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We present systematic theoretical investigations to explore the microscopic mechanisms leading to the
formation of antiferromagnetism in Ru2MnZ (Z = Sn,Sb,Ge,Si) full Heusler alloys. Our study is based on
first-principles calculations of interatomic Mn-Mn exchange interactions to set up a suitable Heisenberg spin
model and on subsequent Monte Carlo simulations of the magnetic properties at finite temperature. The exchange
interactions are derived from the paramagnetic state, while a realistic account of long-range chemical disorder is
made in the framework of the coherent potential approximation. We find that in the case of the highly ordered
alloys (Z = Sn and Sb), the exchange interactions derived from the perfectly ordered L21 structure lead to
Néel temperatures in excellent agreement with the experiments, whereas, in particular in the case of Si, the
consideration of chemical disorder is essential to reproduce the experimental Néel temperatures. Our numerical
results suggest that by improving a heat treatment of the samples to suppress the intermixing between the Mn and
Si atoms, the Néel temperature of the Si-based alloys can potentially be increased by more than 30%. Based on
calculated biquadratic exchange couplings, we evidence a lifting of degeneracy of the antiferromagnetic ground
states on a frustrated face-centered-cubic lattice in the fully ordered compounds. Furthermore, we show that in
strongly disordered Ru2MnSi alloys, a distinct change in the antiferromagnetic ordering occurs.
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I. INTRODUCTION

Because of their challenging magnetic properties, Heusler
alloys have attracted considerable attention in the last decades
[1–3]. The possibility of tuning the magnetic and electronic
properties by varying the alloy composition to a large extent,
while keeping the crystal structure unchanged, provided an
opportunity to verify various fundamental theoretical concepts
related to magnetic alloys (see, e.g., Ref. [4] and references
therein). The main reason, which brought ferromagnetic
Heusler alloys to the frontline of research, is related to the
possibility of full spin polarization at the Fermi level due to the
half-metallic character of their electronic structures [5]. This
feature is believed to have an essential impact on developing
highly efficient spintronic devices [6].

Most of the magnetic Heusler alloys exhibit local magnetic
moments [7] that can successfully be described in the frame-
work of the Heisenberg spin model. It is therefore no surprise
that the exchange interactions in Heusler alloys have been
extensively studied on ab initio level [4]. Due to their possible
application in magnetic shape memory devices, ferromagnetic
Mn-based alloys with the chemical formula X2MnZ, where
X is a transition metal element and Z is a p element, gained
particular interest [4,8–12]. It was widely revealed that the
first nearest-neighbor (NN) magnetic interactions between
the Mn atoms in the L21 full Heusler alloy crystal structure
(see upper panel of Fig. 1) are strongly ferromagnetic and add
the main contribution to the Curie temperature. However, if
due to an excess of Mn in the alloy composition or due to
chemical disorder in stoichiometric samples where Mn atoms
are also present on the Z (p element) sites, they might interact
antiferromagnetically with the NN Mn atoms on the proper (or
original) sites, and the system might become ferrimagnetic. In
particular, this is the case for the Ni2MnAl alloy, where a

high degree of chemical disorder can be achieved by suitable
thermal treatment. This material can even be a compensated
antiferromagnet in the disordered B2 phase [13], which is
called structurally induced antiferromagnetism [12].

The growing interest in new metallic antiferromagnets,
triggered by their application in spintronic devices [14,15],
focuses attention also to antiferromagnetic (AFM) Heusler
alloys [16,17]. However, relatively few AFM Heusler alloys
are known with sufficiently high Néel temperatures (TN)1,
which might raise some doubts against their application in
technology. In the Ru2MnZ (Z = Sn, Sb, Ge, Si) alloys the
Mn moments order on the four face-centered-cubic (fcc)
sublattices into the highly frustrated, so-called second kind
of AFM structure (see lower panel of Fig. 1). The Néel
temperatures of the Ru2MnSi and Ru2MnGe compounds are
slightly above room temperature [18] (313 K and 316 K,
respectively) and, in contrast to the relatively high temperature
AFM Ni2MnAl alloy, they are proper antiferromagnets in the
fully ordered state. Ru2MnSn has a somewhat lower ordering
temperature (TN = 296 K) but is still slightly above room
temperature, while Ru2MnSb has the lowest Néel temperature
(195 K) in this series [18]. Recently, some attempts have been
made to increase the Néel temperatures of these compounds
by producing strained epitaxial films [17].

The quite low critical temperatures of the known X2MnZ

AFM Heusler alloys exist for at least two main reasons. The
first reason is the ferromagnetic character of the first NN Mn-
Mn coupling found in first-principles calculations. In Ref. [19],
the first three NN exchange couplings in the Ru2MnZ series
have been estimated from total energy calculations for a few
ordered magnetic configurations. It has been concluded that
the first NN interaction is ferromagnetic, and the stabilization
of the AFM structure occurs due to almost equally strong
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FIG. 1. (Color online) The L21 crystal structure of Ru2MnZ

alloys (upper panel) and the second kind of AFM order on the fcc
sublattice of Mn atoms (lower panel).

second NN exchange coupling of AFM character. Another
source of the low critical temperatures of AFM Heusler alloys
is the magnetic frustration that can naturally occur on an fcc
lattice. In particular, the Ru2MnZ compounds exhibit a very
special and rare type of AFM order on an fcc lattice, the
so-called second kind of AFM structure [18]. As visualized
in the lower panel of Fig. 1, in this type of ordering each of
the four simple cubic (sc) lattices constituting the fcc lattice
has a checkerboard AFM order, but the mutual intersublattice

orientation of the magnetic moments is completely frustrated.
Within the Heisenberg model, this frustration can only be
resolved by quantum effects, and it has been the subject of
a number of theoretical investigations [20,21].

In this paper we present a first-principles study of anti-
ferromagnetism in the Ru2MnZ series of a Heusler alloy.
We pay particular attention to the effects of chemical and
magnetic disorder on the calculated exchange constants and
on the magnetic frustration. The influence of disorder on
the magnetic transition temperature in Heusler alloys was
studied on a similar level of accuracy only in Ref. [22]
in the case of the half-Heusler NiMnSb alloy, where the
importance of the non-mean-field treatment of the chemical
disorder within a Heisenberg model has been pointed out.
This obviously applies to the Ru2MnZ full Heusler alloys
with nontrivial AFM ordering. The magnetic features related
to the special AFM ordering will be discussed for the case
of the Ru2MnSb compound in detail. We found that in
the case of Z = Si, the experimentally observed chemical
antisite disorder on Mn and Si sublattices considerably
reduces the Néel temperature, opening the way for a sample
improvement in terms of a suitable heat treatment. In the
case of a strongly disordered Ru2MnSi compound, close to
the disordered B2 phase, our study predicts a transition to a
complex AFM structure essentially different from the second
kind of AFM ordering.

II. COMPUTATIONAL DETAILS

We performed first-principles investigations within the
local spin-density approximation (LSDA) [23] by using
the Korringa-Kohn-Rostoker (KKR) band structure method
in the atomic sphere approximation (ASA) [24,25], where
the partial waves were expanded up to lmax = 3 (spdf– basis)
inside the atomic spheres. We used the experimental lattice
constants of the L21 lattice structure of the considered alloys
[1] as listed in Table I. Since our main goal is to estimate the
Néel temperature and the formation of the magnetic order at
elevated temperatures, we determined the electronic structure
self-consistently in the paramagnetic phase of the considered
systems modeled within the disordered local moment (DLM)
scheme in the scalar relativistic approximation [26]. Atomic
disorder between the Mn and Z sublattices was treated as a
random binary alloy, Ru2(Mn1−xZx)(Z1−xMnx) for 0 � x �
0.5 by using the single-site coherent potential approximation
(CPA) [25]. Referring to what follows, we shall denote the Mn
atoms on the sites of the nominal (original) Mn sublattice by
Mn(S), whereas those on the sites of the nominal Z sublattice
by Mn antisites, Mn(AS).

TABLE I. Calculated local magnetic moments of Mn atoms (mMn), first three NN exchange interactions between the Mn atoms (J1NN, J2NN,
and J3NN), and Néel temperatures (T calc

N ) for ordered Ru2MnX compounds. The experimental lattice constant (a) and Néel temperatures (T exp
N )

are taken from Ref. [18]. A representative relative position vector of the corresponding Mn-Mn pair is given in units of a below the labels of
the exchange interactions. The calculated first NN biquadratic coupling constants, K1NN, are presented in the last column.

a (Å) mMn(μB) J1NN (mRy) [1/2 1/2 0] J2NN (mRy) [1 0 0] J3NN (mRy) [1 1/2 1/2] T calc
N (K) T

exp
N (K) K1NN (mRy)

Ru2MnSn 6.217 3.26 0.1128 −0.4954 −0.0164 320 296 0.0033
Ru2MnSb 6.200 3.56 0.1483 −0.2050 0.0065 180 195 −0.0055
Ru2MnGe 5.985 3.04 0.1768 −0.4855 −0.0174 365 316 0.0010
Ru2MnSi 5.887 2.95 0.1765 −0.5214 −0.0209 415 313 −0.0007
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The magnetic properties of the Ru2MnZ Heusler com-
pounds can well be described by the classical Heisenberg
Hamiltonian,

H = −
∑

〈i,j〉
Jij �ei �ej , (1)

where the sum runs over all the different Mn-Mn pairs and �ei

denotes the unit vector pointing along the magnetic moment
of the ith Mn site. In the case of chemical disorder between
the Mn and Z sublattices, the sum in Eq. (1) also includes sites
on the Z sublattice occupied by Mn atoms with probability
x. The isotropic exchange interactions, Jij , were evaluated
from the DLM reference state in the spirit of the magnetic
force theorem [27] as implemented within the bulk KKR
method [28]. The use of the DLM reference state in the
calculations of the exchange interaction constants allows for
an account of the influence of the thermal magnetic disorder
on the electronic structure and on the interatomic exchange
interactions, thus, for a more precise estimation of the magnetic
ordering temperature (see, e.g., Refs. [22,29–31]).

In order to study finite temperature magnetic properties, we
performed Monte Carlo simulations with the spin Hamiltonian
(1) using 16×16×16 primitive cells of the underlying mag-
netic fcc lattice (a cluster of 4096 Mn atoms) with periodic
boundary conditions. For the simulations of the chemically
disordered Ru2MnSi alloys, 12×12×12 cells of both the
Mn and Si fcc sublattices, i.e., a total of 3456 sites, were
randomly filled with Mn atoms according to their partial
occupation numbers. Note that in the Monte Carlo simulations,
we considered a spin model with exchange interactions up to
the 20th NN shell. Although such long-range interactions can
accurately be calculated by using the magnetic force theorem
[27], they cause a change of only a few Kelvins in the calculated
Néel temperatures. Since their magnitudes are in the range
of biquadratic interactions beyond the classical Heisenberg
model (see Sec. IV), the inclusion of long-range interactions
into the spin model for the purpose of Monte Carlo simulations
can therefore be regarded as a rather arbitrary technical choice.

III. FULLY ORDERED L21 ALLOYS

First we performed calculations as outlined above for the
Ru2MnZ compounds in the fully ordered L21 structure. The
calculated local moments of the Mn atoms, the first three
NN Mn-Mn exchange interactions, and the Néel temperatures
obtained from Monte Carlo simulations are summarized
in Table I. The Néel temperatures are compared with the
experimental values, shown in the last row of Table I. As
can be inferred from Table I, the local magnetic moment of
Mn in the paramagnetic state is around 3 μB or even higher,
indicating a strong localization of the moments as is usual in
Mn-based Heusler alloys. Note that the variation of the values
of the experimental (and calculated) Néel temperatures for the
Ru2MnZ series correlate neither with the values of the lattice
constant nor with the size of the local moments of the Mn
atoms. Quite obviously, the Néel temperature is determined
by the Mn-Mn exchange interactions governed by the actual
electronic structure depending on the type of the p element in
the Z position.

In ordered Ru2MnZ alloys, the magnetic Mn atoms fully
occupy one of the four interpenetrating fcc sublattices of
the L21 structure. Thus, the AFM ordering occurs on a
magnetically frustrated fcc lattice. From earlier experiments
[18], it is known that the magnetic structure corresponds to
the second kind of AFM order that occurs due to the strong
second NN AFM coupling. The first NN direct exchange is
ferromagnetic, but it is clearly smaller in magnitude than the
second NN AFM coupling. The competition between these
two exchange couplings leads to the formation of the second
kind of AFM structure on the fcc lattice.

Remarkably, the Néel temperature of the Sb-based com-
pound is nearly two times lower than in the other compounds
of the series, which can almost entirely be attributed to the
decreased magnitude of the second NN interaction. Since
the corresponding Mn sites are directly connected by a site
occupied by the p element, one could expect that an Anderson
type of superexchange mechanism is primarily responsible for
this strong AFM coupling. In the case of Sb with one more
valence p electron as compared to Si, Ge, and Sn, the strength
of this interaction is strongly reduced. However, for metallic
systems, another description of the indirect exchange mech-
anism, namely a Ruderman-Kittel-Kasuya-Yosida (RKKY)
type of exchange via polarization of the Bloch electron states
applies. Indeed, as was discussed in detail by Şaşioğlu et al.
[9] for Mn-based Heusler alloys, both mechanisms coexist,
and there is no obvious way to determine how to unravel
them within the LSDA methodology as it might be possible
in correlated insulators or for less localized metals without p

elements.
The Monte Carlo simulations with exchange interactions

calculated up to the 20th NN shells result indeed in the second
kind of AFM ordering for all the considered alloys. This is the
case when taking into account only the first three NN couplings
in Table I, in full agreement with the (J1, J2, J3) phase diagram
of the magnetic fcc lattice as given by Moran-Lopez et al. [32].
However, we find an essential difference between our calcu-
lated exchange interactions and earlier estimations [19] made
on the basis of total energy calculations for a couple of ordered
magnetic configurations. This can be understood since in
Ref. [19] the authors limited their mapping procedure only
to the first three NN interactions, and a similar strategy has
been pursued in the theoretical analyses of the experimental
data in Ref. [18]. In Fig. 2 we show the calculated values
of the exchange interactions for distant pairs. Apparently, the
fourth NN interactions are rather large for all compounds of
the Ru2MnZ series. Moreover, the third NN interactions are
very small, even smaller than the fifth and sixth NN couplings.
Thus by limiting the mapping of the total energies onto the
first three NN interactions, one can make a severe numerical
error in the estimated values of these exchange couplings. This
nicely illustrates the advantage of the torque method [27] over
the direct total energy mapping using a limited number of
magnetic configurations in the case of metallic magnets with
long-range exchange interactions.

One can see from Table I that the calculated Néel tem-
peratures are in excellent agreement with the experiment for
the Ru2MnSb and Ru2MnSn compounds but by about 50 K
and 100 K higher than the experimental values for Ru2MnGe
and Ru2MnSi, respectively. The most possible reason for this
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FIG. 2. (Color online) Calculated Mn-Mn exchange interactions,
Jij , in fully ordered Ru2MnZ (Z = Sn, Sb, Ge, Si) compounds as a
function of the distance, d , measured in units of the lattice constant,
a. The relative position vectors of the pairs are labeled explicitly for
the first four NN.

disagreement is the partial chemical disorder within the Mn
and Z sublattices observed in the single crystals of Ru2MnSi,
whereas an almost perfect L21 order has been reported for
Ru2MnSb and Ru2MnSn [18]. We will investigate the effect
of partial chemical disorder on the Néel temperature after
discussing the frustration effects on the magnetic correlation
functions in the next section.

IV. EFFECTS OF MAGNETIC FRUSTRATION

The magnetic order in Ru2MnZ alloys can be understood
on the basis of four interpenetrating sc lattices constituting
an fcc lattice, each of them possessing a checkerboard AFM
order. The mutual orientations of the sublattice moments are
frustrated, and this frustration is not even removed by consider-
ing more distant interactions beyond the third NN shell. In this
section, we illustrate the manifestation of frustration effects
in the finite temperature spin-spin correlation functions. As
an example, we take the Ru2MnSb compound, which exibits
a very high degree of chemical order [18]. The spin-spin
correlation function for the nth NN shell is defined as

c(n) = 1

N

∑

i

1

Nn

∑

�Rn

〈�e �Ri
�e �Ri+ �Rn

〉
, (2)

where the first sum runs over N translation vectors of the fcc
lattice, �Ri ; the second sum is taken over the Nn translation
vectors, �Rn, spanning the nth shell; and 〈 〉 stands for the
statistical average. Quite obviously, these correlation functions
provide information on the magnetic short-range order in the
system.

It can be easily shown that in the ordered second kind
of AFM structure, the spin-spin correlation functions for
the second and fourth NN shells take the values −1 and
+1, respectively, since all the corresponding neighbors are
uniformly magnetized antiparallel or parallel with respect
to the atom at the arbitrarily chosen center position. In the

FIG. 3. (Color online) Calculated temperature dependence of the
spin-spin correlation functions, Eq. (2), for the selected neighbor
shells in Ru2MnSb. Note the difference in the vertical scale of the
two panels.

upper panel of Fig. 3, the temperature dependence of the
spin-spin correlation functions is displayed for the ordered
Ru2MnSb alloy. At low temperatures, the functions c(2) and
c(4) reach values close to −1 and +1, respectively, whereas
c(n), for n = 1, 3, 5, and 6 approach zero. The magnitudes
of c(2) and c(4) monotonously decrease as the temperature
increases. The inflection point of the curves indicates the
ordering temperature, TN = 180 K, in good agreement with
the experimental value of 195 K.

A specific feature of the second kind of AFM structure
on the fcc lattice is that the first, third, and fifth shell
correlation functions (and all correlations beyond the fifth
shell) vanish as the temperature approaches zero. This happens
since the respective shells contain an equal number of sites
with opposite magnetizations, and it is a purely geometrical
consequence of the given type of ordering irrespective of the
mutual orientation of the four AFM sublattices. However, since
the first NN interaction in Ru2MnSb is quite strong relative
to the second and third NN interactions, a ferromagnetic
short-range order likely develops in the paramagnetic phase.
This is illustrated in the lower panel of Fig. 3 in terms
of the temperature dependence of the spin-spin correlation
functions, c(1) and c(5). As can be seen, these correlation
functions take a finite value well above the critical temperature
in the paramagnetic phase and, when the system is cooled
down, they even gradually increase. Upon the onset of AFM
order below the critical temperature, the respective short-range
order rapidly decreases and vanishes at zero temperature. A
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detailed discussion of the magnetic short-range order in the
paramagnetic phase can be found in Ref. [33], where a similar
analysis of the spin-spin correlation functions was performed
for the AFM GdPtBi half-Heusler alloy.

The resolution of the frustration in the mutual orientation
of the four AFM sublattices might happen due to small
non-Heisenberg interactions and/or quantum effects. For a
given type of order on the fcc lattice, Yildirim et al. [20]
showed how the quantum effects distinguish between two
possible collinear spin arrangements. However, it remained
open whether these collinear states are energetically favored
within the continuously degenerate manifold of noncollinear
states. Recently, based on a phenomenological description, it
has transparently been shown [34] that including biquadratic
terms in the spin model can resolve a similar problem of
magnetic orderings in ferropnictides. We therefore consider
first NN biquadratic terms,

HBQ = −
∑

〈i,j 〉 ∈ 1NN

K(�ei �ej )2
, (3)

in an attempt to explore the stabilization of the actual magnetic
ground state. For the calculations of K , we use a method
described by Ruban et al. [35] based on the KKR formalism
and the generalized perturbation methods (GPM) applied for
the DLM state. The calculated values are presented in the last
column of the Table I. As one can see, the biquadratic exchange
interaction is nearly two orders smaller in magnitude than the
leading bilinear exchange interactions, thus, they have almost
no influence on the value of the Néel temperature. Note that the
biquadratic interactions we calculated for the Ru2MnZ com-
pounds are also by one order less in magnitude than for pure
body-centered-cubic (bcc) Fe calculated by the same method
in the original paper on the GPM method [35]. However, the
biquadratic interactions presented in Table I are still larger than
the typical magnetic anisotropy energies in cubic transition
metal systems and thus seem to be the leading mechanism to
lift the degeneracy related to different sublattice orientations.
Interestingly, the NN biquadratic interaction is positive for
Ru2MnSn and Ru2MnGe and negative for Ru2MnSb and
Ru2MnSi. This means that in Ru2MnSn and Ru2MnGe, the
collinear magnetic order would be stabilized, whereas in
Ru2MnSb and Ru2MnSi a noncollinear arrangement of the
sublattice magnetizations would be favored. According to our
numerical investigations, within this noncollinear arrangement
the magnetization of three sublattices lie in one plane with
mutual angles of 120°, and the magnetic moments in the fourth
sublattice are perpendicular to this plane.

The revealed small values of the biquadratic exchange
couplings leave a question open concerning the existence
of additional soft gapless magnon modes associated with
the rotation of the sublattice Néel vectors with respect to
each other. The existence and manifestation of such modes
in the highly degenerated second kind of AFM structure
crucially depends on quantum effects, which partially lift the
degeneracy (see discussion in Refs. [20,36]) and open a gap
in the corresponding part of the magnon spectrum. Such a
gap in the magnon spectrum was observed experimentally
in Ca3Fe2Ge3O12 garnet [37], which possesses a similar
magnetic ordering as the Ru2MnZ compounds. Thus the

Ru2MnZ compounds might provide an opportunity for further
experimental studies of this effect, taking also into account
the possibility of its control by chemical disorder in the Mn-Z
sublattice.

V. EFFECTS OF CHEMICAL DISORDER
ON THE MAGNETISM IN Ru2MnSi

In order to properly describe the magnetism in Ru2MnSi
we took into account the partial chemical disorder between
the Mn and Si sublattices, i.e., the presence of some fraction
of Mn(AS) atoms on the Si sublattice [or, other way around,
the presence of Si(AS) on the Mn sublattice]. In this section
we present the results of DLM calculations for partially
disordered Ru2(Mn1-xSix)(Si1-xMnx) alloys along the path
from the L21 to the B2 phase (0 � x � 0.5). The calculated
exchange interactions for close neighbors are shown in Fig. 4
as a function of the concentration x. Concerning the Mn-Mn
pairs on the nominal Mn sublattice, the second NN AFM
interaction is slightly reduced, whereas the first and fourth NN
FM interactions rapidly decrease with increasing disorder and
the first NN interaction even changes sign at about x = 0.3. It
is noteworthy that the second NN Mn(S)-Mn(AS) interaction
is strongly ferromagnetic, while the leading Mn(AS)-Mn(AS)

FIG. 4. (Color online) Calculated Mn-Mn exchange interactions
in the partially ordered Ru2MnSi alloy as a function of the Si
concentration in the Mn sublattice. Upper panel: interactions between
the Mn atoms on the nominal Mn sublattice. Lower panel: Mn(S)-
Mn(AS) interactions (combined symbols) and Mn(AS)-Mn(AS)
interactions (open symbols).
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FIG. 5. (Color online) Simulated Néel temperature of the par-
tially ordered Ru2MnSi alloy as a function of the Si concentration in
the Mn sublattice. The approximate concentration where a transition
in the AFM ordering occurs (see text) is marked by a vertical line.

interactions are AFM. Clearly, the interactions for the respec-
tive Mn-Mn pairs at the proper sites and at the antisites become
identical in the B2 phase (x = 0.5).

We performed Monte Carlo simulations where the magnetic
sites were randomly distributed over the the combined Mn-Si
sublattices with the prescribed concentrations. The simulated
Néel temperatures are shown in Fig. 5. One can immediately
see that the chemical disorder significantly decreases the
Néel temperature in the Ru2MnSi alloys. The calculated Néel
temperature agrees well with the experimental one for x(Si) =
0.1, which is consistent with a weak disorder found in the
experimental samples [18]. In addition, we can conclude that
the Néel temperature of Ru2MnSi can be increased above room
temperature by producing the samples with better L21 order.

Note that in the case of partially ordered alloys, the
underlying magnetic sublattice is sc. As the number of Mn
atoms on the Si sublattice increases, the strong FM Mn(S)-
Mn(AS) interactions start to play a dominant role, and finally
the simulations predict the formations of a complex random
AFM structure, being quite different from the initial second
kind of AFM ordering on the fcc lattice. This AFM phase
stabilizes on a strongly disordered sc lattice, and it does
not correspond to any type of AFM collinear ordering on a
chemically ordered sc lattice. The spin structure is periodic
along the [1 1 1] direction with a wave vector of �q = [1/2 1/2 1/2].
This periodicity is consistent with a maximum of the Fourier
transform, J (�q), of the calculated exchange interactions for
the B2 phase assuming that all sites of the underlying sc lattice
are populated by Mn atoms. Our simulations thus predict the
change of the type of AFM ordering on the path from the

L21 to the B2 phase. In Fig. 5, the approximate concentration
where this phase transition occurs is marked by a vertical line.
It is, however, not clear whether this magnetic phase can be
observed in the experiment since it requires a very high degree
of the chemical disorder in the Mn-Si sublattices.

VI. CONCLUSIONS

In terms of combined first-principles calculations and
Monte Carlo simulations, we have shown that the AFM
structure of Ru2MnZ (Z = Sn, Sb, Ge, Si) full Heusler alloys
is determined by a strong second NN AFM coupling between
well localized Mn moments. This interaction is mediated by the
p atom positioned between the interacting pair of Mn atoms.
The calculations also evidence that a strong ferromagnetic
fourth NN coupling strengthens the stability of a second
kind of AFM structure. The calculated Néel temperatures for
fully ordered L21 structures are in excellent agreement with
experiment for the alloys exhibiting a very high degree of
chemical ordering (Z = Sn and Sb). For Ru2MnSi, where
a moderate disorder in the Mn-Si sublattice is determined
experimentally, we demonstrated that the chemical disorder
significantly reduces the critical temperature, and we found
that the experimental Néel temperature can be reproduced with
about 20% of Mn atoms on the Si sublattice. This observation
might be of great importance for applications since the Néel
temperature of Ru2MnSi can be pushed well above room
temperature by lowering the chemical order in the samples.
Moreover, for alloys close to the B2 order, we predicted the
appearance of a new AFM phase corresponding to the wave
vector �q = [1/2 1/2 1/2].

We also calculated biquadratic exchange interactions in
order to resolve the degeneracy of the AFM ground states. We
found that different signs of the biquadratic interactions across
the Ru2MnZ series lead to the stabilization of different AFM
configurations in Z = Ge, Sn and Z = Sb, Si compounds. In
the former case, the biquadratic exchange stabilizes collinear
spin ordering, whereas in the latter case it leads to the formation
of a complex noncollinear spin configuration. Our predictions
for the magnetic ground states in the Ru2MnZ compounds
based on bilinear and biquadratic couplings from ab initio
calculations call for experimental verification.
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