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Universal distribution of magnetic anisotropy of impurities in ordered and disordered nanograins
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We examine the distribution of the magnetic anisotropy experienced by a magnetic impurity embedded in a
metallic nanograin. As an example of a generic magnetic impurity with a partially filled d shell, we study the
case of d1 impurities embedded into ordered and disordered Au nanograins, described in terms of a realistic band
structure. Confinement of the electrons induces a magnetic anisotropy that is large, and can be characterized by
five real parameters, coupling to the quadrupolar moments of the spin. In ordered (spherical) nanograins, these
parameters exhibit symmetrical structures and reflect the symmetry of the underlying lattice, while for disordered
grains they are randomly distributed and, for stronger disorder, their distribution is found to be characterized by
random matrix theory. As a result, the probability of having small magnetic anisotropies KL is suppressed below
a characteristic scale �E , which we predict to scale with the number of atoms N as �E ∼ 1/N 3/2. This gives rise
to anomalies in the specific heat and the susceptibility at temperatures T ∼ �E and produces distinct structures
in the magnetic excitation spectrum of the clusters that should be possible to detect experimentally.
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I. INTRODUCTION

Magnetic thin films and nanosized objects are essential
ingredients for high-density magnetic recording. Magnetic
nanoparticles, in particular, are considered as the most likely
building blocks for future permanent magnets [1–3]. Similar
to molecular electronics devices [4] or thin metallic lay-
ers [5,6], spin-orbit (SO) coupling plays an essential role in
nanoparticles: By restricting the free motion of the magnetic
spins and eventually freezing them [7], it enables spins to
store magnetic information. Understanding the behavior of the
magnetic anisotropy in systems with quantum confinement is
hence of crucial importance for nanoscale magnetic materials
science.

SO coupling-induced magnetic anisotropy (MA) appears
to be surprisingly large in certain nanoscale and mesoscopic
structures. A sterling example, where confinement-induced
MA provides an explanation for the observation, is the
suppression of the Kondo effect in thin films and wires of
certain dilute magnetic alloys [5]. As revealed by a series of
experiments on magnetically doped thin metallic films [5,6],
SO coupling combined with a geometrical confinement of the
electrons’ motion induces a “dead layer” in the vicinity of the
surface, where the motion of the otherwise free spins is blocked
by MA. The thickness d of this “dead layer,” consistently
explained in terms of surface-induced spin anisotropy [5,6],
depends on the particular host material and dopants used, but
it can be unexpectedly large, in the range of d ∼ 100 Å.

In confined geometries, a spin-orbit (SO) interaction can
induce magnetic anisotropies by two fundamentally different
mechanisms. In metallic compounds of heavy elements with a
strong SO interaction, the geometry of the sample is imprinted
into the spin texture of the conduction electrons’ wave
function. This spin texture varies in space close to the surface

of the sample, and induces a position dependent magnetic
anisotropy for the magnetic dopants. The corresponding host-
induced magnetic anisotropy host SO (HSO) mechanism,
intensively studied in atomic-scale engineering, is presumably
at work in magnetically doped noble metal samples, where
it gives rise to a relatively short-ranged confinement-induced
magnetic anisotropy close to the sample surfaces [7]. Much
stronger and longer-ranged anisotropy can, however, be
generated by the local SO (LSO) coupling at the magnetic
dopant’s d or f level [8,9] in the case of magnetic impurities
with a partially filled d or f shell, respectively [8]. In this
case, the spin of the magnetic ion is entangled with the orbital
structure of localized f and d states, and couples very strongly
to Friedel oscillations, leading to the emergence of a strong
MA (LSO mechanism). While the HSO mechanism appears
to be too weak to explain the thin film experiments, the
stronger and more slowly decaying anisotropy induced by
the LSO mechanism seems to give a consistent explanation
for the experimental observations [8–10], and appears to be
the dominant mechanism for SO coupling-induced MA in
confined structures.

The surface-induced MA has been thoroughly studied in
thin films and in the vicinity of surfaces. Surprisingly little is
known, however, about the structure and size of confinement-
induced MA in nanograins. Here we therefore investigate
the LSO mechanism in metallic grains and demonstrate that
symmetrically “ordered” nanograins and nanograins with
random surfaces show very different behaviors. In ordered
nanograins, the MA constants exhibit regular structures re-
flecting the symmetry of the grain. Different atomic shells
of the grain behave very differently from the point of view of
magnetic anisotropy, which displays Friedel-like shell-to-shell
oscillations. Adding atoms to an ordered grain and thereby
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making its surface disordered, however, changes this picture
completely: In such “disordered” grains, the conduction
electron’s wave function becomes chaotic, and the distribution
of MA parameters becomes gradually more and more random.
The MA distribution is then found to be fairly well captured
by random matrix theory, and to be almost independent of the
magnetic ion’s position.

II. MODEL AND COMPUTATIONAL DETAILS

In the present work, we shall demonstrate the characteristic
properties discussed above by focusing on the simplest case of
a magnetic impurity in a d1 configuration embedded into an
fcc Au nanograin host of 100–400 atoms. This model system
captures the generic properties of most magnetic impurities
and hosts, and allows us to study the roles of local and host SO
interactions simultaneously. We construct the nanograins by
placing Au atoms on a regular fcc lattice starting from a central
site, and then adding “shells,” defined as groups of atoms that
transform into each other under the cubic group (Oh). We refer
to nanograins with only filled shells as ordered (or spherical)
nanograins, while nanograins with partially filled outermost
shells shall be referred to as disordered (or nonspherical)
nanoparticles. We also define the core of the grain as the group
of atoms having a complete set of first neighbors. To describe
the electronic structure of Au nanograins, we use a tight
binding model with spd canonical orbitals and incorporate SO
coupling of the host atoms nonperturbatively. More technical
details can be found in Appendix A.

To investigate the local SO-induced anisotropy, we shall use
the approach of Ref. [11], and account for local correlations
on the magnetic impurity by means of a generalized Anderson
model [12], which we embed into the Au grain described
above. Similar to Anderson’s model, our impurity Hamiltonian
(the so-called ionic model [13]) contains three terms: the
impurity term, the conduction electron, and the hybridization
terms (see Appendix B). In the ground state d1 configuration,
by Hund’s third rule, the strong local SO interaction aligns the
angular momentum of the d electron antiferromagnetically
with its spin, thus forming a D3/2 spin j = 3/2 multiplet. This
multiplet remains degenerate in a perfect cubic environment,
and—in group theoretical terms—it transforms according to
the four-dimensional �8 double representation of the cubic
point group [14].

Next, we need to embed this impurity into the host.
Following Anderson, we consider hybridization of the deep
D3/2 multiplet only with s-type host electrons, since these
latter dominate the density of states near the Fermi energy
(see Appendix B). Local cubic symmetry implies, however,
that only linear combinations of neighboring s orbitals, trans-
forming as j ∼ 3/2, can hybridize with the deep D3/2 states.
The proper |s3/2〉, |s1/2〉, |s−1/2〉, |s−3/2〉 basis set has been
constructed in Refs. [10,11] and is reproduced in Appendix B.
Considering then charge fluctuations to the d0 state and
performing a Coqblin-Schrieffer transformation [15,16], we
finally arrive at the following simple exchange Hamiltonian,

HLSO = J
∑
m,m′

s†msm′ |m′〉〈m|. (1)

Here the {|m〉} refer to the states { 3
2 , 1

2 ,− 1
2 ,− 3

2 } of the impurity,

and s
†
m creates appropriate host electrons, while J denotes

the strength of the effective exchange coupling (see also
Appendix B).

To handle the exchange interaction J , we can use a
diagrammatic approach similar to Ref. [11]. The dominant
contribution to the MA is, however, simply given by the Hartee
term, generating the effective spin Hamiltonian,

HL =
∑
m,m′

Kmm′ |m′〉〈m|,

with the anisotropy matrix Kmm′ expressed as

Kmm′ = J 〈s†msm′ 〉 = J

∫ εF

−∞
dε ρL

mm′ (ε). (2)

Here ρL(ε) denotes the local spectral function matrix of the
symmetry adapted host operators s

†
m and εF stands for the

Fermi energy. In practice, we evaluate the integral (C6) in
terms of the Green’s functions of the host [17].

III. SYMMETRY CONSIDERATIONS

Although disordered nanograins do not possess spatial
symmetries, time reversal (TR) symmetry is still present, and
implies that, apart from an unimportant overall shift K0, the
anisotropy matrix Kmm′ can be parametrized in terms of five
real numbers Kμ (μ = 1 . . . 5),⎛
⎜⎜⎜⎝

K1 K3 − iK5 K2 − iK4 0

K3 + iK5 −K1 0 K2 − iK4

K2 + iK4 0 −K1 −K3 + iK5

0 K2 + iK4 −K3 − iK5 K1

⎞
⎟⎟⎟⎠ ,

(3)

which we shall refer to as the LSO-MA parameters. We note
that the absence of SO coupling on the host atoms further
simplifies the structure of HL, and the matrix elements K3,
K4, and K5 vanish in the case where the up and down spin
channels do not mix in the host.

The MA matrix in Eq. (3) has two Kramers degenerate
eigenvalues, λ+ = −λ−, whose splitting can be used to define
naturally the magnetic anisotropy constant as

KL ≡ (λ+ − λ−)/2 =
√∑

μ

K2
μ. (4)

If the magnetic impurity is placed in an ordered (spherical)
nanograin, then the MA matrices can be different for different
sites even if they belong to the same shell. Their trace,
eigenvalues, and, therefore, the MA constant should, however,
be the same for all sites within the same shell due to the
underlying (Oh) symmetry of the grain, as indeed confirmed
by our numerical simulations, discussed below (for additional
information, see Appendix C).

To find connections between the elements of Kmm′ for an
ordered nanograin, we express Eq. (3) in a multipolar basis.
Time reversal symmetry implies that Kmm′ can be expressed
solely in terms of even powers of the j = 3/2 spin operators
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FIG. 1. (Color online) Left: Anisotropy parameters in the E plane for an ordered grain of 225 atoms (87 core atoms). Right: Anisotropies
in the E plane in case of 100 disordered Au nanograins. An ordered cluster is created by 225 atoms that fill completely the first six shells of the
fcc structure, and with 11 extra atoms, randomly placed onto the next shell. The triangular structure of the anisotropy parameter distribution
can still be observed.

Jx,Jy,Jz. In fact, the parameters in (3) couple directly to the
usual five (normalized and traceless) quadrupole operators
allowed by time reversal symmetry, Q1, . . . ,Q5 proportional
to 2J 2

z − J 2
x − J 2

y , J 2
x − J 2

y , JxJz + JzJx , JxJy + JyJx , and
JyJz + JzJy , respectively. The local Hamiltonian can be
simply expressed in terms of these as

HL =
∑

μ

KμQμ, (5)

with the coefficients Kμ of the Q matrices forming a five-
dimensional vector. Under cubic point group transformations,
the first two components, ∼(Q1,Q2), and the last three
components, ∼(Q3,Q4,Q5), transform into each other ac-
cording to the E and T2 representations of the cubic point
group, respectively [14]. Correspondingly, for atoms on the
same shell of an ordered grain, the anisotropy parameters
K1,2 transform into each other, and form regular patterns of
triangular symmetry in the (K1,K2) plane, referred to as the
E plane in what follows. The left panel of Fig. 1 shows the
computed (K1,K2) values, plotted in the E plane for an ordered
grain of 225 atoms (87 core atoms). Throughout this work, we
use J = 0.25 eV, a value consistent with a Kondo temperature
below 0.1 K. Different colors denote the MA parameters of
clusters with magnetic impurities placed on the different shells.
Similarly, the anisotropy constants K3, K4, and K5 (shown in
Fig. 7 in Appendix C), induced by the SO interaction on the
host Au atoms, are related for atoms on the same shell, and
show regular patterns in a three-dimensional space, the T2

space. These parameters are, however, smaller by about one
order of magnitude compared to the parameters K1,2, implying
that the MA constant, Eq. (4), is dominated by the E-type
parameters.

IV. ANALYSIS OF DISORDERED CLUSTERS

Next, let us examine the distribution of the magnetic
anisotropy constants in case of disordered nanoclusters. First,
we created 100 disordered nanoclusters by adding 11 extra
atoms to an 225-atom ordered cluster, and placing them
randomly on the next shell of 24 possible sites. We then
calculated the MA parameters on all core sites for every
nanoparticle. In Fig. 1 (right) we show the 8700 E-plane
parameters obtained this way. Different colors represent data
from different shells. Small “clouds” are observed with
obvious remains of the threefold symmetry, but there is no
longer any strictly ordered structure left in the E plane.

We then increased the structural disorder of the nanograins
further, and added 25 extra atoms to an ordered cluster of 225
atoms, by placing them randomly on the next three shells.
As shown in the inset of Fig. 2, for these strongly disordered
clusters the distribution becomes almost isotropic in the E

plane, and the triangular symmetry is almost entirely lost.
The main panel of Fig. 2 shows the radial distribution of the
magnetic anisotropy parameters,

√
K2

1 + K2
2 in the E plane.

The observed distribution agrees very well with the predictions
of a simple Gaussian theory, where the components of KE ≡
(K1,K2) have an independent and Gaussian distribution,

p(KE) ∼ e−K2
E/�2

E , (6)

with the E-plane anisotropy scale �E defined as �2
E ≡ 〈K2

E〉.
We find that in these disordered grains the radial distribution
in the three-dimensional T2-space parameters can also be
fitted by a similar Gaussian ensemble, although with a
smaller characteristic radius,

√
〈K2

T 〉 ≡ �T < �E (see Fig. 8
in Appendix C). The overall distribution of the anisotropy
KL is therefore strongly suppressed at small values. In the
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FIG. 2. (Color online) Radial distribution of the magnetic
anisotropy parameters (dots) in the E plane in the case of NS = 50
samples with N = 225 + 25 atoms. The continuous line presents the
predictions of the Gaussian orthogonal ensemble. Inset: Distribution
of (K1,K2) in the E plane for these 50 nanograins. At this level of
disorder the triangular structure is almost entirely lost.

absence of host SO coupling, it scales as p(KL) ∼ KL for small
anisotropy values, KL < �E , while in the presence of it p(KL)
is suppressed as p(KL) ∼ |KL|4 for KL < �T . This implies
that typical sites in a disordered grain have a finite SO-induced
anisotropy of size ∼�E , and of random orientation, almost
independently of their precise location within the grain.

We remark that, even after adding a single extra atom to
an ordered cluster, the distribution of the eigenenergies of the
host Hamiltonian agreed with the predictions of random matrix
theory (see Fig. 9 in Appendix D) and, in agreement with the
experimental findings [18], exhibited level repulsion according
to a Gaussian symplectic (GS) level spacing distribution. The
observed GS distribution reflects the chaotic nature of the
electron’s wave function as well as the presence of host SO
coupling. Building upon the chaotic nature of the electron’s
wave function, one can obtain an estimate of �E by using
Eq. (C6) and assuming random plane wave conduction electron
wave functions [19]. This yields the estimate

�E ∼ J (�SO/εF )/N3/2,

with N the number of lattice sites on the cluster and �SO the
SO splitting of the j = 3/2 and j = 5/2 impurity levels.

V. EXPERIMENTAL IMPLICATIONS

The anisotropy distribution (6) has a direct impact on
the magnetic excitation spectrum of the nanograins. Gen-
erating 50 (strongly) disordered nanograins with 225 +
40 atoms (87 core sites), we randomly chose and ro-
tated 100 nanoclusters from the 4350 different sam-
ples (see Appendix E), and determined the magnetic
impurities’ excitation spectrum averaging over the ori-
entation of them. All these 100 spectra were added together,
and the procedure was repeated ten times. The obtained
aggregated spectrum is shown in Fig. 3. The obtained spectra
are grain specific (see the inset), and reflect directly the MA
energy’s distribution. The typical anisotropy values, �E ≈
0.57 THz, shift rapidly towards smaller values (GHz) with
increasing grain size.

2ΔE ≈ 1.14 THz
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FIG. 3. (Color online) Orientational and disorder averaged exci-
tation spectrum computed for an ensemble of 1000 randomly chosen
and randomly oriented disordered nanograins (N = 225 + 40). The
shape of the signal reflects the distribution of magnetic anisotropies
while the small peak corresponds to transitions between the lowest
Kramers doublets, split by the magnetic field. Inset: Spectra of
selected grains, see the main text and Appendix E.

The universal anisotropy distribution should be indirectly
observable through thermodynamic quantities, too. In the
presence of a random distribution of anisotropies, given by
Eq. (6), we obtain a peak in the specific heat C(T ) at T ≈
0.78�E , and a low temperature specific heat C(T ) ∼ T 2/�2

E

(see Appendix F), turning into a ∼T 5 anomaly for T 
 �T .
It should be emphasized that the specific heat (Fig. 10 in
Appendix E) is universal for all disordered nanograins, where
the MA constants follow a Gaussian orthogonal ensemble
(GOE) type of distribution. The grain-specific information is
hidden in the parameter �E . We note that the coefficient of the
Curie susceptibility ∼T χ should exhibit a strong suppression
below T ∼ �E , similarly to the specific heat.

VI. CONCLUSIONS

Although the model discussed here has features that are
specific, we believe that it captures many generic properties of
magnetic impurities in a metallic grain, and thus allows one to
draw general conclusions. For any magnetic impurity of spin
J , time reversal symmetry implies that the leading anisotropy
term is of the form (5). In ordered grains, the distribution of
the five parameters Kμ must always reflect the underlying
lattice symmetry, and for cubic lattices, in particular, the
couplings KE and KT are organized into triangular and cubic
structures, respectively. These parameters are expected to
become random, and to exhibit multidimensional Gaussian
distributions in sufficiently disordered grains. We have found
that the MA constants KL in nanoballs with magnetic
impurities follow a universal distribution function when the
structural disorder is large enough. The suppression of the
probability of having a small anisotropy, p(KL → 0) = 0, as
well as the predicted specific heat and susceptibility anomalies
are also generic (not only GOE) features, since they follow
simply from the presence of randomly distributed independent
anisotropy parameters Kμ. Our conclusions regarding the
Schottky anomaly are thus general, though details of the low
temperature scaling of C(T ) may be system (MA distribution)
specific.
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APPENDIX A: DESCRIPTION OF THE
GOLD NANOGRAIN

We have defined the structure of the Au nanograins host
of N = 100–400 atoms as follows: We refer to an ordered
grain when it has only filled shells around a central atom,
while nanoparticles with partially filled (outermost) shells are
referred to as disordered nanograins. The shell is a group of
atoms (Nsh) on an fcc lattice, transforming into each other
under the cubic group (Oh). The shell structure of a few fcc
nanoclusters is shown in Table I. An ordered grain built by N =
225 atoms has, e.g., 12 filled shells: one central atom, 12 first,
six second,..., and 24 twelfth neighbors. The site (0,1.5,1.5)
belongs to shell 9NNa, while the site (0.5,0.5,2) is on shell
9NNb, though they are at the same distance from the origin
(center atom). A disordered grain host of N = 236 atoms with
11 atoms in the outermost (12NN ) shell (instead of Nsh =
24 atoms) has, e.g., C24

11 configurations. In practice, we choose
randomly only around NS ∼ 50–100 grains from this huge
configuration space. We allow placing extra atoms not only into
the first outermost shell, however, we never generate “holes”
in a nanocluster. In a given nanograin the atoms that have all
the first neighbors are referred to as core atoms (denoted by
Nc in Table I). The core region is away from the surface of
the nanograin. A nanoparticle of N = 225 atoms has, e.g.,
Nc = 87 core atoms.

The electronic structure of the Au nanograins will be
described by a tight binding (TB) Hamiltonian. The model

TABLE I. The shell structure of fcc clusters. Labels a and b

denote the shells where the atoms are at the same distance from the
center atom but cannot be transformed into each other (under Oh).
Nsh denotes the number of sites in a given shell, N is the total number
of atoms, and Nc is the number of core sites in the cluster.

Shell Nsh N Nc Shell Nsh N Nc

Center 1 1 0 12NN 24 249 87
1NN 12 13 1 13NNa 48 297 135
2NN 6 19 1 13NNb 24 321 141
3NN 24 43 1 14NN 48 369 165
4NN 12 55 13 15NN 12 381 177
5NN 24 79 19 16NNa 24 405 177
6NN 8 87 19 16NNb 24 429 201
7NN 48 135 43 17NNa 24 453 225
8NN 6 141 43 17NNb 6 459 225
9NNa 12 153 55 18NN 48 507 249
9NNb 24 177 55 19NN 24 531 249
10NN 24 201 79 20NN 24 555 273
11NN 24 225 87

uses spd canonical orbitals, and the spin-orbit (SO) coupling
of the host atoms is considered nonperturbatively. Specifically,
the TB model uses (nearly) orthonormal basis functions which
are localized at sites Rn,

〈r | n; ασ 〉 = 〈r − Rn | ασ 〉 = ψα(r − Rn)φσ , (A1)

where n refers to the given site, and the index α denotes the
so-called canonical basis (real spherical harmonics),

α = s,  = 0,

α = px,py,pz,  = 1, (A2)

α = dxy,dxz,dyz,dx2−y2 ,d3z2−1,  = 2.

ψα depends only on the azimuthal quantum number  and the
spin quantum number is labeled by σ = ± 1

2 .
The Hamiltonian of the noble metal host is written as

Ĥ = {
H

n,n′
ασ,α′σ ′

}
= (

εαδαα′δσσ ′ + ξHLS
ασ,α′σ ′

)
δnn′ + t

n,n′
α,α′ δσσ ′, (A3)

where the dimension of the matrix is M = 18 × N . Here εα is
the so-called on-site energy parameter,

HLS
ασ,α′σ ′ = 〈ασ | �L�S|α′σ ′〉, (A4)

ξ is the SO coupling parameter, and t
n,n′
α,α′ are the hybridization

matrix elements (or hopping integrals) between the different
orbitals.

We note that on-site energies εs , εp, εd−Eg
and εd−T2g

have
been used in all calculations, and hopping integrals to first
and second nearest neighbors have been included. These latter
depend only on the relative positions of the sites,

t
n,n′
α,α′ = tα,α′ (Rn′ − Rn). (A5)

The numerical values for both εα and tα,α′ can be found in
Ref. [10]. The spin-orbit coupling parameter ξ was determined
from the difference of the SO-split d-resonance energies

�Ed = Ej=5/2 − Ej=3/2, (A6)

derived from self-consistent relativistic (SKKR) first-
principles calculations [20]. This splitting is related to the
strength of SO coupling as �Ed  5

2ξ . For bulk Au we thus
obtain ξ = 0.64 eV.

The Green’s function or resolvent operator of a nanoparticle
is defined as

Ĝ(z) = G
n,n′
ασ,α′σ ′(z) = (z − Ĥ )−1 (A7)

and can be written as

Ĝ(z) =
M∑
i=1

|vi〉〈vi |
z − εi

, (A8)

where {εi} and {|vi〉} stand for the eigenvalues and eigenvectros
of the Hamiltonian Eq. (A3), respectively.

We define the density of states (DOS) as follows,

n(ε) = − 1

2πi
lim
δ→0

Tr[Ĝ(ε + iδ) − Ĝ(ε − iδ)]. (A9)

The numerically calculated values are shown in Fig. 4
for an ordered nanograin. The calculated Fermi energy is
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FIG. 4. (Color online) The spd density of states (DOS) compo-
nents of an ordered nanograin (N = 225) normalized to one atom.
The calculated Fermi energy is εF = 7.4 eV.

εF = 7.4 eV, and at the Fermi energy the s contribution
dominates the DOS.

APPENDIX B: THE LSO MODEL HAMILTONIAN

Here we outline the derivation of the local spin-orbit (LSO)
model for a d1-type magnetic impurity from the so-called
ionic model, a generalization of the Anderson model [13].
The Hamiltonian of the ionic model is constructed in terms
of local crystal field multiplets of an ion, specified by the
number of electrons n, some multiplet labels �, and internal
quantum numbers m. We consider the simplest case, where
the Coulomb interaction is very large, and the ground state
multiplet has n = 1 electrons, characterized by some internal
multiplet labels. In this case, quantum fluctuations to the n = 0
ionic state |0〉 generate the exchange interaction, and the ionic
model reduces to

E0|0〉〈0| +
∑
m

E1|m〉〈m| +
∑
�k,m

ε�ks
†
�k,m

s�k,m

+
∑
�k,m

(V�k|m〉〈0|s�k,m + V ∗
�k s

†
�k,m

|0〉〈m|), (B1)

with m running over 2j + 1 values. In case of j = 1
2 , the U =

∞ Anderson model is recovered [15]. The operator s
†
�k,m

creates

a host conduction electron with wave number �k, pseudospin m,
and energy ε�k , adopted to the symmetry of the local ionic states
|m〉, and the V�k-s denote s-d hybridization matrix elements.

The ion experiences locally a cubic symmetry. Therefore
the local art of Hamiltonian—and thus the hybridization—
must be invariant under the cubic group. To construct the
hybridization term, we construct symmetry-adopted combi-
nations from the 12 operators, s

†
xy,s

†
x̄y , . . . ,s

†
ȳz̄, creating s

electrons on nearest neighbor gold atoms. The most strongly
hybridized states of d-level symmetry are the E-type com-
binations Dx2−y2 and D2z2−x2−y2 transforming as �3, and are

generated by the operators

D
†
x2−y2 = 1

2
√

2
(s†yz + s

†
ȳz̄ + s

†
yz̄ + s

†
ȳz

− s†xz − s
†
x̄z̄ − s

†
xz̄ − s

†
x̄z),

(B2)
D

†
2z2−x2−y2 = 1

2
√

6
(2s†xy + 2s

†
x̄ȳ + 2s

†
xȳ + 2s

†
x̄y − s†yz

− s
†
ȳz̄ − s

†
yz̄ − s

†
ȳz − s†xz − s

†
x̄z̄ − s

†
xz̄ − s

†
x̄z).

So far, we have ignored spin. The fact that the SO interaction
is large on the ion implies that the ionic states |m〉 transform
according to some double representation of the cubic point
group. Let us assume, for the sake of simplicity, that the
ionic ground state multiplet transforms as a j ∼ 3/2 spin, i.e.,
according to the �8 double representation, and can hybridize
only with nearest neighbor states of the same symmetry. This
leads us to the definition of the following operators,

s
†
3/2 = −D

†
x2−y2,↓, s

†
−3/2 = D

†
x2−y2,↑

(B3)
s
†
1/2 = D

†
2z2−x2−y2,↑, s

†
−1/2 = −D

†
2z2−x2−y2,↓.

These operators transform also according to �8, and therefore
the local part of the ionic Hamiltonian, Eq. (B1), reduces to

HLSO = Ed

∑
m

|m〉〈m| + V
∑
m

(|m〉〈0|sm + s†m|0〉〈m|),

(B4)

where V is the hybridization parameter, and we choose E0 = 0
and E1 = Ed . Performing a Coqblin-Schrieffer transforma-
tion [15,16] for the Hamiltonian Eq. (B4), we finally obtain

HLSO = J
∑
m,m′

s†msm′Xm′m, (B5)

where the Hubbard operators Xm′m = |m′〉〈m| refer to the
states { 3

2 , 1
2 ,− 1

2 ,− 3
2 } of the impurity, and s

†
m creates appropriate

host electrons, while J denotes the exchange constant J =
V 2

|Ed | . In our calculations we set J to 0.25 eV, consistent with a
Kondo temperature below 0.1 K.

APPENDIX C: MAGNETIC ANISOTROPY
IN THE T2 SPACE

Here we derive the MA matrix from the LSO model. The
host Hamiltonian, Eq. (A3), must be modified in the presence
of a magnetic impurity. The simplest way to account for
the missing host atom at the impurity site is to shift the on-site
d-state energies of the impurity εi

α far below the valence band
by adding the following term to the Hamiltonian,

�Ĥ = �H
n,n′
ασ,α′σ ′ = (

εi
α − εα

)
δn0δn′0δαα′δσσ ′ . (C1)

To commute the anisotropy energy within the LSO model,
we need the Green’s function only for a cluster of sites C
consisting of nearest neighbor atoms around the impurity and
the impurity itself (12 + 1 atoms). The corresponding Green’s
function matrix can be evaluated as

ĝ(z) = ĝ′(z)(Î − �Ĥ ′ĝ(z))−1, (C2)

134421-6
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(b)(a)

FIG. 5. First- and second-order self-energy diagrams of the im-
purity spin. The dashed and continuous lines denote the propagators
of the spin and the conduction electrons, respectively.

where Î is a unit matrix and ĝ′(z) = {Ĝ(z)}C , and Ĝ(z) is
defined by Eq. (A8). The spectral function matrix of cluster C
is then defined as

ρ̂C(ε) = − 1

2πi
lim
δ→0

[ĝ(ε + iδ) − ĝ(ε − iδ)]. (C3)

Our impurity model is restricted to the hybridization between
the impurity and the s-type conduction electrons, hence, from
the s components of the matrix ρ̂C(ε) we define the following
projected matrix,

ρnn′
s−C,σσ ′ (ε) = ρnn′

C,sσ,sσ ′ (ε), (C4)

where n,n′ label sites in C and ρ̂s−C is a (2 × 13) × (2 × 13)
matrix, incorporating the up (↑) and down (↓) spin channels,
too. Finally, we compute the 4 × 4 matrix of spectral functions
ρL

mm′ (ε) of the symmetry-adopted operators s
†
m from ρ̂s−C by

performing the unitary transformation defined by Eqs. (B2)
and (B3).

To calculate the splitting of the four states, we per-
form second-order permutation theory in J by employing
Abrikosov’s pseudofermion representation [21]. The corre-
sponding diagrams are shown in Fig. 5. The T = 0 temperature
pseudofermion self-energy is given by

�mm′(ω = 0) = �
(1)
mm′ + �

(2)
mm′ , (C5)

where

�
(1)
mm′ = J

∫ εF

−∞
dερL

mm′ (ε) (C6)

and

�
(2)
mm′ = J 2

∫ εF

−∞
dε

∫ ∞

εF

dε′ 1

ε′ − ε
ρL

mm′ (ε)
∑
m′′

ρL
m′′m′′(ε′).

(C7)

Here ρL
mm′ (ε) denote the elements of ρL(ε) computed in the

absence of the exchange interaction, i.e., J = 0, and εF is
the Fermi energy [11]. Interestingly, already the first-order
contribution to the self-energy gives a nonvanishing anisotropy
in the vicinity of a surface or at a site of a nanograin. Therefore,
we consider this leading term only and identify the MA matrix
as the first-order self-energy contribution Kmm′ = �

(1)
mm′ , and

express the effective spin Hamiltonian as

HL =
∑
m,m′

Kmm′ |m′〉〈m|. (C8)

As demonstrated in Fig. 6 for a regular cluster of 225 atoms,
in an ordered nanograin the MA splitting is the same for sites
in the same shell by Oh symmetry relations. Constructing
disordered nanograins by placing 40 extra atoms randomly on
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FIG. 6. (Color online) Calculated MA constant KL values for
both ordered and disordered nanoballs. The ordered cluster has
N = 225 atoms, and the solid lines correspond to the values of KL

calculated for the ordered case. The number of core sites is Nc = 87,
i.e., the MA is for atoms located in the center site and on the first
six core shells—see the different colors. The number of all sites in
disordered nanoballs is N = 265, i.e., 40 extra atoms are put to the
next three outermost shells. The number of sample is NS = 50.

the next three outermost shells generates widely fluctuation
anisotropies within each shell.

In the case of tetragonal symmetry, when the magnetic
impurity is, e.g., in the vicinity of a surface of a film or bulk
material, the MA matrix has only diagonal elements, KL =
K1. Moreover, in the case of perfect cubic symmetry, when the
magnetic impurity is in the bulk, K1 = 0, too, and therefore
KL = 0 as well, implying that the D3/2 ground state (�8)
remains degenerate. It follows that the magnetic anisotropy
should go to zero in the inner shells upon increasing the size of
the nanograins. Indeed, the characteristic MA energy vanishes
as N−3/2. We remark that in ordered nanoclusters KL = 0 is
obtained for the central atom, in agreement with this symmetry
analysis.

In ordered grains, the MA matrix is different at each site,
however, symmetry relations exist between the MA parameters
of atoms on the same shell. Let i and j label two sites
within the same shell and let us assume, e.g., that the two
sites are connected by a rotation of angle φ around axis n.
Then the anisotropy matrices HL

i and HL
j are related by linear

transformations as

HL
j = eiϕn·JHL

i e−iϕn·J, (C9)

with J = (Jx,Jy,Jz) denoting the J = 3/2 spin operators.
Under cubic symmetry transformations, the quadupolar

operators {Q1,Q2} and {Q3,Q4,Q5} transform into each other
according to the two-dimensional E and three-dimensional T2

representations, respectively. Correspondingly, the parameters
KE ≡ (K1,K2) and KT ≡ (K3,K4,K5) at sites i and j are
related as

Kj

E/T = �
(i→j )
E/T (g)Ki

E/T . (C10)
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FIG. 7. (Color online) The magnetic anisotropy parameters in the
T2 space in the case of an ordered nanograin (N = 225, Nc = 87,
NS = 1). The color coding is the same as in Fig. 6.

Consequently, the anisotropy parameters of atoms on a given
shell form regular structures in the KE and KT spaces.

Figure 7 shows the MA parameters KT in the T2 space
for an ordered nanograin of 225 atoms (87 core atoms). We
can clearly identify tetrahedral ordering patterns, in agreement
with the structure of the T2 transformations. The ordered
structures can, however, be split even by placing a single extra
atom on the outermost shell of the spherical cluster.

The radial distribution of the MA parameters in the T2

parameter space is shown in Fig. 8 for disordered nanograins.
The observed distribution agrees well with the predictions of
a simple Gaussian theory, similar to Eq. (6). The scale of
the T2-space anisotropy �T ≡

√
〈K2

T 〉 is, however, more than
one order of magnitude smaller than �E , and vanishes in the
absence of bulk SO coupling, ξ = 0. The T2 data in Fig. 8 are
distributed similarly to the β = 2 Gaussian unitary ensemble
(GUE).
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FIG. 8. (Color online) Radial distribution of the magnetic
anisotropy parameters (dots) in T2 space in the case of NS = 50
samples with N = 225 + 25 atoms (Nc = 87). The continuous line
presents the prediction of the Gaussian unitary ensemble. The
obtained MA energy scale: �T = 0.13 meV.

APPENDIX D: LEVEL SPACING DISTRIBUTION
OF THE HOST

The spectrum of disordered mesoscopic systems is usually
analyzed in terms of random matrix theory (RMT). Here
we analyze the energy level spacing distribution of the
Hamiltonian Eq. (A3) in the presence of host SO coupling.
Generically, the matrix Ĥ of a disordered grain is an M × M

matrix of M/2 different Kramers degenerate eigenvalues
{εi}. The level spacing is defined as the separation of two
consecutive eigenvalues. Its average over disorder realizations
〈s〉 ≡ � at an energy ε is related to the total DOS of a grain as

�(ε) = 1

2 DOS(ε)
.

According to random matrix theory [22], in a chaotic nanograin
the distribution of s/� is a universal function that depends
solely on the symmetry of the underlying Hamiltonian, and is
well approximated by Wigner-Dyson statistics,

pβ(x) = aβ xβ exp(−bβx2). (D1)

Here β classifies the appropriate symmetry class: In the
presence of time reversal symmetry breaking, β = 2 (and a2 =
32/π2 and b2 = 4/π ), and one refers to the Gaussian unitary
ensemble (GUE), while β = 4 [with a4 = 262 144/(729π3)
and b4 = 64/(9π )] corresponds to the Gaussian symplectic
ensemble (GSE), and describes chaotic systems with SO
interaction. The Gaussian orthogonal ensemble (GOE) is
characterized by β = 1.

The distribution of the level spacings for a set of randomly
generated 225 + 25 atom disordered relativistic nanograins
with SO coupling ξ = 0.64 is shown in Fig. 9. The data
presented have been collected from the d band between 3
and 4.5 eV, where the elevated value of the DOS allows a
good statistical analysis. Clearly, apart from the tail of the
distribution, the data are very well fitted by GSE. Deviations
of the level spacing statistics (fat tail) from the predictions
of RMT together with the anomalies observed in anisotropy
parameter space (angle correlations) may signify that the effect
of the cubic symmetry of the underlying lattice is not entirely
negligible.

0 1 2 3
0

0.5

1

x, normalized level-spacing

p(
x)

FIG. 9. (Color online) The level spacing distribution for NS = 50
disordered nanograins with N = 225 + 25 atoms in the d band. The
average level spacing is � = 3.9 meV. The data are well fitted by
GSE.
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APPENDIX E: EXCITATION SPECTRUM OF EMBEDDED
MAGNETIC IMPURITIES

The excitation spectra of magnetic impurities embedded
in randomly oriented nanograins can be calculated from the
effective Hamiltonian HL, Eq. (5). To describe the spectra of
an arbitrarily oriented sample, we rotate HL by an angle ϕ

around the unit vector n,

HL → HL
n,ϕ = eiϕn·JHLe−iϕn·J, (E1)

with J = (Jx,Jy,Jz) denoting J = 3/2 angular momentum-
vector operators. We then solve the eigenproblem of this
Hamiltonian, HL

n,ϕ|i〉 = Ei |i〉 (i = 1, . . . ,4). Assuming an ac
magnetic field of frequency ω in the x direction, Fermi’s golden
rule yields for absorbtion intensity

S(ω) ∝
∑
j>i

δ(ω − (Ej − Ei)/�)|〈j |Jx |i〉|2pi, (E2)

with pi = e−βEi /Z the Boltzmann weight of the ith eigenstate,
and Z = ∑

i e
−βEi is the partition function.

We simulated the excitation spectra of N = 225 + 40 atom
disordered nanograins by generating 100 random grain con-
figurations and then selecting random grain orientations
and impurity positions within the grains at liquid helium
temperature, T = 4.2 K. The obtained results are shown in
Fig. 3.

APPENDIX F: SCHOTTKY ANOMALY OF NANOGRAINS
WITH MAGNETIC IMPURITIES

Here we derive the specific heat (heat capacity) of the
nanoballs with magnetic impurities. We have seen that the MA
matrix has two Kramers degenerate eigenstates with the energy
splitting equal to 2KL [see Eq. (4)]. Correspondingly, the
specific heat of a given spin is then simply expressed as

C = kB

∂

∂T
T 2 ∂

∂T
log Z, (F1)

0 1 2 3 4 5
α, normalized temperature

0

0.1

0.2

0.3

C
(α

)

FIG. 10. (Color online) Specific heat (in units of kB ) of
nanograins with magnetic impurities, obtained from the numerical
integration in Eq. (F4) as a function of the normalized temperature,
α = kBT /�E . This curve is universal for all disordered nanograins,
where the MA constants follow a GOE-like universal distribution,
Eq. (F3). The grain-specific information is hidden in the parameter
�E .

with Z the partition function

Z = 2(1 + e−2KL/kBT ). (F2)

Let us now restrict ourselves to the case of E-plane
anisotropy. As demonstrated in the main text, the distribution
of the MA constant then follows a GOE-type (β = 1) statistics,

p(KL) = 2

�2
E

KLe−K2
L/�2

E . (F3)

Averaging the specific heat Eq. (F1) with p(KL) we then obtain

C(T ) = kBα2
∫ ∞

0
(12x2 − 8α2x4)

e−α2x2

1 + e2x
dx, (F4)

where we introduced the normalized temperature α ≡ kBT
�E

.
The integral in Eq. (F4) has to be performed numerically, and
the result is shown in Fig. 10. The distribution of the MA
constants induces a Schottky peak in the specific heat at α ≈
0.78, i.e., T ∗ ≈ 0.78�E . We remark that C(α) is proportional
to α2, thus C(T ) ∼ T 2/�2

E for temperatures T 
 T ∗.
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