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1.  Introduction

The temperature dependence of macroscopic physical quanti­
ties is mostly due to thermal fluctuations of the microscopic 
degrees of freedom, which—for magnetic systems—is the 
atomic spin magnetic moment, in the following for simplicity 
called spin. The Hamiltonian of the system is normally param­
eterized in form of a spin model where the model parameters 
are assumed temperature-independent while the spins—in the 
classical limit—are allowed to fluctuate with their magnitude 
kept constant. For a given material the model parameters can 
be derived from first principles, mostly relying on the famous 
approach of Liechtenstein et al [1]. Different related methods 
have been developed in the past suitable to treat correlated 
systems [2, 3], relativistic effects [4, 5] or both of them [6, 7]. 
Quite recently, an approach to calculate magnetic interactions 
under non-equilibrium conditions has also been developed [8].

Usually, first-principles electronic-structure calculations 
and the determination of exchange parameters are performed 

for zero temperature. In a second step, these exchange param­
eters are used for a spin model to calculate thermal properties 
via Monte Carlo simulations or Langevin dynamics simula­
tions based on the stochastic Landau–Lifshitz–Gilbert (LLG) 
equation of motion [9], i.e. the same exchange parameters are 
used to describe magnetic systems at elevated temperatures. 
However, the question arises how far the parameters of the 
spin model itself are temperature-dependent due to thermally-
induced changes of the electronic structure or the temper­
ature-dependent Weiss field surrounding the atoms. Hence, 
new approaches to obtain temperature-dependent spin model 
parameters computed from first principles have been proposed 
either in terms of Fermi–Dirac statistics [10] or considering 
non-collinear spin-configurations due to thermal fluctuations 
[11]. Recently, Böttcher et al [12] proposed a method to cal­
culate the temperature dependence of Heisenberg exchange 
coupling constants. The magnetization (order parameter) 
of the system was controlled using an Ising type approach, 
by mixing up- and down- magnetic moments in different 
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concentrations c. The temperature was then adjusted to c by 
fitting the magnetization from Monte Carlo simulations using 
the calculated exchange coupling constants to that obtained 
from ab initio calculations.

To further develop this concept, we present an ab initio 
model of the temperature dependence of the Heisenberg 
exchange coupling constants Jij as well as the atomic magnetic 
moments μ based on the scheme of disordered local moments 
(DLM) [13]. The relativistic extension of this theory [14, 15] 
allows for a direct link of the magnetization (temperature) to 
the electronic structure, thus to the calculated exchange con­
stants. Moreover, as in [10], we use the Fermi–Dirac distribu­
tion to include effects of thermal electronic excitations. As a 
model system we consider bcc Fe. Starting with equilibrium 
properties we expand our investigation to the case of ultra-fast 
magnetization dynamics where—following a strong excita­
tion with a femtosecond laser pulse—the sample first demag­
netizes on a sub-picosecond time scale and then recovers its 
magnetization on a larger time scale. This effect was discov­
ered by Beaurepaire [16], a work which has inspired the field 
of ultra-fast spin dynamics with potential applications in data 
storage. Since the laser pulse leads to a strong increase of the 
electron temperature, an influence of temperature-dependent 
variations of the spin model parameters can be expected and 
will be studied in the following.

Our work is structured as follows: in the next chapter we 
will introduce our methods, first-principles calculations to 
derive the model parameters as well as Langevin dynamics 
for the thermodynamic calculations. Then we discuss the 
temperature dependence of the model parameters that we 
derived from first principles. In the following two sections we 
discuss the results from our thermodynamic calculations, first 
the equilibrium properties and then the spin dynamic behavior 
as triggered by a short laser pulse.

2. Theory: from first principles to atomistic spin 
model

First, we compute the electronic structure of the magnetic 
system at finite temperatures in terms of the relativistic dis­
ordered local moment (RDLM) scheme [13–15] implemented 
in the screened Korringa–Kohn–Rostoker (KKR) method [17]. 
The RDLM scheme relies on the adiabatic approximation 
where the slow spin degrees of freedom are decoupled from 
the fast (electronic) degrees of freedom and the configuration 
of the local moments can be described by a set of unit vectors 
= …e e e e, , N1 2{ } { }. The RDLM theory describes the fluctua­

tions of the finite-temperature system in terms of single-site 
probabilities,

∏= Pe e ,
i

i i({ }) ( )P� (1)

inherently providing a local mean-field description of spin 
disorder. In the framework of the single-site coherent poten­
tial approximation (CPA), a magnetically ordered coherent 

medium described by the t-matrices tc i,  are sought for at every 
given energy ε (not noted explicitly), and the self-consistency 
condition for the corresponding scattering path operator 
(SPO) [17],

( )τ = −− −
t G ,c c

1
0

1
� (2)

reads as

∫τ τ= P ee e d ,c ii ii i i i
e

,
2

i

({ }) ( )� (3)

where τ eii ei
({ })  denotes the partial average of the scattering 

path operator with the spin direction fixed at site i. Note that 
quantities with one and two underlines denote matrices with 
angular momentum indices and with combined site-angular 
momentum indices, respectively, while G0 in equation  (2) 
stands for the free-space structure constants. An equivalent 
form of the CPA condition can be given in terms of the excess 
scattering matrices Xi,

τ= − −− − − −
X t te e ,i i c i i i c ii,

1 1 1
,

1
( ) [( ( )) ]� (4)

as

∫= =X P X ee e e d 0.i i i i i i i
2( ) ( ) ( )� (5)

The single-site probabilities P ei i( ) can be determined self-
consistently [18], and the finite-temperature orientational dis­
tribution can be characterized using the dimensionless average 
magnetization

( )∫= =m P ee e e d .i i i i i i
2� (6)

This quantity also plays the role of an order parameter 
in a homogeneous system, with m  =  1 corresponding to 
ferromagnetic order and m  =  0 to the paramagnetic state.

Besides considering temperature-induced transversal spin 
fluctuations, we also include the effect of finite electronic 
temperature, Tel, by using the Fermi–Dirac distribution to cal­
culate averages over electronic states. Such an extension of 
the density functional theory was founded by Mermin [19], 
see also [20]. Applying this approach to ferromagnets obvi­
ously leads to too high Curie temperatures [20, 21] due to 
neglected orientational fluctuations of the local moments. In 
our implementation of the self-consistent RDLM method we 
consider both mechanisms for temperature dependence and 
calculate the electronic and magnetic structure of the system 
as a function of magnetic disorder and electronic temperature 
simultaneously.

Starting from a self-consistent-field calculation performed 
for a given order parameter and electronic temperature we can 
obtain spin model parameters by combining the relativistic 
torque method with the RDLM reference state. The relativ­
istic torque method [4] provides exchange interactions from 
the electronic structure by considering infinitesimal rotations 
of pairs of spins with respect to the ordered ground state based 
on Lloyd’s formula [22]. We can generalize this approach by 
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considering the perturbation of two spins (say, at sites i and j) 
immersed in the fluctuating system, and assessing the corre­
sponding change in the two-site restricted thermodynamical 
average of the grand potential, Ω e e ei j

({ }) . The part of this 
quantity which depends simultaneously on ei and ej, is given 
by [23]

({ }) ( )

[ ( ) ( ) ]

∫
∑

π
ε ν

τ τ ε

Ω ≈−

×

−∞

∞

=

∞

f

k
X X

e

e e

1
Im ;

1
Tr d ,

k
i i c ij j j c ji

k

e e

1
, ,

i j

�

(7)

where ( )ε νf ;  is the Fermi function with the chemical potential 
ν. Note that the so-called backscattering terms [24] explicitly 
containing sites other than i and j are neglected in the above 
expression. Expanding the two-site averaged grand potential 
up to second order in the change in inverse t-matrices ulti­
mately leads to the expression for the two-site derivative:

({ })
( )

( ) ( )

∫φ φ π
ε ν

φ
τ

φ
τ ε

∂ Ω

∂ ∂
= −

×
∂
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∞
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2
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i j
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(8)

In the spirit of the relativistic torque method, the derivatives 
are taken with respect to infinitesimal rotational angles, φ i1  
and φ j2 , around two orthogonal unit vectors perpendicular 
to the ground-state orientation of the spins at sites i and j. 
Combining these derivatives for three orthogonal directions 
of the overall average magnetization of the ferromagnetic 

system, the exchange coupling tensor αβJij  α β = x y z, , ,( ) can 
be derived [4]. While in this way it is possible to obtain relativ­
istic contributions to the exchange interactions, namely, two-
site anisotropies and Dzyaloshinskii–Moriya interactions, in 
this work we only consider isotropic Heisenberg interactions 
identified as = + +J J J J 3ij ij

xx
ij
yy

ij
zz( )/ .

We note that the non-relativistic form of equation  (8) 
was used by Böttcher et  al [12] to compute magnetization-
dependent isotropic exchange interactions. In their approach, 
atoms with up- and down-moments were distributed randomly 
in the framework of the so-called partial DLM approach. 
Instead of performing a proper thermodynamic average, the 
concentration of the components was fitted to the temperature-
dependent average magnetization obtained from Monte Carlo 
simulations. We emphasize that by employing self-consistent 
orientational distributions for the local moments and by incor­
porating finite electronic temperature now we can elaborate 
on the subject of finite-temperature effects on the exchange 
interactions.

In our hierarchical multiscale approach, the computed 
parameters, namely, the magnitude of the local magnetic 
moment μ and the exchange constants Jij are used for numer­
ical simulations based on an atomistic Heisenberg spin 
Hamiltonian. We consider thereto classical spins µ µ=Si i/ , µi 
being the local magnetic moment at site i, with the following 
Heisenberg spin Hamiltonian:

∑
µ µ
π

= − ⋅ −
⋅ ⋅ − ⋅

≠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

J

r
S S

S n n S S S

2 8

3
.

i j

ij
i j

i ij ij j i j

ij

0
2

3

( )( )
H

�

(9)

The first sum represents the exchange energy of magnetic 
moments and the second sum describes the magnetic dipole-
dipole energy, in which µ0 is the vacuum permeability, nij and 
rij denote the direction (unit vector) and the distance between 
site i and j, respectively.

To calculate thermal properties we use Langevin dynamics, 
i.e. numerical solutions of the stochastic LLG equation  of 
motion,

α
γ

µ α
+

= − × + ×S S H S H
1 ˙ ,i i i i i

2( ) [ ( )]� (10)

with the gyromagnetic ratio γ, and a dimensionless Gilbert 
damping constant α that describes the coupling to the heat 
bath. Thermal fluctuations are included as an additional noise 

term ζ in the internal fields ζ= − +∂
∂

tHi iSi
( )H  with

ζ ζ ζ
αµ
γ

δ δ δ= =η θ ηθt t
k T

t0, 0
2

,i i j ij
B el⟨ ( )⟩ ⟨ ( ) ( )⟩ ( )� (11)

where η θ,  are Cartesian components. All algorithms we use 
are described in detail in [9].

As described above the exchange interactions are computed 
as a function of order parameter m and electronic temperature 
Tel. In the simulations we therefore have to evaluate the dimen­
sionless average magnetization =m Si  and identify it with 
the order parameter used in the RDLM calculations, which 
together with the electronic temperature specify the exchange 
couplings to be used in the following time steps. Similarly, the 
magnitude of the local moment is suitably updated during a 
simulation according to the order parameter and the electronic 
temperature.

Note that the exchange interactions are incorporated in our 
atomistic spin dynamics simulations via the fast Fourier trans­
formation method (see [25] for more details). As a side effect, 
we are able to calculate the dipolar interaction without any 
additional computational effort so we take them into account 
although they will not influence our results much.

3. Temperature dependence of magnetic moments 
and exchange interactions

First we performed self-consistent RDLM calculations of bulk 
Fe by varying the degree of spin disorder and the electronic 
temperature independently. For the lattice constant of the bcc 
lattice we used =a a5.27 0 corresponding to the total energy 
minimum obtained with KKR in the atomic sphere approx­
imation (KKR-ASA) using the local spin-density approx­
imation (LSDA) [26]. All our ab initio calculations were 
performed with an angular momentum cut-off of � = 2max , and 
for the energy integrations we used a combination of a con­
tour in the upper complex energy plane and a summation over 
Matsubara poles below the contour. For the self-consistent 
calculations we used 78 k-points in the irreducible wedge of 
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the two-dimensional Brillouin zone (576 k-points in the full 
Brillouin zone), which was sufficient to produce stable values 
of the integrated quantities. The dependence of the local magn­
etic moment μ of bulk bcc Fe as a function of m and Tel is 
shown in figure 14. At zero electronic temperature there is a 
reduction of the local Fe moment of almost 15% in the para­
magnetic state compared to the ground state, suggesting that 
the local moment of bcc Fe is not as rigid as it is often assumed 
[18]. It is thus indeed preferable to probe its behavior beyond 
the usual Heisenberg model, by incorporating the effect of lon­
gitudinal spin-fluctuations into the spin model.

In good agreement with calculations of Chimata et al [10] 
the local moment is quite stable for about T 2000el ⩽  K and 
for higher electron temperatures it rapidly drops. The Stoner–
Curie temperature TSC at which the local moment of Fe van­
ishes is about 5500 K in case of m  =  1. This value is clearly 
lower than that found by Chimata et al, =T 6030SC  K. The 
most probable reason for this deviation is that Chimata et al 
used the experimental lattice constant =a a5.41 0 and for 
higher atomic volumes the local moment of Fe is more stable 
against thermal excitations than for lower atomic volumes.

A new feature that can be inferred from figure  1 is that 
the Stoner–Curie temperature decreases with decreasing order 
parameter. This is clearly highlighted in figure 2 showing a 
monotonic decrease of TSC against increasing spin disorder. 
This tendency can be anticipated from the decrease of the 
local moment with increasing m as pointed out above.

Following the self-consistent calculations we also calcu­
lated exchange interactions as described in the previous sec­
tion. For the k-integrations here we used up to about eleven 
thousand k-points in the irreducible wedge of the two-dimen­
sional Brillouin zone for energy points near the Fermi energy. 
The isotropic interactions, J m T,ij el( ), are shown in figure  3 
for the first four nearest neighbors (NN). Even though the 
dominant first neighbor couplings are maximal for zero elec­
tron temperature, some further neighbors show interesting 
non-monotonic behavior as a function of Tel, ultimately van­
ishing at the respective Stoner–Curie points. At =T 0el  K,  
the dependence of the dominant exchange interaction is 
also non-monotonic as a function of m, furthermore some 

couplings show an enhancement towards the paramagnetic 
(PM) (m  =  0) limit. A similar but much larger enhancement 
of the first NN Fe–Fe coupling in the PM phase was found 
by Böttcher et  al [12]: taking into account a factor of one-
half due to the different definition of the spin Hamiltonian, 
the first NN coupling in our calculation (∼45 meV) and that 
of Böttcher et al (∼52 meV) agree well in the disordered PM 
state, while in the ferromagnetic (FM) state (m  =  1) the latter 
one is considerably smaller (∼22 meV) than ours (∼38 meV).

4.  Equilibrium magnetization

In the LLG simulations we consider a system of size 
× ×35.86 nm 35.86 nm 35.86     nm with a lattice constant of 

5.27 a0 in the high damping limit (α = 1). The exchange cou­
plings as described in the previous section  were taken into 
account up to a distance of six lattice constants. We compare 
simulations where we either assume constant ground state 
spin model parameters (exchange interaction and magnetic 
moment) fixed at m  =  1 and =T 0el  K, m-dependent spin 
model parameters at =T 0el  K, Tel-dependent parameters for 
m  =  1, and the parameters with full temperature (m- and Tel-) 
dependence.

Figure 4 shows the zero-field thermally averaged magnetic 
moment per atom versus electron temperature Tel for bcc Fe 
comparing temperature-independent ground-state spin model 
parameters (for m  =  1) with temperature-dependent spin 
model parameters for the respective values of the magneti­
zation m. The magnetization curve is clearly affected by the 
temperature dependence of the exchange. The larger Curie 
temperatures when taking into account the m-dependence of 
the exchange coupling is due to the fact that the most impor­
tant 1st NN coupling increases with decreasing oder param­
eter (increasing temperature), see figure  3. However, taking 
into account the effect of the electron temperature lowers the 
strength of the 1st NN coupling. For comparison, the exper­
imental value of the Curie temperature of bcc Fe is =T 1045C  K.  
Note however, that this experimental value should not be 
taken as benchmark for our calculation, since the results of the 
first principles calculations also depend on the assumptions 

Figure 1.  Local magnetic moment μ as function of order parameter 
m and electron temperature Tel as calculated from first principles.

Figure 2.  Calculated dependence of the Stoner–Curie temperature 
TSC on order parameter m.

4 Surface plots in this paper use the viridis colormap of the matplot-
lib library, see [27].
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made regarding the value of the atomic distance [28]. We have 
chosen the lattice constant of 5.27 a0 since it is in the vicinity 
of the value optimized by first principles calculations [26, 29] 
and, fortunately, the simulated Curie temperature is close to 
the experimental value, see figure 4.

5.  De- and remagnetization due to a laser pulse

In the following, we study the dynamic reaction of the mag­
netization following the excitation via a fs laser pulse. This 
is especially interesting in the context of our first-principles 
calculations, since following a laser pulse the electron temper­
ature can reach large values far above the Curie temperature, 
while on this short time scale the order parameter remains 

finite. Hence, under these strong non-equilibrium conditions, 
the dependence of the spin model parameters on m and Tel can 
be tested separately.

Similar to [30] and [31] we couple a spin model to a 
heat bath the temperature dynamics of which are calculated 
from a well-established two-temperature model derived by 
Kaganov et al [32] to describe the temperature evolution in 
our Fe sample after an excitation with a fs laser pulse with 
a Gaussian laser profile σ= − −P t P t texp 20 0

2 2( ) ( ( ) / ) with 
σ τ=2 4 ln 22 2/( ( )). To calculate the response to the laser 

pulse, we use the following coupled differential equations for 
our two-temperature model,

τ
= − − −

−

= − − +

C
T

t
G T T C

T T

C T
T

t
G T T P t

d

d
,

d

d
,

ph
ph

el–ph ph el ph
ph 0

th

el el
el

el–ph el ph

( )

( ) ( ) ( )
�

(12)

where Tel and Tph are the temperatures of the electronic and 
lattice reservoirs, γ=C Tel C elel

 (with γ = 670Cel
 J (m3K2)−1) 

and = ×C 2.2 10ph
6 J (m3K)−1 are the electronic and lat­

tice specific heats, respectively, and = ×G 4.05 10el–ph
18  

J (sm3K)−1 is the electron-phonon coupling constant. The 
time constant τ = 50th  ps describes the relaxation back to the 
initial temperature T0. The parameters used in the model were 
taken from [10].

A spin system of size × ×17.87 nm 17.87 nm 17.87     nm is 
simulated with a damping constant of α = 0.1. Note that we 
keep the value of the damping constant fixed in our simula­
tions, even though one could speculate that even this value is 
temperature-dependent, which would lead to additional effects 
regarding the dynamic behavior of our model. However, the 

Figure 3.  Calculated isotropic exchange constants for the first four nearest neighbors, Ji ( = …i 1, , 4), as function of the order parameter m 
and electron temperature Tel.

Figure 4.  Thermally averaged magnetic moment per atom 
versus electron temperature from Langevin dynamics simulations 
using spin model parameters with different types of temperature 
dependence (see text).

J. Phys.: Condens. Matter 29 (2017) 314003
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focus of this paper is solely on the model parameters of the 
Hamiltonian while a calculation of the temperature depend­
ence of α is beyond the scope of our work. As an example, in 
figure 5 the laser profile P(t) as well as the electron Tel and lat­
tice temperature Tph calculated from equations (12) for a laser 
pulse with = ⋅P 4.63 100

21 W m−3 and τ = 84 fs are shown.
In figures  5 and 6 the quenching and the relaxation of 

the magnetization following a thermal excitation with laser 
pulses of three different intensities are compared. As in the 
equilibrium case of the previous section we consider different 
types of spin model parameters, assuming either temper­
ature-independent ground-state parameters (for m  =  1) or 
temperature-dependent spin model parameters for the respec­
tive time-dependent values of the order parameter m, with 
and without taking into account the time-dependent electron 
temperature Tel. In figure 5 the influence of the different types 
of model parameters on the magnetization dynamics is rather 
small. This is mainly due to the fact that the laser power is 
assumed rather small, so that the order parameter does not 
vanish completely but is rather quenched by about 50% only. 
Here, the effect of the electron temperature variation is also 
not big enough to lead to major variations of the magnetiza­
tion dynamics. Furthermore, the temperature dependence of 
the atomic magnetic moment μ as shown in figure 1 is still not 

visible since even the rather high electron temperatures con­
sidered here are still far below the Stoner–Curie temperature.

This is different in figure 6. For intermediate laser powers 
(upper graph) the quenching of the magnetization is slightly 
affected for the case where both the electron temperature 
dependence of the spin model parameters as well as their order 
parameter dependence is considered (red line). Since both 
effects lead to a reduction of the 1st and 2nd NN exchange 
constants in that temperature range (see figure 3) the demag­
netization is stronger. For even higher laser power the sample 
is completely demagnetized after the laser pulse for all model 
assumptions. But now the relaxation phase is affected and it 
is the model with m-dependent but Tel-independent exchange 
parameters which shows the quickest relaxation. This is due 
to the fact that this model has the largest 1st NN exchange 
parameters in that temperature range, which also leads to the 
highest Curie temperature in our equilibrium calculations (see 
figure 4).

6.  Summary

We investigated magnetization dynamics at elevated temper­
ature in terms of a spin model where the model parameters are 
derived from first principles. Choosing bcc Fe as an example, 
we focus on different kinds of model assumptions, with 
temperature-dependent spin model parameters. Under equi­
librium conditions, the Curie temperature is clearly affected 
by the different model assumptions, since the values of the 
exchange constants vary with both the electron temperature 
and the value of the order parameter assumed in the first-prin­
ciples calculations. Consequently, the dynamics response of 
the magnetization to an ultra-short laser pulse can be affected 
as well, when the laser power is sufficiently large to reach high 
electron temperatures and large degrees of demagnetization.

Figure 5.  De- and remagnetization processes due to a laser pulse 
considering different types of spin model parameters, temperature-
independent as well as temperature-dependent (bottom panel). The 
time-dependent Gaussian laser pulse P(t) with = ⋅P 4.63 100

21  
W m−3, the electron Tel as well as phonon temperature Tph are shown 
in the upper and middle panels, respectively.

Figure 6.  Time-dependent magnetizations as in figure 5 for two 
further laser pulse powers, ⋅7.74 1021 W m−3 (top) and ⋅1.23 1022 
W m−3 (bottom).
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