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Within the framework of the generalized multiple-scattering theory, a conceptually clear and
transparent derivation of the real-space screened Korringa-Kohn-Rostoker method is presented. It
is suggested that, by a suitable choice of the reference system, a fast exponential spatial decay of
the structure constants can be obtained. This opens the way to treat large-scale systems in real
space with a computational complexity that scales more favorably than the usual increase with the

third power of the number of atoms.

I. INTRODUCTION

In the past few decades, the traditional Korringa-
Kohn-Rostoker (KKR) method or multiple-scattering
theory!'? became a widely used computational scheme
in density-functional calculations for solid matter. Many
applications have been reported for the electronic struc-
ture of crystalline materials, impurities, alloys, metallic
clusters, surfaces, and interfaces. As a matter of fact,
multiple-scattering theory seems to be the most versatile
method suited for complex atomic arrangements. How-
ever, for large-scale systems the method has been of very
limited use because of its computational complexity due
to the long range of the structure constants that ap-
pear in the theory. For large systems, tight-binding ('TB)
methods seem to be better suited. Among these the most
sophisticated one is Andersen’s linear-muffin-tin-orbital
(LMTO) version.® It is the aim of this paper to show
that the KKR method can also be transformed into a TB
form. The transformation is exact and the transformed
structure constants can easily be calculated in real space.
By a suitable choice of the transformation, the struc-
ture constants are made to decay exponentially fast in
space and this fact can be exploited to develop an order-
N method for density-functional electronic-structure cal-
culations of surfaces and interfaces.

Previous work to improve the spatial decay of the KKR
structure constants was based on the screening concept
introduced in Ref. 3. Short-ranged screened structure
constants were defined by an a priori transformation, the
parameters of which were obtained in terms of tedious
optimization procedures. In an attempt to facilitate the
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original one by Andersen et al.,* which seemed to be
rather hard to carry out for structures being more com-
plicated than periodic lattices of cubic symmetry, Szun-
yogh et al.’ recently suggested an ad hoc prescription
for approximate optimization and developed a screened
KKR method with emphasis to study metallic surfaces.
Extensions including relativistic® and also spin-polarized
relativistic effects”® indicated the large variety of pos-
sible applications of the method. However, a coherent
theoretical background, whether an appropriate localized
representation always existed, was not provided and the
optimization procedure was still rather tedious. Very re-
cently, Andersen et al.® proposed a version of the LMTO
method based on unitary spherical waves that are defined
as localized impurity solutions in a hard sphere solid.
By using these unitary spherical waves, Andersen et al.?
also derived a generalized KKR. formalism with structure
constants being short ranged and nearly independent of
energy.

In this paper we provide a physically transparent and
exact derivation of a different generalized KKR formal-
ism with suitably defined screening parameters, which
can trivially be calculated. The fundamental idea be-
ing exploited is the freedom in the choice of the ref-
erence system with respect to which KKR theory can
be formulated.l®'! This fact has been used in many
contexts before, in particular, when dealing with de-
fects in metals.'? 714 In the original formulation given by
Korringa,! and Kohn and Rostoker,? the reference sys-
tem is free space. The important observation on which we
base our theory is the fact that the free-space structure
constants decay exponentially for negative energies since
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no eigensolutions of the Schrédinger equation exist in free
space for negative energies. For our purpose we thus
need a reference system that supports no eigensolutions
in the energy range relevant for solid-matter electronic-
structure calculations. This range is rather narrow and
approximately covers positive energies up to 1 Ry above
zero. One can think of many reference systems that fulfill
this condition, the one we choose consists of a constant
repulsive potential V" of about 2 Ry within the nonover-
lapping muffin-tin spheres, while as usual the potential in
the interstitial region between the spheres is defined to be
zero. Such a reference system is easily implemented into
existing computer codes since no new numerical quan-
tities must be calculated. From first-order perturbation
theory, the repulsive potential should shift all eigenstates
of free space by about V" Q.. /Qcen, where the volume ra-
tio of muffin-tin volumes Q. to cell volume Q. enters.

For this choice of the reference system, we now first
describe the screened KKR method, then show results
of numerical investigations for a fcc lattice as a test
case, and finally discuss how our screened KKR method
can be used as an order-N method in density-functional
electronic-structure calculations for surface and interface
problems.

II. THEORY

According to standard multiple-scattering theory, the
Green’s function can be written in a mixed site-angular-
momentum representation as

> Ri(r; E) GW(E) Ry, (')
L . .

+8i E R} (r<; B) Hy(r>; E) ,
Z

(1)

where the L = (ém) are angular-momentum indices, and

i (r; E) and Hi(r;E) are properly normalized regu-
lar and irregular scattering solutions corresponding to
the potential centered at position R;.!® The structural

Green’s function matrix G(E) = {G’.L’-L, (E)} can be ex-
pressed as

G(r+Ry, ' +R;; E) =

G=G"+G*G° + GGG’ + ... = G°(I — t@°)1

(2)
in terms of its free-space counterpart G°(E) =
{Gg}ﬂ }, usually called bare structure constants, and
of the single-site £ matrices ¢(E) = {t%,,(F)éd;; }, which
become diagonal in the angular-momentum indices if
muffin-tin potentials are used. For brevity, the explicit
energy dependence of the matrices in (2) has been sup-

pressed and I denotes a unit matrix in the mixed site-
angular-momentum representation. The scattering-path

operator T{E) = { 2(1(4),)"’ (E’)} (see, for example, Ref. 15

and references therein},
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-1
r=[® -6, 3)
is related to (2) through

G=G"+GrG°=)"'v(®)" - . (4
Equations (2)—(4) can easily be reformulated with respect
to a new reference system r, in which new scattering cen-
ters with potentials V™ are located at the sites of the real
scattering centers. If the ¢ matrices and the structural
Green’s function matrix of this reference system r are

denoted by t"(E) and G"(E), we have similarly to {2),

G =G’ +G"Q° + G+t R +
=G'(I-t"G%!. (5)

By introducing the difference of the ¢ matrices
At=t—t", (6)

we obtain for the Green’s function of the real system
instead of (2) the result

G =G + G"ALG" + G"AtGTALG™ +
=G"(I-AtG")™. 1)

In analogy to (3), we introduce a scattering-path operator

-1
ra= a9 -6, ®)
so that G can also be expressed as

G=G +G 1aAG = (At) "7 (A8) 1 - (AE)7!

(9)

Therefore, once t" and G" are known, (7)-(9) represent a
set of equations being equivalent to (2)—(4). The easiest
way to see this equivalence i ia to rewrite (2) (52, and (7)
formally as (G)™! = (G°)~' —¢, (G")"1 = (G°)~ 1 —¢"
(G)~* = (G")~! — At, and to use the definition (6).

IIi. NUMERICAL CALCULATIONS

When implementing the screened KKR method, the
major step is to calculate the screened structure con-
stants introduced in (5), which, in principle, involves the
inversion of an infinite matrix. However, if all the el-
ements G* decay fast enough as |R;—R;| increases,
then (5) can be solved for a finite cluster of atomic sites.

In order to demonstrate this, we have made test cal-
culations using clusters of repulsive muffin-tin potentials
arranged on the sites of a fcc lattice with lattice constant
a = 6.76 Bohr radii, which is representative for Cu. If all
lattice sites are occupied with the same repulsive poten-
tial V", being constant inside the muffin-tin spheres, the
situation resembles a periodic crystal and (5) can exactly
be solved by Fourier transformation except for the nec-
essary cutoff in the angular-momentum indices. In our
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tests we have chosen a cutoff value of £, = 4. As a first
check we have varied the strength of the individual repul-
sive potential wells up to V" = 8 Ry and determined the
bottom Ei,q of the conduction band by density-of-states
calculations from the imaginary part of the Green’s func-
tion given by (5). We find By = 0.73, 1.38, 2.37, and
332 Ry, for V" =1, 2,4, and 8 Ry. Up to V” = 2 Ry,
this compares well with the estimate from first-order per-
turbation theory Epot = V7™ Qs /Qcen which gives B oy =
0.74, 1.48 Ry; whereas for higher values of V" a satura-
tion effect is seen. Below FEj,o the imaginary part of the
Green’s function vanishes, which means that the struc-
tural Green’s function elements decay expomentially in
space.

The question is whether this decay is fast enough to
allow for a real-space determination of G™* by using a
finite cluster of repulsive muffin-tin potentials. In our test
calculations, we have used clusters with 13, 19, 79, and
225 repulsive muffin-tin potentials situated at a central
site and at the sites of the appropriate neighboring shells
in a fcc lattice. The size of the potentials in the finite
clusters was always chosen as V™ = 2 Ry. To visualize
the decay of G™* as a function of |R;—R,;|, we introduce
the following “partial norm”:

|E|(l+l')/2
@+ 1)1(2Z + )N
1/2
x[z IG:;::%,,«E)lz} . (10

mm'

Nee (|R:—R;|; E) =

with (244 1)!! = (2¢ +1)(2¢ — 1) ---(3)(1). The quan-
tity Nye is identical within a chosen shell of neighbors,
i.e., for a given distance |R; —R;| it shows no angular
dependence. Note that these partial norms cannot be
expanded at E = 0, a fact already seen in the zeroth-
order Ricatti-Hankel function exp(iv/Er) with absolute
value equal to one for E > 0 and equal to exp(—+/]E[r)
for E < 0. The partial norms calculated with 225 sites
are plotted for £ = ¢ in Fig. 1 (left panel) as a func-
tion of the distance |R;—R;| for the choice E = 0.65 Ry,
which is representative for the Fermi energy of Cu. They
are compared with the corresponding norms of the bare
Green’s function G° in Fig. 1 (right panel). It is ob-
vious from Fig. 1 that the partial norms corresponding
to the screened structure constants G decay rapidly
and essentially exponentially. Whereas the unscreened
norms typically decrease by less than a factor of 10 in
the distance range shown in Fig. 1, the screened norms
decrease to about 1075 of their nearest-neighbor values.
This decay extends up to the outermost sites covered with
repulsive potentials and no surface effects are seen. With
respect to such surface effects, the choice of our inter-
mediate reference system with finite repulsive potential
at all sites in the cluster seems to be more robust than
the concept of unitary spherical waves,’® where infinite
repulsive potentials are used in the cluster except for the
central site and where as a consequence surface states
can tunnel in if the cluster is too small.

If the screened partial norms are plotted as function
of energy (see Fig. 2 for £ = ¢/ = 0 and Fig. 3 for
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FIG. 1. Screened (left panel) and unscreened (right panel)
partial norms for £ = £ and E = 0.65 Ry as a function of
the distance in units of the lattice constant. The results for
£=0,1,2,3, and 4 are shown from top to bottom.

£ = {' = 2), two observations can be made. The decay
of the screened structure constants is very similar in the
relevant positive energy range of about 1 Ry and calcu-
lations with clusters of 79 or 225 repulsive muffin-tin po-
tentials lead to almost indistinguishable results as far as
the distance |R;—R;| does not extend beyond the range
of repulsive potentials. (Only results for these distances
are plotted in Figs. 2 and 3.) The conclusions that can be
made from Figs. 2 and 3 are that because of the smooth
energy dependence, the screened structure constants can
easily be interpolated with respect to energy and that
they can be calculated by using rather small clusters.
Both facts can be exploited to speed up the calculations
and this is true even up to energies less than 0.4 Ry be-
low the conduction-band bottom Fyo of the reference
system. If, of course, the energy approaches Ey,.¢, which
is 1.38 Ry for our choice V" = 2 Ry, then the exponen-
tial decay breaks down and the screened structure con-
stants become strongly energy dependent. However, such -
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FIG. 2. Screened partial norms for £ = £' = 0 as a function
of energy. From top to bottom on-site results and the ones
for 12 neighboring shells with increasing distance from the
central site are given. The 6 solid curves are calculated with
repulsive potentials on 79 sites, the 13 broken curves with 225
sites. (The 6 upper broken curves practically coincide with
the solid ones.)
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FIG. 3. Screened partial norms for £ = £/ = 2 as a function
of energy. From top to bottom on-site results and the ones
for 12 neighboring shells with increasing distance from the
central site are given. The 6 solid curves are calculated with
repulsive potentials on 79 sites, the 13 broken curves with 225
sites. (The 6 upper broken curves practically coincide with
the solid ones.)
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FIG. 4. On-site screened partial norms for £ = £/ = 0. The
lower solid curve is calculated with 13 repulsive potentials,
the upper solid curve with 19 ones, and the almost indistin-
guishable broken curve with 225 ones.
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FIG. 5. Screened partial norms for the first-neighbor dis-
tance and for £ = £ = 0. The upper solid curve is calculated
with 13 repuisive potentials, the lower solid curve with 19
ones, and the broken curve with 225 ones.
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energies do usually not occur in self-consistent density-
functional calculations for occupied states and, if they
do, one could increase V™ to, say, 3 or 4 Ry (see above)
to extend the energy range of fast decaying and smoothly
varying screened structure constants. Since the curves in
Figs. 2 and 3 are plotted on a logarithmic scale cov-
ering several orders of magnitude, the small differences
obtained between the clusters of 79 or 225 repulsive po-
tentials are difficult to see since both curves practically
coincide. For that reason we plot the partial norms for
£ = ¢ =0, where these differences are largest, on a mag-
nified linear scale in Fig. 4 showing the on-site norm and
in Fig. 5 showing the one for the first-neighbor distance
as calculated with repulsive muffin-tin potentials on 225,
19, and 13 sites. Whereas the on-site results are practi-
cally identical for 225 and 19 sites, small differences for
first-neighbor results are seen, even if 19 sites and 225
sites are compared, but these small differences may well

be neglected in real calculations.

IV. ORDER-N METHODS

As it was mentioned in the beginning of this paper,
the screened KKR method has already been applied for
surface and interface problems where the short-ranged
behavior of G™*, the structure constants in the screened
representation, was fully exploited. Even with the not
too well screened structure constants obtained by the pre-
scription given in Ref. 5, the calculated results were very
satisfying.5 ® Therefore, it is reasonable to assume that
the new screened structure constants obtained by our
method of an intermediate reference system can fairly
well be neglected after nearest or next-nearest neighbor
distances. As a consequence, already demonstrated in
Figs. 2 and 3, the screened structure constants can be
calculated for each site independently by solving matrix
equation (5) with matrix dimensions given by the prod-
uct of the number of angular momenta and the number
of neighboring sites taken into account. Thus, the cal-
culation of G" is an O(N) problem for systems with N
sites and the linear scaling begins to apply already for
small systems with about 20 sites.

Whereas the reference Green’s function G" must be
calculated only once, the calculation of the real Green’s
function G must be repeated in each self-consistency it-
eration cycle. This second step requires the solution of
(7) or (8) where the matrices I — AtG” or (At)™: - G"
are of block-sparse form. The number of blocks grows
linearly with system size since G” decays exponentially
and can be cut after a chosen range of interactions. The
individual blocks are matrices with angular-momentum
indices and the blocks are labeled by site indices. If a
complex energy contour® is used to calculate the elec-
tronic density from the structural Green’s function ele-
ments G¥(E) of the real system and if these elements
decay rapidly with distance as in insulators, semiconduc-
tors (and for most of the complex energies in metals),
they can be neglected after a chosen distance. Then the
situation is similar to our reference system and the com-
plete calculation is an O(IN) problem for systems with
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N sites, but linear scaling only applies for larger systems
with more sites since the decay in the real physical sys-
tem is normally slower than in our reference system.

If the elements G (E) cannot be neglected for larger
distances because they decay too slowly as in metals for
complex energies close to the Fermi energy, nevertheless
one should be able to exploit the sparsity of the matri-
ces I — AtG” or (At)™! — G". This is probably most
efficiently done by iteration techmiques like the recur-
sion method. The attainable accuracy and the overall
computational complexity of iterative techniques for gen-
eral three-dimensional systems is not straightforwardly
assessed and requires further investigations. For sur-
face and interface problems, the situation is much sim-
pler since the two-dimensional periodicity allows for two-
dimensional Fourier transformation. This simplifies the
form of the matrices from block sparse into block banded
with a bandwidth given by the number of interacting lay-
ers in the intermediate reference system. It is well known
that direct solutions of linear systems of equations with
band matrices is an O(NN) problem. On first sight, the
direct solution of (7) or (8) in order to obtain G or Ta
seems to require matrix inversions, that is to solve O(N)
equations, each with O(NN) complexity, resulting in an
O(N?) problem. However, only the diagonal blocks of
G or T are needed to construct the electronic density
in density-functional calculations and one can simplify
the calculations into an overall O(N) problem by algo-
rithms as given, for instance, by Godfrin!? and Wu and
co-workers.'®

It is important to point out here that our O(N)
screened multiple-scattering method for surface and in-
terface problems is free from uncontrolled approxima-
tions. The method is essentially exact except for the
usual, controllable cutoff in angular momentum and the
equally controllable cutoff in the screened structure con-
stants that decay rapidly with |R;—R;|. Since cnly
nearest or next-nearest layers interact in our reference
system, the break-even point, where one can profit from
the linear scaling with system size, already occurs for a
small number of layers, say three or five. It is also im-
portant to point out that the rapid, exponential decay
is not a property of the physical system of interest but
of the intermediate reference system. Thus our O(N)
multiple-scattering method is equally applicable for sur-
face and interface calculations of insulators, semiconduc-
tors, and metals. We may remark here that, in principle,
an O(N) method to solve the Schrodinger (Kohn-Sham)
equation should be combined with an O(N) method. to
solve the Poisson equation. Such methods exist like the
fast multipole method of Greengard-Rokhlin.'® In prac-
tice, standard schemes as given by Schadler?® or Gonis et
al.?! seem to be equally well suited since the O(N?) over-
head to solve the Poisson equation by these schemes is
negligible for the number of sites that can be used on to-
day’s computers in self-consistent density-functional cal-
culations.

V. DISCUSSION

Real-space methods for electronic-structure calcula-

tions of large, complex systems have gained increasing
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popularity in recent years as one can see from the many
successful applications of the TB-LMTO method. In
some respects the screened KKR method is similar to
the TB-LMTO method. Both methods are very eco-
nomical since the potential and structural information
are elegantly separated and since usually 16 angular-
momentum indices are enough because of the centrifu-
gal barrier £(£ + 1) /72 in the radial Schrédinger equation.
Both methods are all electron methods equally applicable
to any atom from the periodic table and there is no ambi-
guity in the choice of basis functions or in the construc-
tion of a pseudopotential with unknown transferability
properties. Both methods contain universal screening
parameters (the energy-dependent single-site ¢ matrices
t" of the reference system correspond to the energy-
independent o parameters in the TB-LMTO method)
and allow us to account for full-potential effects in a
straightforward manner. The two main advantages of
our screened KKR method are the ease with which the
screening parameters and the resulting screened struc-
ture constants can be calculated and the property that
the method is derived by an exact transformation with-
out any approximations. From a computational point of
view, the screened KKR method requires matrix inver-
sion (solution of linear equations) for each energy on the
complex energy contour, whereas the TB-LMTO method
with the inherent linearizing step leads to an eigenvalue
problem that is solved only once. Since usually 20 to 40
energy mesh points are enough and since solutions of lin-
ear equations are faster than eigenvalue determinations,
the computational work should be comparable.

In conclusion, we have presented an exact transfor-
mation of the multiple-scattering (KKR) method into a
tight-binding-like form with screened structure constants
that decay rapidly and are easily calculated in real space.
The transformation is based on the use of an intermediate
reference system with repulsive muffin-tin potentials and
leads to universal screening parameters uniquely defined
by the radius of the muffin-tin spheres and the magni-
tude of the repulsive reference potentials. The method
can be used in real space as already demonstrated by
a number of applications.>® For surface and interface
problems, the computational complexity scales linearly
with the number N of layers taken into account. Com-
pared to the conventional N3 scaling, this leads to con-
siderable savings in computer time, a fact that can al-
ready be exploited if more than three or five layers are
used. For arbitrary three-dimensional situations, the sav-
ings in computer time are also substantial because of the
sparsity of matrices, but the question of suitable algo-
rithms and their computational complexity is not easily
answered and remains a subject of future research.
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