and LSC) quantities (vectors and
scalar magnitudes) are given in constant-height mode at 6 Å
tip-sample distance. The magnitudes of the STT and LSC are
shown using a red-green-blue color palette corresponding to
maximum-medium-minimum values of the individual images.
While the STT and LSC vectors are calculated in the same high
lateral resolution as the charge current and the magnitudes of
the STT and the LSC (1 Å resolution for all), for visualization
reasons the lateral resolution of the vector spin transport
quantities is set to 5 Å.

III. RESULTS AND DISCUSSION

A. Tunneling charge and spin transport
properties of a skyrmion

To utilize the above electron charge and spin tunneling
theory of noncollinear magnetic surfaces, we consider a mag-
netic skyrmion. Figure 1 reports the spin structure and SP-
STM images of the charge current above the skyrmion show-
ing characteristic circular and two-lobe contrasts for out-of-
plane and in-plane magnetized tips, respectively [42,43]. It is
known [67,68] that the charge current, I ∝ 1 + PSPT cos φA,
is sensitive to the effective spin polarization, Peff = PSPT ,
see Eq. (16a). Therefore, the charge current has maxima at
cos φA = ±1 (AI = ±Peff) and minima at cos φA = ∓1 (AI =
∓Peff) for sgn(Peff) = ±1.

Figure 2 shows calculated LSC magnitudes and vectors
above the skyrmion in Fig. 1 with the same differently mag-
netized tips and the chosen spin polarization parameters. The
maxima of the magnitudes |TT L| and |TSL| (red regions in
Fig. 2) are found at cos φA = ±1 (AI = ±Peff) for sgn(Peff) =
±1, exactly as for the charge current. However, the positions of
the LSC minima (blue regions in Fig. 2) depend on the relation
of PS to PT : If |PS | > |PT | then |TT L| have minima at cos φA =
−PT /PS (AI = −P 2

T ), and if |PS | < |PT | then the minima
are found at cos φA = ∓1 (AI = ∓Peff) for sgn(Peff) = ±1.
Similarly, if |PT | > |PS | then |TSL| have minima at cos φA =
−PS/PT (AI = −P 2

S ), and if |PT | < |PS | then the minima
are found at cos φA = ∓1 (AI = ∓Peff) for sgn(Peff) = ±1.
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FIG. 2. Longitudinal spin current (LSC) magnitudes (red: maximum, blue: minimum) and vectors acting on the scanning tip (|TT L| and TT L)
and on the skyrmion (|TSL| and TSL) for both T → S and S → T tunneling directions using an out-of-plane and an in-plane magnetized tip
according to Eqs. (16b) and (16c). Red and blue colors of the LSC vectors correspond to positive and negative out-of-plane (z) vector components,
respectively.

These result in an identical contrast of |TT L| in Fig. 2 to that
of the corresponding charge current in Fig. 1. The contrast of
|TSL| is also qualitatively similar, except that its minima are
found at cos φA = −5/8, φA = 0.715π (AI = −0.25), which
are shown as blue belts in Fig. 2. According to Eq. (16b), the
TT L vectors generally point to the sgn(PT )sT direction, except
for the regions with small LSC magnitudes if |PS | > |PT |.
Similarly, according to Eq. (16c), the TSL vectors generally
point to the sgn(PS)sA

S direction, except for the regions with
small LSC magnitudes if |PT | > |PS |, that is inside the men-
tioned blue belts in Fig. 2, where cos φA < −5/8. A detailed
overview of the effect of various combinations of PS and PT

on the LSC is given in Sec. III B.
The similarity of the LSC and the charge current image

contrasts enables the estimation of the LSC based on experi-
mentally measured SP-STM images. The LSC magnitudes can
directly be related to the SP-STM images as discussed above,
and the theoretical basis for this is outlined in Sec. II C. The
orientation of the LSC vectors can be based on the knowledge
of sT and the noncollinear spin structure sa

S . The latter can,
in principle, be extracted from a series of SP-STM images
with different tip magnetization directions [43,75], and such
a procedure has been proven experimentally [52]. For the

estimation of the LSC magnitudes and vectors, the knowledge
of Eqs. (16b)–(16c) and the spin polarizations PS and PT are
essential.

Figure 3 shows calculated STT magnitudes, out-of-plane
and in-plane STT vector components, and total STT vectors
above the skyrmion in Fig. 1. We find that the magnitudes of
all STT components show the same type of contrast, which
is denoted by |T| in Fig. 3. Such a behavior results from
their dominating |sinφA| dependence due to the vector product
sA
S ×sT in Eqs. (18d)–(18f), with different spin-polarization-

related prefactors [Eqs. (19c)–(19g)]. Thus, the STT minima
and maxima are obtained where the spins of the skyrmion
are in line (parallel or antiparallel) with and perpendicular
to the tip magnetization direction, respectively. Moreover, the
STT minima at sin φA = 0 are found exactly at the maxima
and minima of the charge current, where cos φA = ±1 (AI =
±Peff), and the STT maxima are obtained at sin φA = ±1
(cos φA = 0, AI = 0). This means that the STT is small (large)
where the absolute magnetic contrast of the charge current |AI |
is large (small) [55], see also Eqs. (21d)–(21h). This enables the
estimation of the STT based on experimentally measured SP-
STM images, similarly to the LSC, and again the knowledge
of sa

S, sT , PS , and PT is required, see the torque expressions in

FIG. 3. Spin transfer torque (STT) magnitudes |T| (red: maximum, blue: minimum) and vectors (out-of-plane component [T⊥, Eq. (16f)],
in-plane component [Tj‖, Eqs. (16d) and (16e)], total (T⊥ ± Tj‖), depending on the tunneling direction T → S or S → T , see Eqs. (17a)–(17d))
acting on the spin moments of the scanning tip (j = T ) and of the skyrmion (j = S) using an out-of-plane and an in-plane magnetized tip. Red
and blue colors of the STT vectors correspond to positive and negative out-of-plane (z) vector components, respectively.
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FIG. 4. Dependence of the charge and spin transport magnitudes on the spin polarizations of the surface (PS) and the tip (PT ) in various
combinations, for the skyrmion displayed in Fig. 1: Constant-current SP-STM images (I ; bright: higher, dark: lower apparent height), and
magnitudes of the longitudinal spin current (|TT L| and |TSL|; red: maximum, blue: minimum) and the spin transfer torque (|T|; red: maximum,
blue: minimum) at 6 Å tip-sample distance using an out-of-plane (+z, in [111] crystallographic direction) and an in-plane (+x, in [11̄0]
crystallographic direction) magnetized tip. The tip magnetization directions are explicitly shown. The color scales correspond to the data range
of the individual images. Note that qualitatively very similar contrasts are observed for the magnitudes of the STT vectors and their components,
i.e., for |T|, |T‖|, and |T⊥|.

Eqs. (16d)–(16f) and (17a)–(17d). The dependence of the STT
on the combinations of PS and PT is investigated in Sec. III B.

The calculated STT vector components and vectors in
Fig. 3 show a wide variety depending on the tip magnetization
orientation (sT ), the spin moment they are acting on (T or
S), and the tunneling direction (T → S or S → T ). For the
out-of-plane magnetized tip (sT ‖ z, first row of Fig. 3) the T⊥
and TT ‖ vectors are perpendicular to z, i.e., they lie in the xy

surface plane. The TT ‖ vectors point to the direction of PSsA
S

projected on the surface plane. Thus, the T⊥ ± TT ‖ vectors
are also in the surface plane. On the other hand, the TS‖ and
the T⊥ ± TS‖ vectors have z components proportional to PT

[Eqs. (16e)–(16f)]; these are negative for TS‖ and T⊥ + TS‖
and positive for T⊥ − TS‖ in Fig. 3. This difference in the
z component of the total STT vectors acting on the sample
for the two tunneling directions has an important consequence

for the possible rotation of the spins of the skyrmion due
to the tunneling STT, clearly preferring one direction. For
the skyrmion depicted in Fig. 1(a) and the selected spin
polarization parameters we conclude that S → T tunneling
tends to annihilate the skyrmion since here the torque would
rotate the spins outwards from the surface, while a spin rotation
towards the surface would stabilize skyrmions in the case of
T → S tunneling.

For the in-plane magnetized tip (sT ‖ x, second row of
Fig. 3) the T⊥, TS‖ and T⊥ ± TS‖ vectors lie in the xy surface
plane outside the skyrmion above the ferromagnetic (FM)
background, where sA

S ‖ z. Here, the T⊥ vectors are obtained
as z×x = y and their direction (±y) is determined by the sign
of PSPT . The TS‖ vectors are in line with sT above the FM
background, and their direction (±x) is determined by the
sign of PT . Here, the TT ‖ vectors are in line with sA

S , and their
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FIG. 5. Dependence of the longitudinal spin current (LSC) vectors (TT L and TSL) on the spin polarizations of the surface (PS) and the tip
(PT ) in various combinations for the skyrmion in Fig. 1. The LSC vectors are reported at 6 Å tip-sample distance for both T → S and S → T

tunneling directions using an out-of-plane (+z, in [111] crystallographic direction) and an in-plane (+x, in [11̄0] crystallographic direction)
magnetized tip. The tip magnetization directions are explicitly shown in parentheses. Red and blue colors of the reported vectors correspond to
positive and negative out-of-plane (z) components, respectively. The absolute maximal LSC magnitudes are 5.7 neV.

direction (±z) is determined by the sign of PS . By summing up
the components, the total STT vectors T⊥ ± TT ‖ and T⊥ ± TS‖
above the FM background can be characterized by two angles
αT and αS , which describe the inclination from the sA

S ‖ z

and sT ‖ x directions, respectively. These angles are directly
related to the spin polarizations of the tip and the sample,

| tan αT | = |T⊥|
|TT ‖| = |PT |, (22a)

| tan αS | = |T⊥|
|TS‖| = |PS |. (22b)

Given the used spin polarization parameters in Fig. 3,
the two angles are αT = ±0.215π and αS = ±0.148π . The
corresponding inclinations of the total STT vectors above the

FM background are clearly visible in the second row of Fig. 3.
Note that −π/4 � αT ,αS � π/4 since −1 � PT ,PS � 1, and
according to Eqs. (22a) and (22b) this means that the magnitude
of T⊥ cannot exceed the magnitude of T‖ considering purely
current-induced torques. Similarly, it was found in experiments
performed for planar MTJs [14] that the magnitude of the
out-of-plane torque is smaller than that of the in-plane torque.
Equations (22a) and (22b) also imply that the direct mea-
surement of the STT vector components in magnetic tunnel
junctions would allow an accurate determination of the spin
polarizations of the tip and the sample separately. Presently,
Peff = PSPT can be obtained from the measured charge current
contrasts in the differential magnetic mode [72] of SP-STM
(see also Sec. II C), and the knowledge of the spin polarization
of one side is needed to determine the spin polarization of the
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FIG. 6. Dependence of the spin transfer torque (STT) vector components and total STT vectors on the spin polarizations of the surface
(PS) and the tip (PT ) in various combinations for the skyrmion in Fig. 1 at 6 Å tip-sample distance using an out-of-plane magnetized tip (spin
moment pointing along the +z or [111] crystallographic direction). The STT vector components (T⊥, Tj‖) and vectors (T⊥ ± Tj‖) are acting on
the spin moments of the scanning tip (j = T ) and of the skyrmion (j = S). Red and blue colors of the reported vectors correspond to positive
and negative out-of-plane (z) components, respectively. The absolute maximal STT magnitudes are 4 neV.

other side in the tunnel junction. Further implications for STT
measurements are given in the Appendix.

B. Effect of the spin polarizations on the tunneling
charge and spin transport of a skyrmion

In the following, the tunneling charge and spin transport
properties of the skyrmion in Fig. 1 are calculated and dis-
cussed taking the following combinations of the spin polariza-
tions: PS ∈ {−0.5,+0.5} and PT ∈ {−0.8,−0.4,+0.4,+0.8}.
Figure 4 displays SP-STM images of the charge current and
the magnitudes of the spin transport quantities LSC and
STT obtained with out-of-plane and in-plane magnetized tips,
depending on PS and PT . The SP-STM contrast is reversed
by changing the sign of Peff, see the contrasts of I in the
middle four images in the first and fifth columns of Fig. 4.
The LSC magnitudes in the second, third, sixth, and seventh
columns of Fig. 4 show almost identical contrasts with those
of the corresponding charge currents in the same row, and

the contrast change depending on the sign of Peff is also
reproduced. Such a behavior results from the expressions
|TT L| and |TSL| in Eqs. (19a) and (19b), respectively, and the
direct connections between the LSC magnitudes and the charge
current are introduced in Sec. II C. The appearing blue belts for
the |TT L| and |TSL| contrasts in Fig. 4 correspond to the real
minima depending on the relation of PS to PT , as explained at
the discussion of Fig. 2 in Sec. III A.

For the STT magnitudes we find the same type of con-
trast for both |TT | and |TS | and for all their components
(⊥ ,‖, total), which are commonly denoted as |T| in the fourth
and eighth columns of Fig. 4. This is due to their dominating
|sinφA| dependence [Eqs. (19c)–(19g)] as discussed at Fig. 3 in
Sec. III A. Figure 4 clearly shows that the contrasts of the STT
magnitudes are sensitive to the magnetic structure only and
not to the involved spin polarizations. The STT minima (blue
regions of STT in Fig. 4) and maxima (red regions of STT
in Fig. 4) are obtained where the spins of the skyrmion are
in line (parallel or antiparallel) with and perpendicular to the
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FIG. 7. Dependence of the spin transfer torque (STT) vector components and total STT vectors on the spin polarizations of the surface (PS)
and the tip (PT ) in various combinations for the skyrmion in Fig. 1 at 6 Å tip-sample distance using an in-plane magnetized tip (spin moment
pointing along the +x or [11̄0] crystallographic direction). The STT vector components (T⊥, Tj‖) and vectors (T⊥ ± Tj‖) are acting on the
spin moments of the scanning tip (j = T ) and of the skyrmion (j = S). Red and blue colors of the reported vectors correspond to positive and
negative out-of-plane (z) components, respectively. The absolute maximal STT magnitudes are 4 neV.

tip magnetization direction, respectively. Moreover, the STT
minima are found exactly at the maxima and minima of the
charge current; compare the corresponding I and |T| contrasts
in Fig. 4.

Figure 5 shows calculated LSC vectors for the skyrmion
in Fig. 1 for both T → S and S → T tunneling directions,
depending on the considered combinations of PS and PT ,
employing out-of-plane and in-plane magnetized tips. We find
the general rule that TjL(PS,PT ) = −TjL(−PS,−PT ), i.e.,
TT →S,jL(PS,PT ) = TS→T ,jL(−PS,−PT ) for j ∈ {T ,S}. The
magnitudes of the TT L vectors correspond to the second and
sixth columns of Fig. 4, and the magnitudes of the TSL vectors
to the results shown in the third and seventh columns of Fig. 4.

Figures 6 and 7 show calculated STT vectors and vector
components for the skyrmion in Fig. 1 for both T → S and
S → T tunneling directions, depending on the considered
combinations of PS and PT , employing an out-of-plane and
an in-plane magnetized tip, respectively. We find that the

TT ‖ vectors scale with PS , following its sign change, and are
independent of PT [Eq. (16d)]. Similarly, the TS‖ vectors scale
with PT , also following its sign change, and are independent
of PS [Eq. (16e)]. On the other hand, the T⊥ vectors scale with
PSPT , and they follow the sign change of the effective spin
polarization [Eq. (16f)]. Since the total STT vectors are the
sum of the corresponding two components, Tj = T⊥ ± Tj‖
with j ∈ {T ,S} for T → S and S → T tunneling directions,
respectively, the STT results in Fig. 6 (with an out-of-plane
magnetized tip) and in Fig. 7 (with an in-plane magnetized
tip) give good indications on how the STT vectors can be
tuned by changing the spin polarizations of the sample and
the tip in the tunnel junction. This feature can turn out to be
very useful if aiming at engineering the STT vectors at the
atomic scale for technical applications in the future. We find
the general rule that TT →S,j (PS,PT ) = TS→T ,j (−PS,−PT ) for
j ∈ {T ,S}. Note that the magnitudes of all STT components
and vectors show the same type of contrast with a given tip
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magnetization orientation, and these contrasts are reported in
the fourth and eighth columns of Fig. 4, respectively. Taking
an out-of-plane magnetized tip and the skyrmion depicted in
Fig. 1(a), we conclude thatS → T tunneling tends to annihilate
the skyrmion if PT < 0, and the opposite T → S tunneling
direction tends to annihilate the skyrmion if PT > 0 because
in both cases the TS torque would rotate the spins outwards
from the surface due to its positive z component, see the last
two columns of Fig. 6.

Considering the different scalings of the STT vector com-
ponents with PS (for TT ‖), PT (for TS‖) or PSPT (for T⊥), we
can state that Eqs. (22a) and (22b) generally hold true and do
not depend on the tip-sample geometry while in the tunneling
regime. Deviations from this can be expected close to contact,
where the importance of the STT contributions stemming from
farther surface atoms below the STM tip apex is enhanced.

We find opposite inclinations of the STT vectors in the
middle of the skyrmion compared to those above the fer-
romagnetic (FM) background in Fig. 7. This is due to the
opposite directions of the spins in that region compared to
the FM background. Note that the determination of PS and
PT from the inclinations of the total STT vectors, or from
the in-plane and out-of-plane STT components, refers to a
certain bias voltage. In the presented model in Sec. II A we
are restricted to very small bias and thus practically to the
Fermi levels of both sides of the magnetic tunnel junction.
Note, however, that the tunneling model can be extended
to include energy dependence of the contributing electronic
states, and bias voltage effects can be studied [55]. It is known
that the bias voltage dependence of the charge current and
the conductance complicates the determination of the energy-
dependent spin polarizations significantly [63]. This is also
expected in case of the determination of PS and PT from the
STT vector components at nonzero bias voltage in possible
future experiments.

IV. SUMMARY AND CONCLUSIONS

In summary, a theoretical method for the combined calcula-
tion of charge and vector spin transport of elastically tunneling
electrons in high spatial resolution above complex noncollinear
magnetic surfaces in SP-STM was developed. Connections
between the SP-STM image contrasts of the charge current
and the magnitudes of the longitudinal spin current (LSC) and
the spin transfer torque (STT) were identified and explained.
It was proposed that this enables the estimation of tunneling
spin transport properties based on experimentally measured
SP-STM images. A qualitative explanation was provided for
a preferred bias voltage polarity for the STT contribution
of skyrmion deletion in SP-STM. It was also proposed that
the direct measurement of the STT vector components would
enable the separate determination of the spin polarizations of
the sample (PS) and the tip (PT ), even above a ferromagnetic
surface. A considerable tunability of the spin transport vectors
by the involved spin polarizations was also demonstrated
that could inspire the engineering of desired spin transport
properties. The high-resolution determination of the tunneling
STT and LSC vectors paves the way for the future investigation
of current-induced magnetization switching in complex spin
textures on surfaces due to local spin-polarized currents in

SP-STM. As an example, the knowledge of the local STT
and LSC vectors is expected to deliver a detailed microscopic
insight into the creation, annihilation, and lateral manipulation
of skyrmions and other complex surface magnetic objects in
the future.
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APPENDIX: SPIN TRANSPORT VECTOR
MEASUREMENT CONSIDERATIONS

Let us assume that in the magnetic STM junction the T⊥
and TT ‖ vector components can be measured at low bias
voltage for at least one tunneling direction T → S or S →
T , and denote TT ‖ = TT →S,T ‖(= TT ‖

s (V > 0)) = −TS→T ,T ‖
(= −TT ‖

s (V < 0)), see Eq. (13b). With these the total STT
vectors can be written as TT →S,T = T⊥ + TT ‖ and TS→T ,T =
T⊥ − TT ‖. Here, we show that by knowing the two STT vector
components T⊥ and TT ‖, or alternatively TT →S,T and TS→T ,T ,
the spin polarization of the tip (PT ) and the sample (PS) and the
magnitudes of the STT components and the STT acting on the
sample surface can be determined. Taking the scalar product
and using Eqs. (19c) and (19e) result in

TT →S,T · TS→T ,T = (T⊥ + TT ‖) · (T⊥ − TT ‖)

= |T⊥|2 − |TT ‖|2

= P 2
S sin2 φA

(
P 2

T − 1
)
� 0. (A1)

The absolute value square of the total STT vector is

|TT |2 = |TT →S,T |2 = |TS→T ,T |2 = |T⊥ ± TT ‖|2

= |T⊥|2 + |TT ‖|2 = P 2
S sin2 φA

(
P 2

T + 1
)
. (A2)

Taking the ratio of the above quantities results in a correlation-
like formula,

ρTT →S,T ,TS→T ,T = TT →S,T · TS→T ,T

√
TT →S,T · TT →S,T

√
TS→T ,T · TS→T ,T

= −1 − P 2
T

1 + P 2
T

� 0. (A3)

Using Eq. (22a), PT = tan αT ,

ρTT →S,T ,TS→T ,T = −1 − tan2 αT

1 + tan2 αT

= − cos(2αT ). (A4)

Thus, the angle αT can be determined,

αT = 1
2 arccos(−ρTT →S,T , TS→T ,T ), (A5)
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and the following relationships can be observed,

|T⊥|
|TT | = |PT |√

1 + P 2
T

= |sinαT |, PT√
1 + P 2

T

= sin αT ,

|TT ‖|
|TT | = 1√

1 + P 2
T

= cos αT . (A6)

Knowing PT = tan αT , the magnitude of TS‖ is |TS‖| =
|PT sin φA|. Since we also know the out-of-plane STT vector
T⊥, the same procedure can be repeated as above to determine
PS = tan αS ,

ρTT →S,S ,TS→T ,S = TT →S,S · TS→T ,S

√
TT →S,S · TT →S,S

√
TS→T ,S · TS→T ,S

= |T⊥|2 − |TS‖|2
|T⊥|2 + |TS‖|2

= −1 − P 2
S

1 + P 2
S

= −1 − tan2 αS

1 + tan2 αS

= − cos(2αS).

(A7)

Thus, the angle αS can be obtained as

αS = 1
2 arccos(−ρTT →S,S ,TS→T ,S ), (A8)

and the following formulas relate the STT components to the
STT magnitude,

|T⊥|
|TS | = |PS |√

1 + P 2
S

= |sinαS |, PS√
1 + P 2

S

= sin αS,

|TS‖|
|TS | = 1√

1 + P 2
S

= cos αS. (A9)

Inspired by the magnetic asymmetry of the charge
current AI in Eq. (20), similar quantities can be de-
fined for the LSC. For that reason, let us assume that
the LSC vectors can be measured at opposite tip mag-
netization directions sT and −sT . This results in the
LSC vectors TT L(sT ) ∝ (PT + PS cos φA)sT , TT L(−sT ) ∝
(PT − PS cos φA)(−sT ), TSL(sT ) ∝ (PS + PT cos φA)sA

S , and
TSL(−sT ) ∝ (PS − PT cos φA)sA

S , from which the following
magnetic asymmetry expressions can be obtained:

AT L = |TT L(sT ) − TT L(−sT )|
|TT L(sT ) + TT L(−sT )|

= |PT |
|PS cos φA| = P 2

T

|AI | = ASL

cos2 φA

,

ASL = |TSL(sT ) − TSL(−sT )|
|TSL(sT ) + TSL(−sT )|

= |PT cos φA|
|PS | = |AI |

P 2
S

= AT L cos2 φA, (A10)

and AT L � ASL � 0. With these quantities the spin transport
magnitudes assuming an sT tip magnetization direction can be
written as

|TT L| ∝ |PT |(1 + 1/AT L),

|TSL| ∝ |PS |(1 + ASL),

|TT ‖| ∝ |PS |
√

1 − ASL/AT L,

|TS‖| ∝ |PT |
√

1 − ASL/AT L,

|T⊥| ∝ |PSPT |
√

1 − ASL/AT L,

|TT | ∝ |PS |
√

1 + P 2
T

√
1 − ASL/AT L,

|TS | ∝ |PT |
√

1 + P 2
S

√
1 − ASL/AT L. (A11)

These equations establish a direct connection between the
magnitudes of the spin transport components and the LSC
asymmetries. Using Eq. (20), the spin polarizations can be
expressed by solely using the magnetic asymmetries AI ,AT L,
and ASL as

P 2
T = |AI | · AT L, P 2

S = |AI |/ASL,

P 2
T P 2

S = A2
IAT L

/
ASL, P 2

T

/
P 2

S = AT LASL. (A12)

This way, the spin transport magnitudes assuming an sT tip
magnetization direction can be written using the magnetic
asymmetries:

|TT L| ∝
√

|AI |/AT L(1 + AT L),

|TSL| ∝
√

|AI |/ASL(1 + ASL),

|TT ‖| ∝
√

|AI |/ASL − |AI |/AT L,

|TS‖| ∝
√

|AI |AT L − |AI |ASL, (A13)

|T⊥| ∝ |AI |
√

AT L/ASL − 1,

|TT | ∝
√

|AI |/ASL − |AI |/AT L + A2
IAT L/ASL − A2

I ,

|TS | ∝
√

|AI |AT L − |AI |ASL + A2
IAT L/ASL − A2

I .

The connections between the ratios of the magnitudes of the
STT vector components (or the angles αT and αS) and the
magnetic asymmetries read as follows:

|T⊥|
|TT | = |sinαT | =

√
|AI |AT L

1 + |AI |AT L

,

|TT ‖|
|TT | = cos αT = 1√

1 + |AI |AT L

,

|T⊥|
|TS | = |sinαS | =

√
|AI |/ASL

1 + |AI |/ASL

,

|TS‖|
|TS | = cos αS = 1√

1 + |AI |/ASL

. (A14)

Other important relations can be written that might prove to be
useful in the evaluation of future STT experiments in magnetic
STM junctions:

|cosφA| = |AI |
|TT L| · |TSL| (1 + 1/AT L)(1 + ASL)

=
√

ASL

AT L

= |PT |
|PS |

1

AT L

= |PS |
|PT |ASL = |AI |

|PS | · |PT | ,

|sinφA| = |TT ‖| · |TS‖|
|T⊥| =

√
1 − ASL

AT L

=
√

1 − A2
I

P 2
S P 2

T

,

|TT |
|sinαS | = |TS |

|sinαT | = |sinφA|
|cosαS | · |cosαT | . (A15)
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