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Domain-wall profiles in Co/Irn/Pt(111) ultrathin films:
Influence of the Dzyaloshinskii-Moriya interaction
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We perform a study of domain walls in Co/Irn/Pt(111) (n = 0, . . . ,6) films by a combined approach of
first-principles calculations and spin-dynamics simulations. We determine the tensorial exchange interactions
and the magnetic anisotropies for the Co overlayer in both fcc and hcp geometries, depending on the number
of Ir buffer layers. We find strong ferromagnetic nearest-neighbor isotropic exchange interactions between the
Co atoms and an out-of-plane magnetic anisotropy for the films in fcc geometry. Our simulations show that the
magnetic domain walls are of Néel type, and their rotational sense (chirality) is changed upon the insertion of
an Ir buffer layer compared to the pristine Co/Pt(111) system. Our spin-dynamics simulations indicate a twisting
of the spins with respect to the planar domain-wall profile on the triangular lattice. We discuss this domain-wall
twisting using symmetry arguments and in terms of an appropriate micromagnetic continuum model considering
extra energy terms compared to the available literature.

DOI: 10.1103/PhysRevB.94.214422

I. INTRODUCTION

Effective spin models are widely used to investigate the
magnetic properties of solids. The breaking of inversion
symmetry in noncentrosymmetric crystals at surfaces or
interfaces and the presence of the spin-orbit coupling lead
to the appearance of an anisotropic exchange term beyond
the isotropic Heisenberg interaction, which is known as the
Dzyaloshinskii-Moriya (DM) interaction [1,2]. In collinear
ferromagnetic systems, this type of interaction provides
domain walls (DWs) with a chiral character [3–8], plays a
key role in DW dynamics [9–12], and leads to the stabilization
of isolated chiral skyrmions [13–16]. It may also cause the for-
mation of noncollinear magnetic states [7,17] such as spin spi-
rals [18,19] and condensated skyrmionic phases [16,20–24].
Furthermore, the DM interaction induces an asymmetry in the
spin-wave spectrum of thin ferromagnetic films [25,26]. Based
on this asymmetry, recently extensive experimental efforts
have been directed towards the measurement of the interfacial
DM interaction by using inelastic light scattering [27–29],
highly resolved spin-polarized electron energy loss [30], and
propagating spin-wave spectroscopy [31].

The current-driven motion of domain walls is mainly
investigated in ultrathin films and multilayers, paving the way
for future applications in spintronic and logic devices [32,33].
In these systems, heavy nonmagnetic elements provide the
strong spin-orbit coupling necessary for the appearance of the
DM interaction in the adjacent magnetic layers. Using the
micromagnetic energy functional determined by Dzyaloshin-
skii [34], it has been demonstrated [3,35,36] that the DM inter-
action prefers a cycloidal or Néel-type rotation of spins within
a domain wall in the Cnv symmetry class to which the majority
of these systems belong. The rotational plane of domain walls
is determined by the competition between the DM interaction
and the magnetostatic dipolar interaction preferring a helical

or Bloch-type rotation [3], while the right- or left-handed
chirality is determined by the sign of the DM interaction.
Recently, a significant research effort has been devoted to
examining the connection between the nonmagnetic material
composition and the sign and magnitude of the DM interac-
tion, based on both experimental observations [4,5,31,37,38]
and first-principles electronic structure calculations [39]. In
Ref. [38], Pt/Co/Pt and Pt/Co/Ir/Pt multilayers with different
Ir thicknesses were studied using a field-driven domain-wall
creep-based method. It was demonstrated that due to the
insertion of the Ir layer, the chirality of the Néel wall reversed
from right handed to left handed, which was attributed to the
sign change of the effective DM interaction.

Motivated by the experimental study in Ref. [38], in this
work we investigate the magnetic properties of Co/Pt(111) and
Co/Irn/Pt(111) (n = 1, . . . ,6) films. We use first-principles
electronic structure calculation methods to determine the
parameters in a spin model where the coupling between the
spins is described by an exchange interaction tensor [40], and
we perform atomistic spin-dynamics calculations in order to
determine the domain-wall profiles. We give direct evidence of
the relationship between the homochirality of the Néel DWs
and the calculated DM vectors, confirming the reversal of
the DW chirality by inserting the Ir layer between the Co
monolayer and the Pt substrate. Moreover, we observe that the
presence of the Ir layers weakens the ferromagnetic exchange
coupling between the neighboring Co atoms and increases
the magnetic anisotropy; thus, the DWs become more narrow.
We also observe a small twisting of the spins in the DW, leading
to a noncoplanar DW profile. Using symmetry arguments, we
attribute the appearance of this twisting to the out-of-plane
components of the DM vectors and a specific term appearing
in the symmetric off-diagonal part of the interaction tensors.
We explain how the appearance of the twisting depends on
the DW normal vector direction and construct an appropriate
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micromagnetic continuum model, where the direction and
shape of the twisting depends on the coefficients corresponding
to the out-of-plane component of the DM vector and the
symmetric off-diagonal interaction.

II. COMPUTATIONAL METHOD

We performed self-consistent electronic structure calcu-
lations for the Co/Irn/Pt(111) (n = 0, . . . ,6) ultrathin films
in terms of the relativistic screened Korringa-Kohn-Rostoker
(SKKR) method [41,42]. We used the local-spin-density ap-
proximation parametrized by Vosko et al. [43] and the atomic
sphere approximation with an angular momentum cutoff of
lmax = 2. The system consisted of 10 − n Pt and n Ir atomic
layers (n = 0, . . . ,6), a Co monolayer, and four monolayers of
vacuum (empty spheres) between the semi-infinite Pt substrate
and semi-infinite vacuum. To model the geometry of the thin
films we used the value a2D = 2.774 Å for the in-plane lattice
constant of the Pt(111) surface, and we optimized the distance
between the layers in terms of VASP calculations [44–46] for
both fcc and hcp stackings of the Co overlayer. We found an
inward relaxation of the Co overlayer between 11% and 14%
relative to the Pt-Pt bulk interlayer distance, depending on
the number of Ir buffer layers. These inward layer relaxations
were used in the self-consistent SKKR calculations, and the
Wigner-Seitz radii of the Co, Ir, and top Pt layers were modified
according to the relaxations.

We described the localized magnetic moments in the Co
layer in terms of a generalized classical Heisenberg model of
the form

H = 1

2

∑
ij

�siJij �sj +
∑

i

�siK�si, (1)

where �si denotes the spin unit vector at site i, Jij is the exchange
coupling tensor [40], and K is the on-site anisotropy matrix.
The corresponding parameters of the spin model in Eq. (1)
were determined by combining the SKKR method with the
relativistic torque technique [40,47] based on calculating the
energy costs of infinitesimal rotations around ferromagnetic
states oriented along different crystallographic directions.
We considered the out-of-plane ferromagnetic state and ori-
entations along three nonparallel in-plane nearest-neighbor
directions, sufficient for reproducing the C3v symmetry of the
system in the interaction tensors. The energy integrals were
performed by sampling 16 points on a semicircle contour in the
upper complex semiplane. We have calculated the interactions
with neighbors within a radius of 5a2D for a total of 90
neighbors.

The interaction tensor Jij may be decomposed as

Jij = 1
3 TrJij I + 1

2

(
Jij −JT

ij

) + [
1
2

(
Jij + JT

ij

) − 1
3 TrJij I

]
,

(2)

i.e., into isotropic, antisymmetric, and traceless symmetric
parts. The first term represents the scalar Heisenberg couplings
between the magnetic moments, with Jij = 1

3 TrJij . The three
components of the antisymmetric part of the exchange tensor
can be identified with the DM vector �Dij , defined as

�si
1
2

(
Jij − JT

ij

)�sj = �Dij (�si × �sj ). (3)

The traceless symmetric part contains five components in the
general case; its diagonal terms induce an energy difference
between the uniformly magnetized states along the out-of-
plane (z) and in-plane (x) directions, �J = 1

2

∑
j (J xx

ij − J zz
ij ),

which we will refer to as the two-site magnetic anisotropy. In
the C3v symmetry class, the on-site anisotropy tensor may be
described by a single parameter,

�siK�si = −K
(
sz
i

)2
. (4)

The total magnetic anisotropy energy (MAE) of the system can
be expressed as a sum of the on-site and two-site contributions,
MAE = K + �J .

In order to determine the equilibrium DW profile, we
performed spin-dynamics simulations by numerically solving
the deterministic Landau-Lifshitz-Gilbert equation [48,49],

∂t�si = −γ ′�si × �Beff
i − αγ ′�si × (�si × �Beff

i

)
, (5)

with α being the Gilbert damping parameter and γ ′ = α
1+α2 γ ,

where γ = ge

2m
is the gyromagnetic ratio (with g, e, and m

standing for the electron g factor, absolute charge, and mass).
The spin model parameters from Eq. (1) enter into the effective
field �Beff

i = − 1
M

∂H
∂�si

, which governs the time evolution of the
spins. The spin magnetic moment M was determined from the
electronic structure calculations, taking values between 1.9 μB

and 2.1 μB depending on the number of Ir layers and fcc or
hcp stacking.

III. RESULTS AND DISCUSSION

A. Spin model parameters

Figure 1 displays the calculated isotropic exchange con-
stants Jij between the Co atoms as a function of the interatomic
distance for fcc and hcp stackings for different numbers of
Ir buffer layers. Because of the sign convention of Eq. (1),
the negative sign of the isotropic exchange parameter means
ferromagnetic (FM) coupling, while the positive sign refers
to antiferromagnetic (AFM) interaction. For both types of
stacking, the nearest-neighbor (NN) interactions are strongly
FM; for larger interatomic distances the interactions are mostly
negligible due to the rapid decay. The NN coupling is the
strongest for Co/Pt(111), −42.5 and −44.4 meV in fcc and hcp
stackings, respectively. The presence of Ir layers considerably
reduces the NN coupling, which is almost independent of the
number of buffer layers for fcc stacking (between −27 and
−30 meV), while in the case of the hcp stacking this range is
somewhat wider (between −27 and −35 meV).

We have summarized the on-site, two-site, and total mag-
netic anisotropies for the Co monolayer in Table I, considering
both types of stacking. With our definition the positive sign
of the on-site and two-site magnetic anisotropies corresponds
to an easy axis along the out-of-plane (z) direction. It can
be seen from Table I that most of the samples have an
out-of-plane easy axis. For fcc stacking, the Ir buffer layer
clearly enhances the magnetic anisotropy, which seems to
saturate at around 2.5 meV for larger n. For hcp stacking,
an Ir monolayer also remarkably increases the perpendicular
MAE. In the case of two and three Ir atomic layers we,
however, observe easy-plane anisotropy, while for thicker Ir
layers it is again of easy-axis type. This oscillation of the
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FIG. 1. Calculated Co-Co isotropic exchange parameters as a
function of the interatomic distance for (a) fcc and (b) hcp stacking
geometries of the Co overlayer for different numbers of Ir buffer
layers.

sign of the MAE is similar to the effect recently found in
Mn/Wm/Con/W(001) multilayers [50] and can most likely
be attributed to interface-induced Friedel oscillations.

TABLE I. Calculated on-site (K), two-site (�J ), and total
(MAE = K + �J ) magnetic anisotropies for the Co monolayer as a
function of the number of Ir buffer layers in Co/Irn/Pt(111). All data
are normalized to a single Co atom and are given in meV. The positive
sign refers to the z (out-of-plane) easy axis, while the negative sign
means easy-plane anisotropy.

fcc hcp

n K �J MAE K �J MAE

0 0.40 −0.20 0.20 0.46 0.10 0.57
1 1.02 1.63 2.64 1.17 1.41 2.58
2 0.77 1.01 1.77 0.31 −0.38 −0.06
3 0.31 0.60 0.91 −0.06 −0.87 −0.93
4 0.82 0.56 1.39 0.70 0.02 0.72
5 0.87 1.66 2.53 0.81 0.36 1.17
6 0.75 1.71 2.46 0.57 0.25 0.82
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FIG. 2. In-plane components of the DM vectors D
‖
ij as a function

of distance between the Co atoms and the thickness of the Ir buffer
layers in the case of (a) fcc and (b) hcp stacking geometries. The
insets illustrate the rotational direction of the DM vectors encoded in
the sign of D

‖
ij .

Next, we investigate the in-plane component of the DM
vectors D

‖
ij between the Co atoms for fcc and hcp stacking

geometries since this component is related to the strength
of the scalar DM interaction in micromagnetic models (see
Ref. [39] and Appendix A). The sign of D

‖
ij corresponds to

the rotational direction of the DM vectors in a given shell of
neighbors, as illustrated in Fig. 2. In the case of Co/Pt(111),
D

‖
ij for the NNs with a value of −1.98 meV for the fcc

stacking and −1.89 meV for the hcp stacking are the most
significant, and they rotate in the counterclockwise direction.
For Co/Irn/Pt(111) (n = 1, . . . ,6) layers with fcc stacking
geometry the magnitude of the NN in-plane DM vectors is
much smaller than for Co/Pt(111), and D

‖
ij for the second and

third neighbors dominate in a clockwise rotational direction,
denoted by a positive sign in Fig. 2(a). This clearly implies
a sign change of the effective scalar DM interaction when
adding Ir layers between the Pt and Co layers, like in the recent
experimental [38] and theoretical findings [39]. In the case of
hcp stacking geometry [see Fig. 2(b)], for Co/Ir1/Pt(111) the
first- and second-neighbor in-plane DM vectors dominate with
approximately the same magnitude and rotating in a clockwise
direction; that is, the sign change of the scalar DM interaction
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is present. For thicker Ir layers, the NN D
‖
ij with relatively large

magnitude turns to the counterclockwise direction, while the
magnitude and direction of D

‖
ij show an oscillating behavior

against both the distance between the Co atoms and the number
of Ir layers.

From the calculated spin model parameters, it can be
concluded that the magnetic anisotropy and the DM vectors
strongly depend on the stacking geometry. We attribute the
high sensitivity of the interactions induced by spin-orbit
coupling to the different hybridization between the electronic
states of the Co monolayer and the adjacent Ir layer for the
different stackings. Similar effects related to the stacking ge-
ometry have been reported experimentally for a Mn monolayer
on Ag(111) [51] and Fe/Ir(111) [52] and computationally for
Cr/Au(111) [53] and for Pd/Fe/Ir(111) [54]. Since in the fcc
geometry the system is perpendicularly magnetized regardless
of the thickness of the Ir buffer layer, which corresponds to the
experimental situation [38], in the next sections we focus on the
domain-wall formation in the Co/Pt(111) and Co/Irn/Pt(111)
films only in the case of fcc stacking.

B. Domain-wall formation and chirality

By using the spin model parameters obtained from first
principles, we performed spin-dynamics simulations for de-
termining the equilibrium DW profiles in the system. We
used a lattice consisting of N = 128 × 256 spins and set the
normal vector of the DW along the [110] direction connecting
two NN sites on a triangular lattice, which will correspond
to the x axis of the coordinate system. The perpendicular
[112] direction connecting next-nearest neighbors and falling
in the symmetry plane of the system will be denoted by y.
During the simulations we fixed the spins along the −z and
z out-of-plane directions at the two edges of the lattice in the
x direction, and periodic boundary conditions were applied
along the perpendicular y direction. We initialized a system in
a nonoptimized DW configuration and minimized the energy
by numerically solving Eq. (5) with high damping, α = 1.

The simulated DW profiles are shown for Co/Pt(111) and
Co/Ir1/Pt(111) films for the fcc stacking of the Co layer in
Fig. 3. The DWs are visibly of Néel type since the magnitude of
the in-plane component parallel to the propagation direction
increases from sx = 0 at the edge of the sample to sx = 1
at the center of the wall (sz = 0), while the sy component
remains close to zero, indicating a rotation in the xz plane. It is
known from micromagnetic theory [36,48] that the DW width
is proportional to

√
A/K, where the exchange stiffness A is

connected to the Heisenberg exchange Jij in our description,
while the anisotropy constant K corresponds to the MAE. This
explains why the width of the DW significantly decreases with
the addition of the Ir buffer layer: the NN Heisenberg exchange
interaction weakens (see Fig. 1), while the MAE increases (see
Table I).

It can also be seen in Fig. 3 that the rotational sense of
the Néel DW switches from left handed in Co/Pt(111) to right
handed in Co/Ir1/Pt(111), indicated by the sign change of the
sx spin component with a fixed sign of sz. This is connected
to the sign of the in-plane component of the DM vectors in
Fig. 2: negative and positive signs prefer left- and right-handed
rotations, respectively. In the experimental observations of
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FIG. 3. Domain-wall profiles in a DW with the normal vector
along the x direction, obtained from spin-dynamics simulations for
(a) Co/Pt(111) and (b) Co/Ir1/Pt(111).

Ref. [38], the rotational sense of the DWs switched from right
handed to left handed when the Ir buffer layer was introduced
between the Co layer and the Pt layer on top of it. The chirality
is in agreement with our calculations if we take into account
that we have introduced the Ir buffer layer below the Co layer
because swapping the up and down directions also switches the
notion of left- and right-handed rotations [36]. Our simulations
confirmed that by further increasing the number of Ir layers
the right-handed DW chirality is preserved, and the DW width
is less sensitive to this change. Again, these observations are
in agreement with the arguments given above and the model
parameters discussed in Sec. III A.

We also performed the simulations by including the magne-
tostatic dipolar interaction in Eq. (1). We have included dipolar
coupling between neighbors within a radius of 10a2D, which
accounts for about 90% of the total strength of this long-ranged
interaction in the considered monolayer system. One effect of
the dipolar interaction was decreasing the MAE values listed
in Table I by approximately 0.1 meV; however, this does not
switch between easy-axis and easy-plane anisotropy in any
of the considered cases. Furthermore, it is known from the
literature [3,13] that the rotational plane of the DW assumes
an intermediate state between Bloch- and Néel-type rotations if
the dipolar interaction is present in the system and the in-plane
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component of the DM interaction is weaker than a threshold
value. However, we have confirmed with simulations that in
the considered systems the DM interaction is about ten times
stronger than this threshold. Overall, it can be concluded that
the dipolar interaction only slightly modifies the DW width in
the system; therefore, it can safely be neglected.

C. Atomistic simulations of domain-wall twisting

From the spin-dynamics simulations we observed that the
DW profile does not perfectly coincide with a planar Néel
wall if the DW normal vector is along the NN x direction. As
demonstrated in Fig. 4, the sy spin component is also finite
within the wall, and analogous to the sz component, it changes
sign in the middle of the DW. In the following we will refer this
modulation of the DW as twisting of the spins. As illustrated in
Fig. 4, the magnitude and also the exact shape of the twisting
depend on the number of Ir buffer layers. However, even in the
case of Co/Ir4/Pt where the largest twisting occurs, its peak
value corresponds to only about 1% of the total length of the
spin vectors.

Note that this twisting is different from the rotation of
the complete DW from the Néel type towards the Bloch
type, which could occur due to the presence of the dipolar
interaction, as discussed at the end of Sec. III B. In this case the
y component of the spin vectors would have a local maximum
in the middle of the wall instead of a node. Furthermore, there
is apparently no threshold value of the parameters for the
occurrence of the twisting, in contrast to the rotation. Finally,
we also observed that the twisting completely disappears if the
normal vector of the DW is along the next-nearest-neighbor
(y) direction, which would not happen in the case of rotation.

By considering symmetry arguments in the atomistic model
we can explain why the twisting occurs for DWs with the
normal vector along the x direction but not for ones with the
normal vector along the perpendicular y direction. Considering
a Néel DW with the normal vector along the x axis, the system
may gain energy from tilting the spins towards the y direction
due to the J

xy

ij and J
yz

ij components of the Jij interaction tensor
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FIG. 4. Twisting of DWs with the normal vector along the x

direction observable in the sy spin component, obtained from spin-
dynamics simulations. The plot corresponds to a close-up of Fig. 3(b)
around the center of the wall for selected numbers of Ir buffer layers.

in Eq. (1). As mentioned in Sec. II, the antisymmetric part
of the tensor may be reformulated in the DM vector �Dij in
Eq. (3). Analogously, from the symmetric part of the off-
diagonal components we construct the in-plane vectors

�Jij,s = (
1
2

(
J xz

ij + J zx
ij

)
, 1

2

(
J

yz

ij + J
zy

ij

))
. (6)

The DM vector transforms as an axial vector, while �Jij,s

transforms as a two-dimensional polar vector under the planar
symmetry operations. For the NNs these vectors are illustrated
in Fig. 5. Due to the symmetry rules formulated by Moriya [2],
the DM vector must be perpendicular to the lattice vector
connecting the NNs; however, it may have an out-of-plane z

component, the sign of which is illustrated by red and blue
arrows in Fig. 5. Note that the out-of-plane component of
the DM vectors is allowed specifically for (111) surfaces in
cubic systems with C3v symmetry, but it disappears for (100)
or (110) surfaces with C4v and C2v symmetries [55]. Since
the z component of the DM vector is connected to the J

xy

ij

tensor element, it may lead to a twisting of the spins. The
dashed lines in Fig. 5 connect neighbors which are parallel to
each other in the DW, for which the out-of-plane components
of the DM vector appear additively in the energy expression.
If the DW normal vector is in a symmetry plane [along the
next-nearest-neighbor y direction, Fig. 5(a)], the z components
exactly cancel, and no twisting occurs. On the contrary, the z

components are of the same sign for equivalent neighbors if
the DW normal vector is along the NN x direction [Fig. 5(b)].

Similarly, it can be shown that the �Jij,s vectors must
be perpendicular to the NN lattice vectors. The twisting is

y

x

n D1
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FIG. 5. Schematic view of the NN �Dij and �Jij,s vectors on
a triangular lattice for DWs with normal vectors �n along two
perpendicular directions. Red and blue arrows correspond to positive
and negative z components of the DM vectors, respectively. Dashed
lines connect spins with the same orientation in a DW. (a) The normal
vector is in a mirror plane. The z components of the DM vectors are
opposite each other for equivalent neighbors within the DW, e.g.,
Dz

1 = −Dz
4, and they do not influence the energy of the system by

twisting the DW towards the y direction. Similarly, the sum over �Jij,s

vectors is parallel to the Néel DW normal vector, which does not
induce twisting. (b) The normal vector is perpendicular to the mirror
plane. The z components of the corresponding DM vectors appear
additively for equivalent neighbors, e.g., Dz

2 = Dz
6, and the sum over

�Jij,s vectors is perpendicular to the xz plane where the spins are
oriented in an ideal Néel DW. Both of these effects lead to twisting
of the DW.
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caused by their components, which are perpendicular to the
normal vector of the Néel DW, corresponding to J

yz

ij when
the normal vector is along the x direction and to J xz

ij for the
normal vector along the y direction. Similar to the out-of-plane
components of the DM vectors, the components of �Jij,s cancel
for equivalent neighbors if the DW normal vector is along the
y direction [Fig. 5(a)], but they may lead to a twisting for DWs
with normal vectors along the x direction [Fig. 5(b)].

D. Continuum model of domain-wall twisting

In order to get further insight into the formation of the
twisting of DWs, we employed a micromagnetic model, where
the magnetization is represented by the vector field �s(�r) with
|�s| = 1. An appropriate form of the micromagnetic functional
containing exchange stiffness, magnetic anisotropy, and (in-
plane) DM interaction is known from the literature [34,36].
However, this model has to be extended by terms responsible
for the observed twisting in the atomistic model, namely,
the out-of-plane component of the DM vector and the �Jij,s

vector. The derivation of the appropriate functional in the
two-dimensional plane based on symmetry considerations
is given in Appendix A; here we restrict ourselves to the
description of a DW with the normal vector along the x

direction, which is perpendicular to the mirror plane of the
system with C3v symmetry. In this case, the energy expression
simplifies to a one-dimensional integral,

E =
∫

(wA + wJs + wK + wD + wDz )dx

=
∫ {

A �̇s(x)2 + Jsṡy(x)ṡz(x) + Ks2
z (x)

+D[�s(x) × �̇s(x)]y + Dz[�s(x) ×
...
�s (x)]z

}
dx, (7)

where �̇s denotes differentiation with respect to the variable x.
A corresponds to the exchange stiffness, D corresponds to the
linear Lifshitz invariant or DM interaction, and K corresponds
to the anisotropy. Note that although the equivalent of the z

component of the DM vector Dz is antisymmetric in the spin
components as expected, it appears only in a term proportional
to the third derivative of the field �s. Finally, the appropriate
form Js of the off-diagonal tensor elements appearing in the
vector �Jij,s is analogous to the exchange stiffness.

We have determined the equilibrium domain-wall profile by
rewriting Eq. (7) into spherical coordinates for the spin field
and numerically solving the Euler-Lagrange equations with
the boundary conditions corresponding to a Néel DW (see
Appendix B for the derivation). The twisting obtained from
the numerical solution for specific parameter sets is illustrated
in Fig. 6 using dimensionless ferromagnetic coupling A = 1,
easy-axis anisotropy K = −0.05, and DM interaction D =
−0.1, the latter being responsible for fixing the right-handed
Néel rotation of the DW observed in the spin-dynamics
simulations for Co/Irn/Pt(111). In the absence of the Dz

and Js terms, it is known that all domain-wall profiles
are equivalent under an appropriate rescaling of the length
unit [36]. This is no longer the case here; it can be seen in
Fig. 6 that if Js is finite, then the sy component changes sign
only in the middle of the DW, while forDz further sign changes
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Dz = 0.00 , Js = 0.03

Dz = −0.05 , Js = 0.00

FIG. 6. Twisting of DWs obtained from the continuum
model. The dimensionless interaction parameters are A = 1,K =
−0.05,D = −0.1, and the Dz and Js values given in the legend. The
distance x is given in units determined by the parameter values and
the functional (7). The line shape of the twisting strongly depends on
the relative sign of Dz and Js.

may occur away from the center. If the signs of Js and Dz are
the same [Fig. 6(a), solid curve], the two types of twisting add
up, leading to a net effect that is similar to the one observed for
Co/Ir4/Pt(111) in Fig. 4. For different signs [Fig. 6(b), solid
curve], it is possible that the twisting almost disappears around
the middle of the DW, similar to the case of Co/Ir3/Pt(111) in
Fig. 4. It should be noted that further DW twisting shapes may
be obtained by modifying the ratio of Js and Dz in addition to
their sign.

IV. CONCLUSION

In summary, we examined the Co/Irn/Pt(111) (n =
0, . . . ,6) ultrathin films using a combined approach of
first-principles calculations and spin-dynamics simulations.
We determined the Co-Co magnetic exchange interaction
tensors between different pairs of neighbors and the magnetic
anisotropies for fcc and hcp growth of the Co overlayer,
depending on the number of Ir buffer layers. We found
strong nearest-neighbor ferromagnetic isotropic exchange
interactions in the Co layer and an easy-axis out-of-plane
anisotropy for the films in fcc geometry, independent of
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the thickness of the Ir layer. Our simulations have proven
that the system prefers Néel walls over Bloch walls and, in
agreement with related experiments [38], the chirality of the
Néel walls switches from left handed to right handed when
the Ir layer is inserted between the Co monolayer and the
Pt(111) substrate. Both facts were uniquely attributed to the
in-plane components of the Dzyaloshinskii-Moriya vectors,
emphasizing that nearest-neighbor in-plane DM vectors dom-
inate in the Co/Pt(111) system, whereas for Co/Irn/Pt(111)
the second- and third-neighbor in-plane DM vectors are the
largest ones. Furthermore, we have found that the width of
domain walls is significantly smaller in the presence of the Ir
buffer layers, owing to the decreased ferromagnetic isotropic
exchange interactions and the increased magnetic anisotropy
energy.

We also demonstrated the existence of a twisted domain-
wall profile, where the spins are not perfectly coplanar as
in the ideal Néel wall. This effect was attributed to the
out-of-plane component of the Dzyaloshinskii-Moriya vectors,
which are not forbidden by symmetry in the triangular lattice
on the (111) surfaces of cubic lattices, and to the �Jij,s vectors
constructed from the symmetric off-diagonal part of the
interaction tensor. Based on symmetry arguments we have
shown that the twisting must disappear if the normal vector
of the DW is within the mirror plane of the system, but it is
present for arbitrarily small values of these specific interaction
coefficients if the normal vector is perpendicular to the mirror
plane. We managed to qualitatively reproduce the different
twisting line shapes observed for different numbers of Ir buffer
layers by constructing an appropriate micromagnetic model
containing parameters related to the out-of-plane component
of the Dzyaloshinskii-Moriya vectors and to the �Jij,s vectors.
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APPENDIX A: CONSTRUCTION
OF THE CONTINUUM MODEL

In this Appendix we derive the energy functional (7) used
for the description of twisted DWs by starting from the
atomistic model. First, we consider the exchange interaction
tensor Jij between two NNs displaced along the x axis. In
the C3v symmetry class of the system, mirror planes connect
next-nearest neighbors, and they go through the center of the
line connecting the NNs [see Fig. 5(b)]. Mirroring the system
switches the spins �si and �sj and also transforms them as axial
vectors. Due to this symmetry, both the �Dij and �Jij,s vectors
must lie in the mirror plane. This simplifies the form of the
interaction tensor to

Jij =
⎡
⎣J ′

ij + �Jij,c Dz
ij −D

y

ij

−Dz
ij J ′

ij J
y

ij,s
D

y

ij J
y

ij,s J ′
ij + �Jzz

ij

⎤
⎦, (A1)

which has six independent components. The possible rotations
do not decrease the number of independent components
further. The interaction tensors with the other five nearest
neighbors can be obtained by performing the necessary
symmetry operations.

For constructing the continuum model, one has to replace
the spin vectors �si by the field �s( �Ri), expand the spins at the
neighboring lattice sites in Taylor series,

�s( �Ri + �δ) =
∞∑

n=0

1

n!
(�δ · �∇)n�s( �Ri), (A2)

and then perform the summation over the NNs. For every
independent component in Eq. (A1), we truncated the Taylor
series at the first nonvanishing finite derivative. This leads to
the energy expression

E =
∫

(w̃A + w̃K + w̃D + w̃Dz + w̃Js )d
2�r, (A3)

where the w̃ notation denotes that the energy densities are
expressed for a two-dimensional system. The final form of
Eq. (7) is obtained after simplifying Eq. (A3) to one spatial
dimension, where it is assumed that the spins are parallel when
the integration is performed along the y direction.

The first term in Eq. (A3), corresponding to the exchange
stiffness, reads

w̃A = Ã( �∇�s)2, (A4)

which is obtained from the isotropic exchange interactions
Jij = 1

3 TrJij or the related coefficient J ′
ij = Jij − 1

3�Jij,c −
1
3�Jzz

ij in Eq. (A1). Note that Ã > 0 denotes ferromagnetic
coupling in this expression.

The anisotropy term is

w̃K = K̃s2
z , (A5)

which contains contributions from the on-site anisotropy
term (4), as well as the leading-order corrections from the
coefficients �Jzz

ij and �Jij,c; see the two-site magnetic
anisotropy �J defined in Sec. II. We mention that �Jij,c,
known as the compass anisotropy [56], also leads to a term
that prefers Bloch DWs for �Jij,c < 0 when it is expanded up
to second-order spatial derivatives. This is analogous to the role
of the magnetostatic dipolar interaction; however, as discussed
in Sec. III B the rotation of the DW from Néel type towards
Bloch type is a threshold effect, and we have not observed it
during the simulations. Therefore, we have not included the
term related to �Jij,c in the energy functionals (7) and (A1),
used for the description of the DW twisting.

The DM interaction or linear Lifshitz invariant reads

w̃D = D̃(sz∂xsx − sx∂xsz + sz∂ysy − sy∂ysz), (A6)

and it is obtained from the in-plane components of the DM
vectors D

y

ij .
Since Eq. (A6) is the only expression containing first-order

derivatives allowed in the Cnv symmetry class [57], the out-of-
plane component of the DM vectors Dz

ij may show up only in
the form of higher-order derivatives. The leading contribution
is

w̃Dz = D̃z
[
sx

(
∂3
x − 3∂x∂

2
y

)
sy − sy

(
∂3
x − 3∂x∂

2
y

)
sx

]
. (A7)
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TABLE II. Summary of the type and normal vector of the DW
for which the interaction terms w̃Dz and w̃Js can induce twisting. The
first term, w̃Dz , does not induce twisting when the normal vector is
along the y direction, while for the second term, w̃Js , this is forbidden
by symmetry if the spins in the DW lie in the yz plane.

w̃Dz w̃Js

normal vector Bloch wall Néel wall Bloch wall Néel wall

x yes yes no yes
y no no yes no

The last term in Eq. (A3) reads

w̃Js = J̃s
[
sy

(
∂2
x − ∂2

y

)
sz + sz

(
∂2
x − ∂2

y

)
sy

+ sx(2∂x∂y)sz + sz(2∂x∂y)sx

]
, (A8)

which contains the contributions from the interaction coeffi-
cients J

y

ij,s in the discrete model.
The following symmetry argument proves why during

twisting a node of the y spin component appears at the center of
the DW. As can be seen in Fig. 3, the out-of-plane component
of the spins is an odd function of the distance from the center of
the wall, corresponding to a tanh function in the ideal case [48].
On the other hand, the in-plane component is an even function,
ideally 1/ cosh. The system may gain energy from w̃Dz in
Eq. (A7) or w̃Js in Eq. (A8) if the energy densities are even
functions since integrating over an odd function yields zero.
In both cases this means that the sy component must be an
odd function, in agreement with the simulational observations.
Such twisting is energetically preferable for an arbitrarily
small value of these interaction coefficients, in contrast to
the rotation towards the direction of the Bloch-type DW;
this can be demonstrated by constructing the Euler-Lagrange
equations (B9) and (B10) given in Appendix B.

From Eqs. (A7) and (A8) it can also be seen why the twisting
disappears for Néel-type DWs with the normal vector along
the y direction. The term w̃Dz in Eq. (A7) exactly cancels
when the normal vector of the wall is along the y direction.
In the case of w̃Js , it will still contain only the sy and sz spin
components as in Eq. (7). Consequently, it can induce twisting
only if, originally, the spins in the domain wall lie in the xz

plane, which corresponds to a Bloch DW with normal vector
along the y direction. For completeness, we mention that w̃Dz

also induces a twisting for Bloch DWs with the normal vector
along the x direction, but the w̃Js term induces twisting only
for Néel-type DWs oriented in this direction; for a summary
see Table II.

APPENDIX B: EULER-LAGRANGE EQUATIONS

In order to determine the domain-wall profile from Eq. (7),
we represent the spin field in spherical coordinates,

�s =
⎡
⎣sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ

⎤
⎦, (B1)

where the different energy contributions may be expressed as

wA =A(ϑ̇2 + ϕ̇2 sin2 ϑ), (B2)

wJs = − Js(ϑ̇
2 cos ϑ sin ϑ sin ϕ + ϑ̇ ϕ̇ sin2 ϑ cos ϕ), (B3)

wK =K cos2 ϑ, (B4)

wD =D(ϑ̇ cos ϕ − ϕ̇ sin ϑ cos ϑ sin ϕ), (B5)

wDz = Dz(3ϑ̈ ϕ̇ cos ϑ sin ϑ − 3ϑ̇2ϕ̇ sin2 ϑ

+ 3ϑ̇ ϕ̈ cos ϑ sin ϑ − ϕ̇3 sin2 ϑ + ...
ϕ sin2 ϑ). (B6)

The equilibrium domain-wall profile can be determined by
solving the Euler-Lagrange equations corresponding to Eq. (7)
using the general formulas

∞∑
n=0

(
− d

dx

)n
∂

∂ϑ (n)
(wA + wJs + wK + wD + wDz ) = 0,

(B7)
∞∑

n=0

(
− d

dx

)n
∂

∂ϕ(n)
(wA + wJs + wK + wD + wDz ) = 0,

(B8)

appropriate for higher-order derivatives. This yields

A(−2ϑ̈ + 2ϕ̇2 cos ϑ sin ϑ) + D2ϕ̇ sin2 ϑ sin ϕ − K2 sin ϑ cos ϑ

+Dz(6ϑ̈ ϕ̇ cos2 ϑ − 6ϑ̇2ϕ̇ sin ϑ cos ϑ + 6ϑ̇ ϕ̈ cos2 ϑ − 2ϕ̇3 sin ϑ cos ϑ + 2
...
ϕ sin ϑ cos ϑ)

+Js[2ϑ̈ cos ϑ sin ϑ sin ϕ + ϑ̇2(cos2 ϑ − sin2 ϑ) sin ϕ + 2ϑ̇ ϕ̇ sin ϑ cos ϑ cos ϕ

− ϕ̇2 sin2 ϑ sin ϕ + ϕ̈ sin2 ϑ cos ϕ] = 0, (B9)

A(−4ϑ̇ ϕ̇ sin ϑ cos ϑ − 2 sin2 ϑϕ̈) − D2ϑ̇ sin ϕ sin2 ϑ + Js(ϑ̈ sin2 ϑ cos ϕ + ϑ̇2 sin ϑ cos ϑ cos ϕ)

+Dz(−2
...
ϑ sin ϑ cos ϑ + 6ϑ̈ ϑ̇ sin2 ϑ + 2ϑ̇3 sin ϑ cos ϑ + 6ϑ̇ ϕ̇2 sin ϑ cos ϑ + 6ϕ̇ϕ̈ sin2 ϑ) = 0. (B10)

The Euler-Lagrange equations were solved with the bound-
ary conditions describing the right-rotating cycloidal Néel
domain wall observed in the simulations in the presence
of the Ir buffer layers [see Fig. 3(b)]. These correspond to

ϑ = π,ϕ = π as x → −∞ and ϑ = 0,ϕ = π as x → ∞. By
looking at the Euler-Lagrange equations it can clearly be seen
that the perfect Néel shape ϕ ≡ π cannot be an equilibrium
solution for any finite value ofDz orJs, and twisting will occur.
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Rev. B 91, 014433 (2015).

[13] A. Bogdanov and A. Hubert, Phys. Stat. Sol. B 186, 527 (1994).
[14] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[15] S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).
[16] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,

K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[17] J. Honolka, T. Y. Lee, K. Kuhnke, A. Enders, R. Skomski, S.
Bornemann, S. Mankovsky, J. Minár, J. Staunton, H. Ebert, M.
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