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Based on ab initio calculations and Monte Carlo simulations, we present a systematic study of the magnetic
ground state and finite temperature magnetism of ordered and disordered Ni2MnAl full Heusler compounds.
By increasing the degree of the long-range chemical disorder between the Mn and Al sublattices, the magnetic
order progressively changes from the ferromagnetic state in the ordered L21 phase toward a fully compensated
antiferromagnetic state in the disordered B2 phase and we also conclude that the Ni atoms exhibit induced
moments. We determine the Mn-Mn interactions by using the magnetic force theorem and find dominating, but
rather weak ferromagnetic couplings in the ordered L21 phase. We used a recently proposed renormalization
technique to include the weak Ni moments into the spin model, which indeed remarkably increased the nearest-
neighbor Mn-Mn interaction. In accordance with the total energy calculations, in the disordered compounds,
strong antiferromagnetic site-antisite Mn-Mn interactions appear. Determining the spin-spin correlation functions
from Monte Carlo simulations, we conclude that above the transition temperature, short-range antiferromagnetic
correlations prevail between the Mn atoms. In view of the potential application of disordered Ni2MnAl as a room
temperature antiferromagnet, we calculate the magnetic anisotropy energies of tetragonally distorted samples in
the B2 phase and find that they are smaller by two orders in magnitude than in the frustrated antiferromagnet
IrMn3.
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I. INTRODUCTION

The growing interest in new metallic antiferromagnets,
triggered by their application in spintronic devices [1,2],
focused attention to antiferromagnetic (AFM) Heusler alloys
[3,4]. However, relatively few AFM Heusler alloys are known
with sufficiently high Néel temperatures (TN ) [5]. For instance,
the Néel temperatures of the AFM Ru2MnSi and Ru2MnGe
compounds are slightly above room temperature (313 and
316 K, respectively) [6]. Recently, the antiferromagnetism
in Ru2MnZ alloys (Z = Sb, Sn, Si, Ge) has been discussed,
together with the possibility to increase TN of Ru2MnSi [7].
Since the Néel temperature of the Ni2MnAl compound in the
disordered B2 phase is also higher than the room temperature
(313 K) [8], the investigation of the antiferromagnetism in
Ni2MnAl raises interest due to its prospective application as a
pinning material in exchange bias devices.

The Ni2MnAl compound has been a subject of broad ex-
perimental [8–13] and theoretical investigations [14–17]. It is
known from experiments that Ni2MnAl has a strong tendency
to chemical disorder in the Mn-Al sublattices [8,10]. In the
well ordered samples close to the L21 (full Heusler) phase the
magnetic ordering is ferromagnetic. This was confirmed by
first-principles calculations [14], and it has also been shown
that the ferromagnetic order is stable in the Ni2MnxAl1−x

alloys for concentrations between x = 0.14 to 0.31 [15]. In
the B2 phase, the Mn and Al atoms occupy randomly the sites
of the Mn and Al sublattices of the L21 structure. A continuous
transition between the L21 and B2 structures can be achieved
by introducing compositions Mn1−xAlx and Al1−xMnx (0 �
x � 0.5) on the pristine Mn and Al sublattices, respectively.
Quite clearly, x = 0 corresponds to the ordered L21 structure,
while x = 0.5 to the disordered B2 structure. Note that the
Mn atoms at the sites of the original Mn or Al sublattices are
referred to occupy, in order, site (S) or antisite (AS) positions.

The site and antisite positions of Mn atoms are sketched in
Fig. 1. It can be seen that in this structure the distance for the
nearest-neighbor (NN) site-antisite atoms is a/2, while the NN
distance between the pairs of site or antisite atoms is a/

√
2,

where a denotes the lattice constant.
Despite of intensive experimental research, the magnetic

state of Ni2MnAl is still controversial. The experimental
investigations show that the magnetic state strongly depends
on the heat treatment and it is difficult to achieve the perfectly
ordered L21 structure [8,10–12]. A mixed B2/L21 geometry
of the Ni2MnAl also exists and it was used in the granular
films to produce negative magnetic resistance [13].

Two artificially ordered B2 phases have been examined
by first-principles calculations [16]. In the so-called B2-I
and B2-II structures, the Mn and Al atoms are ordered
into alternating layers along the (001) and (110) directions,
respectively. In both cases, antiferromagnetic ordering of the
Mn moments was found. However, so far, no attempt was done
in the literature to provide a detailed ab initio investigation of
the magnetic ordering in the disordered B2 phase, as well as
for the partially disordered compounds between the ordered
L21 and fully disordered B2 phases.

In this work, using ab initio calculations we study the disor-
dered Ni2(Mn1−xAlx)(Al1−xMnx) (0 � x � 0.5) full Heusler
compounds. First, we perform self-consistent calculations to
obtain the energetically favorable magnetic state and the spin-
magnetic moments. In agreement with previous theoretical
work [15], we find that the ground state is the ferromagnetic
L21 phase and by increasing the amount of Mn atoms in the
antisite position, the AFM state becomes lower in energy
than the FM state. The moment of the Ni atoms appears to
be proportional with the average moment of the Mn atoms
indicating that in this system the Ni atoms have weak moments.
We then calculated the exchange parameters between the Mn
atoms using the magnetic force theorem [18] and performed
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FIG. 1. Site (S) and antisite (AS) positions of the Mn atoms
occupying positions of the originally pure Mn and Al sublattices
with compositions of Mn1−xAlx and Al1−xMnx , respectively. The
arrows indicate the orientation of the corresponding spin-moments in
the AFM state.

Monte Carlo simulations to explore the finite temperature
equilibrium properties. From the Monte Carlo simulation,
we find that for the atomically ordered L21 phase, the Curie
temperature is smaller than the experimental one, most likely
as a consequence of neglected longitudinal fluctuations of the
Ni moments. In order to take this effect into account, we apply
a recently proposed renormalization technique [19] for the
Mn-Mn exchange parameters in the FM L21 phase. In case of
atomic disorder, the site-antisite Mn-Mn interactions appear
to have AFM character, favoring an AFM state in agreement
with the total energy calculations. We also evaluate spin-spin
correlation functions and find that a finite correlation persists
above the transition temperature for the nearest and next
nearest Mn site-antisite neighbors. Finally, we calculate the
magnetic anisotropy energy for the disordered B2 phase, as
well as for the ordered B2-I and B2-II pseudophases.

II. COMPUTATIONAL METHOD

In terms of the fully relativistic screened Korringa-Kohn-
Rostoker (SKKR) Green’s function method [20,21], we
performed self-consistent calculations of bulk Ni2(Mn1−xAlx)
(Al1−xMnx) Heusler alloys with x ranging from 0 to 0.5. For
the disordered cases, we employed the single-site coherent
potential approximation (CPA). Overall, we used the exper-
imental lattice constant, a = 5.812 Å, the local spin-density
approximation (LSDA) as parametrized by Vosko et al. [22]
together with the atomic sphere approximation and an angular
momentum cutoff of �max = 2. The energy integrals were
performed by sampling 16 points on a semicircle contour in the
upper complex semiplane. We considered ferromagnetic and
antiferromagnetic arrangements, where the Mn atoms at the
site and antisite positions are aligned antiparallel. By using the
self-consistent potentials, we derived the magnetic anisotropy
energy (MAE) by means of the magnetic force theorem as a
difference of band energies [23–26],

Eanis = Eband
x − Eband

z , (1)

where the labels x and z refer to the directions of the
magnetization (effective field) in the system.

We suppose that the energy of itinerant spin-polarized
electron systems can be mapped to a Heisenberg Hamiltonian
of classical spins,

H = −1

2

∑

i,j (i �=j )

Jij �ei �ej , (2)

where the summation runs over the sites of the lattice, Jij is
the exchange interaction, and �ei denotes a unit vector along
the direction of the magnetic moment at lattice site i. Note that
according to Eq. (2) the negative exchange constant means
antiferromagnetic coupling, while the positive Jij corresponds
to ferromagnetic interaction. It also should be mentioned that
due to the 1/2 factor in the spin Hamiltonian of Eq. (2), our
spin-model parameters are twice as large as in previous work
[16].

We used two methods to evaluate the parameters of the
spin Hamiltonian (2). One of them is the relativistic torque
method (RTM) [27,28], which is a relativistic extension of
the method of infinitesimal rotations [18], and maps the
energy around a specific ordered magnetic configuration.
The other one is the spin-cluster expansion (SCE) technique
developed by Drautz and Fähnle [29,30], which provides
systematic parametrization of the adiabatic energy of an
itinerant magnetic system. This method can be combined
with the relativistic disordered local moment (DLM) scheme
[31–33] to give the exchange interactions in the paramagnetic
state [34,35]. Note that both methods are suitable to calculate
tensorial exchange parameters [27] but in this work, we use the
isotropic component only. Based on the spin model containing
the calculated exchange interactions, we performed Monte
Carlo (MC) simulations on a lattice of 16 × 16 × 16 unit
cells. In general, we used 4 × 105 MC steps to reach the
low-temperature equilibrium.

III. RESULTS AND DISCUSSION

A. Total energies and spin magnetic moments

First, we performed self-consistent calculations of the FM
and AFM states of Ni2(Mn1−xAlx) (Al1−xMnx) for several
concentrations, 0 � x � 0.5. For the FM state, where the spin-
moments of the site and antisite Mn atoms were set parallel to
each other, we found that the spin moments of the Ni and Al
atoms are oriented parallel and antiparallel to the Mn moments,
respectively. In case of the AFM calculations, we fixed the
spin-moments of the site and antisite Mn atoms in opposite
direction, whereas the spin-moments of the Ni and Al atoms
kept their directions as in the FM state. The corresponding
total energies are plotted in Fig. 2 as a function of x.

Clearly, the ground state of the Ni2MnAl compound appears
to be the completely ordered L21 phase. Following previous
theoretical findings[14,15], we supposed a FM ground state
in this phase. Chemical disorder (x > 0) increases the total
energy in both the FM and the AFM states. For any degree of
disorder, the AFM state is lower in energy than the FM state,
indicating that the coupling between the site and antisite Mn
atoms is antiferromagnetic. Although the energy of the AFM
state of the B2 phase decreases by about 37 meV/unit cell
as compared to the FM state, this decrease is not sufficient to
compensate the energy difference with respect to the ordered
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FIG. 2. (Color online) Calculated total energies per formula unit
Etot of Ni2(Mn1−xAlx) (Al1−xMnx) as a function of x in the FM and
AFM states. The total energies are normalized to that of the FM L21

state (x = 0).

L21 phase (∼190 meV/unit cell). Nevertheless, the B2 phase
can be stabilized at elevated temperatures mainly due to the
entropy of mixing and, probably, also to spin-disorder and
electronic entropy [36].

The spin moments obtained in the respective magnetic
ground states are listed in Table I for different values of x.
As can be seen, the moment of the site Mn atoms is just
slightly affected by the disorder: the value of 3.32 μB at x = 0
increases only to 3.35 μB for x = 0.5. The size of the spin
moment of the antisite Mn atoms is somewhat more sensitive
to the disorder: for small disorder (x = 0.1) it has an increased
value of 3.46 μB and it gradually decreases to 3.35 μB for
the B2 phase. The Ni and Al atoms have a spin moment of
0.32 μB and −0.07 μB in the FM L21 phase, respectively,
resulting in a total moment of 3.89 μB per formula unit.
This value is in good agreement with the values reported
earlier in the literature, namely, in 4.02 μB [15] and 4.10 μB

[16]. Remarkably, however, the Mn moments in Ref. [16] are
systematically larger by about 0.2 − 0.3 μB as compared to
our values, which is most probably the consequence that in
Ref. [16] the generalized gradient approximation was used for
the exchange-correlation potential.

TABLE I. Calculated spin magnetic moments (in units of μB )
of site and antisite Mn atoms, Ni atoms, and site Al atoms in
Ni2(Mn1−xAlx)(Al1−xMnx) alloys for different values of x. The total
spin magnetic moments are also shown. Each entry corresponds to
the respective magnetic ground state, i.e., to the FM state for x = 0
and to the AFM state for x > 0.

x mMn
site mMn

antisite mNi mAl
site mtotal

0.0 3.32 - 0.32 − 0.07 3.89
0.1 3.32 − 3.46 0.26 − 0.06 3.10
0.2 3.32 − 3.43 0.19 − 0.05 2.30
0.3 3.32 − 3.40 0.13 − 0.04 1.49
0.4 3.34 − 3.37 0.06 − 0.03 0.75
0.5 3.35 − 3.35 0 0 0

As can be noticed, the size of the spin moments of the
Ni atoms decreases from the L21 to the B2 phase almost
proportional with the concentration x. In the B2 phase, the two
intermixed Mn-Al sublattices become equivalent by symmetry,
therefore, the site and antisite Mn moments are equal in
magnitude. Concomitantly, the Ni atoms (and also the Al
atoms) loose their spin moments and the system becomes
a compensated antiferromagnet. From these observations we
conclude that in this system the Ni atoms experience induced
spin-polarization, and their spin moment strongly depends
on the orientational configuration of the strong (stable) Mn
moments, thus, also on the temperature.

B. Exchange parameters in the L21 phase

In the ordered L21 structure, we calculated the exchange
interactions between the Mn atoms both from the FM ground
state by using the RTM and from the paramagnetic DLM state
by using the SCE technique. The exchange parameters are
presented in Fig. 3 as a function of the distance between the Mn
atoms. The exchange parameters obtained in the FM state are
ferromagnetic up to the fifth shell, while those in the sixth and
seventh shells are antiferromagnetic, but relatively small in
magnitude. Thus the ferromagnetic character prevails for the
Mn-Mn interactions.

In order to check the numerical accuracy of our results,
we also performed calculations of the exchange interactions
by increasing the angular momentum cutoff to �max = 3.
We found insignificant changes in the dominating nearest-
neighbor interactions, while larger deviations occurred only in
case of some far (fifth and ninth) neighbors. These changes
in the exchange parameters resulted in a decrease by 15 K in
the simulated critical temperature (see below). Considering a
factor of two in the magnitudes due to the different definitions
of the spin model, our calculated interactions are in remarkably
good agreement with the couplings determined from a frozen
magnon approach [16].

The exchange parameters derived from the DLM state
show an overall similarity to those derived from the FM
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FIG. 3. (Color online) Mn-Mn interactions in Ni2MnAl in the
L21 phase as a function of the interatomic distance as obtained from
the FM and the DLM state.
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state. Considerable differences can be seen for the first and
the sixth shells, where the couplings in the DLM state show
a pronounced AFM tendency. Nevertheless, the magnetic
ground state triggered by the interactions from the DLM state
is still ferromagnetic.

We performed Monte Carlo simulations with both sets
of exchange interactions. By using the parameters derived
from the FM and the DLM states, we obtained the transition
temperatures T FM

C = 240 K and T DLM
C = 230 K, respectively.

These values are significantly smaller than the experimental
one, T

exp
C = 373 K [8] indicating that the calculated FM

Mn-Mn interactions are not sufficiently large in magnitude.
Interestingly, the transition temperature, TC = 485 K, derived
theoretically in Ref. [14] is twice as large as our values
obtained from Monte Carlo simulations, even remarkably
larger than the experimental value. Most likely, the random
phase approximation (RPA)[37] they used overestimates the
Curie temperature. This is corroborated by the fact that
Ref. [16] reported TC = 368 K also using RPA, though, as
mentioned above, the calculated interactions were very similar
to our J FM

ij values.
Another quantity closely related to the exchange interac-

tions is the spin-stiffness constant. The spin-stiffness constant
D is defined from the low-wave-number limit of the spin-wave
energy, E(q) = Dq2, and, in case of a cubic lattice, it can be
expressed as [18,37,38]

D = μB

3M

∑

j

J0jR
2
0j , (3)

where R0j is the distance between sites 0 and j and M

the magnitude of the local magnetic moment. Since the
above sum is very slowly converging, an exponential decay,
exp(−ηR0j /alatt), can be introduced and the limit η → +0
should be taken [37]. We thus derived the spin stiffness
constant by calculating D for different values of η and
extrapolated them to η = 0. For the parameters from the
FM and the DLM states, we obtained DFM = 247 meV Å2

and DDLM = 290 meV Å2, respectively. In particular, DDLM

compares remarkably well with the one determined from
self-consistent spin-spiral calculations, D = 294 meV Å2 [14].

So far, we neglected the influence of the induced moments
of the Ni atoms on the magnetic properties of the system
at finite temperatures. There have been made quite a few
attempts to include the longitudinal fluctuations of the weak
moments into the Heisenberg spin model [19,39–41]. Here, we
employed a strategy introduced in Ref. [19] to obtain renor-
malized exchange interactions for the strong (Mn) moments.
The method relies on the assumption that the formation of an
induced moment at site ν, �mν , is subject to an energy gain,

Hν[{�ei}, �mν] = −
∑

i

κiν �ei �mν + aνm
2
ν , (4)

where, as in Eq. (2), �ei denote the orientation of the strong
moments, while κiν and aμ(> 0) are parameters that can be
obtained from constrained self-consistent electronic structure
calculations. Adding the sum of these terms to the Heisenberg
model (2) one gets a spin model with the statistical variables,
�ei and �mν , that can be treated in extended Monte Carlo simula-
tions [19,42,43] to describe the finite temperature equilibrium

states of the system. Alternatively, the weak moments’ degrees
of freedom can be eliminated (integrated out) from the partition
function in order to regain a Heisenberg Hamiltonian for the
strong moments with renormalized interactions [19],

J̃ij = Jij + �Jij , �Jij =
∑

ν

κiνκjν

2aν

. (5)

It should be noted that the expectation values and correlation
functions of the strong moments are equivalent within the
original model (containing the strong and weak moments’
degrees of freedom) and within the renormalized model for
the strong moments only [19].

Minimizing the energy (4) with respect to �mν yields the
equilibrium value of the weak moment,

�mν,0 =
∑

i

κiν

2aν

�ei . (6)

Note that the above relationship applies also to the expectation
values of the moments at finite temperatures. Moreover, the
formation energy (4) of the weak moment can be rewritten as

Hν[{�ei}, �mν] = aν( �mν − �mν,0)2 + Hν[{�ei}], (7)

where the second term on the right-hand side depends just on
the configuration of the strong moments. Clearly, the above two
equations form the basis to determine the parameters κiν and
aν from first principles. To do so, we used the simplification
as in Ref. [19], namely, we supposed that κiν differs from
zero only for the nearest-neighbor Mn-Ni pairs (κ). Since all
the Ni sites are equivalent, in what follows, we also drop the
index ν. Taking the ground state value of the Ni moment,
mNi,0 = 0.32 μB, in the L21 phase, see Table I, we obtain

κ

a
= 2mNi,0

Nc
= 0.16 μB , (8)

where Nc = 4 is the number of the nearest-neighbor Mn sites
next to a Ni atom.

The parameter a can be determined based on Eq. (7)
by calculating the total energy of the system as a function
of μ around the equilibrium value mNi,0 for a fixed spin
configuration {�ei}. Such calculations can be performed in terms
of constrained density functional theory (CDFT) [44]. Using
a longitudinal constraint, we calculated the dependence of the
total energy on the Ni moment in the FM and the DLM state
as Fig. 4 shows.

In the FM state, the total energy as a function of the
magnitude of the Ni moment is parabolic only in the vicinity
of the equilibrium value, 0.32 μB. In particular, for moments
above 0.35 μB, the curve becomes asymmetric, indicating
the presence of higher order terms in μNi. This clearly
contravenes the assumption made in Eq. (4). Nevertheless,
we fitted the value of aFM = 487 meV/μ2

B to the parabolic
part of the curve. Using the ratio of κ/a in Eq. (8), we obtain
κFM = 78.0 meV/μB. It can be easily seen that, within the
approach we used for κiν , only the nearest-neighbor Mn-Mn
interactions will be renormalized by the value, �J FM

NN = κ2

a
=

4am2
Ni,0

N2
c

= 12.5 meV, since the two nearest-neighbor Mn atoms
have two common nearest-neighbor Ni atoms.

In the DLM state, the equilibrium Ni moment is zero and,
as can be inferred from Fig. 4, the parabolic behavior of
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FIG. 4. (Color online) Calculated total energy of Ni2MnAl in the
L21 phase in the FM (top) and DLM (bottom) state under longitudinal
constraint on the Ni moment around the corresponding equilibrium
value. The symbols represent the calculated data, the solid line
corresponds to a parabolic fit.

the energy applies well for a large range of the constrained
moment. The numerical fit resulted in a value of aDLM =
346 meV/μ2

B , which is clearly smaller than in the FM state.
Using again κ/a = 0.16, we obtain the parameter κDLM =
55.4 meV/μB and a renormalizing term to the NN Mn-Mn
interaction, �J DLM

NN = 8.87 meV. We can thus conclude that
the formation of local moments at the Ni atoms drastically
increases the ferromagnetic coupling between the NN Mn
atoms, although this enhancement is remarkably damped in
the DLM state. It should be noted that the parameter κ

can be related to a Heisenberg-like interaction between the
nearest-neighbor Mn and Ni moments, κ = J Mn−Ni

NN /mMn.
Determining the interaction J Mn−Ni

NN from the FM state using
the RTM method, we obtain the value κ = 40.0 meV/μB ,
which is apparently closer to κDLM than to κFM.

In Ref. [19], the renormalized interactions were determined
directly from self-consistent spin-spiral calculations and the
“bare” interactions were obtained by subtracting the renormal-
izing corrections, Jij = J̃ij − �Jij . Our present goal is just the
opposite, namely, to determine the renormalized interactions
through the procedure described in Eqs. (5)–(8). It is thus a
subtle question how the bare interactions are defined. Since all

the effects of the weak local moments are thought to be covered
by the Hamiltonian (4), it is compelling to associate the interac-
tions derived in the DLM state with the bare interactions, since
in this state the spin polarization of the Ni atoms is suppressed.
To the contrary, due to the large spin-polarization of the Ni
atoms in the FM state, the exchange constants derived even
from the magnetic force theorem should contain renormaliza-
tion terms. Moreover, these parameters are also influenced by
higher order spin interactions [45], which is not the case for
the DLM state, since the multispin interactions provided by
the SCE method are, in general, irreducible [29,30].

Choosing the SCE-DLM interactions as the bare couplings,
we obtained J̃NN = 12.13 meV with the renormalization term
from FM state, �J FM, and J̃NN = 8.52 meV with �J DLM.
Using the spin model with renormalized NN coupling in the
MC simulations, the Curie temperature remarkably increased
to TC = 730 K or to TC = 600 K with �J DLM. The inclusion
of the longitudinal fluctuations of the Ni moments via the
renormalization process proposed in Ref. [19] thus largely
overestimates the Curie temperature of Ni2MnAl in the L21

phase as compared to the experiment (373 K). Our value for the
TC obtained with the renormalized spin-model from the DLM
state is, however, comparable to that reported in Ref. [14]
(485 K).

C. Exchange interactions for the disordered alloys

In order to study the change in the magnetic structure
from the ordered L21 phase to the disordered B2 state, we
calculated the exchange interactions between the Mn atoms in
the (partially) disordered alloys Ni2(Mn1−xAlx) (Al1−xMnx)
as a function of x. Here, we employed the RTM method for
the AFM ground state of the alloys (x > 0), in which the
site and antisite Mn atoms exhibit opposite spin orientation.
In Fig. 5, the calculated isotropic Mn-Mn interactions are
shown as sorted out according to the sublattice (site and
antisite) positions of the Mn atoms. Although we calculated the
exchange parameters up to the 15th shell, as what follows, we
shall present and discuss only the first three NN interactions.

Considering only the site positions of the Mn atoms,
see upper panel of Fig. 5, the ferromagnetic NN coupling
is decreasing with increasing disorder and above x = 0.2
it becomes antiferromagnetic, reaching a value of about
−1.2 meV in the B2 phase (x = 0.5). A similar tendency can
be observed for the large ferromagnetic second NN interaction,
however, this coupling remains ferromagnetic (0.8 meV) in
the B2 phase. The third NN coupling slightly increases
with increasing disorder, and above x = 0.2 it saturates at
about 1.4 meV. It can then be concluded that the overall
ferromagnetic coupling of the site Mn moments is preserved
with the disorder.

Disorder between the Mn and Al species introduces new
types of Mn-Mn interactions that can influence the magnetic
ground state. One set of them are the couplings between the
Mn atoms occupying the pristine Al sites (antisite Mn atoms).
For small disorder, the rather large antiferromagnetic NN
interaction dominates and it shows fairly small changes against
disorder. The ferromagnetic second and third NN interactions
increase with increasing x from small values (0.2 − 0.3 meV),
but the second NN interaction slightly decreases again for
x > 0.25. As clear from the middle panel of Fig. 5, in the
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FIG. 5. (Color online) Calculated first (J1), second (J2), and third
(J3) nearest-neighbor Mn-Mn interactions as a function of the degree
of disorder x in Ni2(Mn1−xALx)(Al1−xMnx) alloys. Top: site-site
pairs, middle: antisite-antisite pairs, and bottom: site-antisite pairs.
The representative crystallographic position of the pairs is also given
with the label of the interactions, see Fig. 1.

B2 phase the corresponding site–site and antisite-antisite
interactions take the same values since the two sublattices
become equivalent.

The calculated isotropic exchange interactions between two
Mn atoms, one of them located in the pristine Mn (site)
and the other one in the pristine Al sublattice (antisite), are
plotted in the lower panel of Fig. 5. Apparently, all presented

(first, second and third nearest-neighbor) couplings are an-
tiferromagnetic in the whole range of x, and, in particular,
the first and second NN interactions are significantly larger
in magnitude than the exchange couplings discussed before,
being ∼−12 and ∼−5 meV in the B2 phase, respectively.
These interactions show monotonous changes with x, but
above x > 0.2 – 0.3, they are practically unaffected by the
increase of disorder.

As regard the large antiferromagnetic first NN site Mn-
antisite Mn coupling, there is a good quantitative agreement
between our results and those obtained for the artificial B2-I
and B2-II structures in Ref. [16]. Our calculations confirm
that the change in the magnetic structure from FM to AFM
is primarily due to the appearance of (1/2,0,0) Mn-Mn pairs,
i.e., with a distance of a/2, in samples with any disorder.
Indeed, the energy difference between the AFM and FM states
of the B2 phase calculated just by taking into account these
interactions in the spin model (2) yields −35.7 meV/unit cell,
which compares remarkably well with the energy difference
obtained from the total energy calculations, −36.65 meV/unit
cell. It should also be mentioned that the AFM order is
somewhat weakened by the antiferromagnetic (1/2,1/2,0)
interactions, but it is strengthened via the antiferromagnetic
(1/2,1/2,1/2) interactions, see also Fig. 1.

Using the calculated isotropic exchange interactions, we
performed Monte Carlo simulations to study the finite tem-
perature magnetic properties in the B2 phase. In particular,
we evaluated the spin-spin correlation functions that provide
important information about the magnetic short range order in
the system. For the nth nearest-neighbor shell, the spin-spin
correlation function is defined as

c(n) = 1

N

∑

i

1

Nn

∑

�Rn

〈�e �Ri
�e �Ri+ �Rn

〉, (9)

where 〈. . . 〉 denotes the statistical average, �Ri are translation
vectors of the lattice, among them �Rn span the nth shell. N

stands for the number of translation vectors considered in the
calculations and Nn is the number of sites forming the nth shell.

The temperature dependence of the calculated spin-spin
correlation functions in the disordered B2 phase is displayed
in Fig. 6. The first-shell site-site (and also antisite-antisite)
spin-spin correlation function approaches to +1 at low
temperatures, which reflects ferromagnetic ordering within
each of the two disordered sublattices. Quite clearly, this
applies to c(n) for any n with respect to a given sublattice. For
finite temperatures, the site-site c(1) remains positive signaling
FM order, but for higher temperatures it approaches zero.
The temperature of the magnetic order–disorder transition is
identified with the position of the inflection point of c(n). The
spin-spin correlation functions related to site-antisite pairs are
negative, at low temperature approaching −1, which implies
that the site and antisite Mn moments have opposite directions
in the ground state. These correlation functions also tend to
zero, but, as can be seen in Fig. 6, after the inflection point,
the decay of c(1) and c(2) is much slower than that of the
other correlation functions, and they seem to preserve a finite
value far beyond the order-disorder transition temperature.
This is the signal for a strong short-range magnetic ordering
(AFM correlation) in the paramagnetic phase due to the large
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FIG. 6. (Color online) Temperature dependence of selected spin-
spin correlation functions, Eq. (9), of Ni2MnAl in the disordered B2
phase. Presented are the site-site correlation functions for the first
shell, and the site-antisite correlation functions for the first three
shell.

antiferromagnetic site-antisite exchange interactions. Note that
for the B2 phase, we obtained a transition temperature of
T B2

C = 270 K, which agrees well with the experimental value
of 313 K [8].

D. Magnetic anisotropy energies

Based on the magnetic force theorem, we determined the
magnetic anisotropy energy (MAE) in the B2 phase under
tetragonal distortion along [001] (c axis). Note that we also
changed the lattice constant a in order to keep the volume of
the unit cell constant. Table II shows the calculated magnetic
anisotropy energies for some values of the c/a ratio. Bear in
mind that a negative sign of the MAE corresponds to an easy
plane normal to [001], while positive MAE’s refer to an easy
axis parallel to [001].

Due to the cubic symmetry, the MAE as defined in Eq. (1)
is zero for c/a = 1. Clearly from Table II, the easy direction
can be tuned by tetragonal distortion: in case of compression
(c/a < 0), the easy axis is along the c axis, while for stretching
(c/a > 0), the preferred direction is in the plane normal to the c

axis. It also can be inferred that the magnitude of MAE changes
almost proportionally with the c/a ratio. Note that small
tetragonal compression in the equilibrium geometric structure,
c/a = 0.991, was reported theoretically [15]. According to our
results, this implies an easy c axis with a magnitude of about
0.05 meV/unit cell 	 16 × 105J/m3 for the MAE. Note that
this value is only about one-third of the uniaxial anisotropy

TABLE II. Calculated magnetic anisotropy energies per unit cell
Eanis, based on the magnetic force theorem (1), for some values of
the c/a ratio in the B2 phase of Ni2MnAl.

c/a Eanis (meV)

0.90 0.054
0.95 0.027
1.00 0.000
1.05 − 0.028
1.10 − 0.059

constant of hcp Co and by two orders less in magnitude than
the effective anisotropy constant found theoretically in the
frustrated antiferromagnet IrMn3 [46].

Finally, we notice that, due to tetragonal symmetry, the
AFM pseudophases, B2-I and B2-II, exhibit uniaxial MAE
even without distorting the lattice (c = a). Considering the
AFM ground states reported in Ref. [16], for the B2-I structure,
we determined an easy-plane anisotropy with a MAE of
−0.19 meV (−62.0 × 105 J/m3), while the preferred magnetic
orientation for the B2-II structure was found along the c axis
with a MAE of 0.14 meV (45.7 × 105 J/m3). This observation
implies that a short-range chemical ordering, which might
occur in the disordered B2 phase, can significantly influence
the MAE of the system.

IV. CONCLUSIONS

We performed detailed first-principles analysis for the full-
Heusler Ni2MnAl alloy focusing on the interrelation between
the long-range chemical disorder with respect to the Mn and
Al atoms and the magnetic structure. From the self-consistent
calculations, we found that the ground state of the system is
the ferromagnetic L21 phase and any disorder among the Mn
and Al atoms causes an antiferromagnetic order for the site
and antisite Mn atoms. The site and antisite Mn moments are
highly stable against disorder and in the fully disordered B2
phase their magnitudes become equal, implying a compensated
AFM ordering in this phase. The Ni atoms exhibit weak
induced moments as they decrease nearly proportionally with
increasing disorder and disappear in the B2 phase.

In the L21 phase, we calculated the isotropic exchange
parameters between the Mn atoms from the ferromagnetic
ground state and from the paramagnetic DLM state, in good
agreement with previous theoretical results [16]. From Monte
Carlo simulations, we, however, obtained a Curie temperature
significantly smaller than the experimentally one. We made an
attempt to include the longitudinal fluctuations of the Ni mo-
ments into the spin model by employing the renormalization
technique proposed in Ref. [19]. As expected, we obtained
a remarkable increase of the ferromagnetic nearest-neighbor
Mn-Mn coupling mediated by the induced Ni moments, but
this procedure largely overestimated the Curie temperature.
This might indicate that in this system the Mn and Ni moments
can not be treated as individual degrees of freedom.

We also investigated the exchange interactions between
the Mn atoms with increasing long-range disorder. In ac-
cordance with Ref. [16], we found that the transition of the
magnetic structure from FM in the L21 phase to AFM in
the B2 phase is primarily triggered by the appearance of
Mn-Mn pairs with a distance of a/2, that display a strong
antiferromagnetic coupling. Based on the Mn-Mn interactions,
for the B2 phase we determined a Néel temperature in good
agreement with experiment. From the calculated spin-spin
correlation functions we established a bipartite AFM ground
state in the B2 phase. Above the transition temperature, we
found finite spin-spin correlations for the first and second
shell of site-antisite Mn pairs, indicating strong short-range
antiferromagnetic correlations in the paramagnetic phase.

Finally, we calculated the magnetic anisotropy energy
for the tetragonally distorted B2 phase and established a

054438-7



E. SIMON, J. GY. VIDA, S. KHMELEVSKYI, AND L. SZUNYOGH PHYSICAL REVIEW B 92, 054438 (2015)

spin-reorientation transition with respect to the compressed
and stretched samples. At 9% compression found in first-
principles calculations [15], the magnitude of the calculated
anisotropy energy amounted about 0.05 meV per unit cell,
while the B2-I or B2-II types of chemical orderings increased
the magnitude of the MAE by a factor of about three. Neverthe-
less, it remains quite ambiguous whether this MAE is sufficient
to stabilize the AFM state in potential exchange bias devices.
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