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Abstract
By using a fully relativistic embedded cluster Green’s function technique we investigated the
magnetic anisotropy properties of four different compact Cr trimers (equilateral triangles) and
Cr mono-layers deposited on the Au(1 1 1) surface in both fcc and hcp stackings. For all
trimers the magnetic ground state was found to be a frustrated 120◦ Néel configuration.
Applying global spin rotations to the magnetic ground state, predictions of an appropriate
second order spin Hamiltonian were reproduced with high accuracy by first principles
calculations. For the Cr trimers with adjacent Au atoms in similar geometry, we obtained
similar values for the in-plane and out-of-plane anisotropy parameters, however, the
Dzyaloshinskii–Moriya (DM) interactions appeared to differ remarkably. For two kinds of
trimers we found an unconventional magnetic ground state showing 90◦ in-the-plane rotation
with respect to the high symmetry directions. Due to higher symmetry, the in-plane anisotropy
term was missing for the mono-layers and distinctly different DM interactions were obtained
for the different stackings. The chiral degeneracy of the Néel configurations was lifted by an
energy less than 2 meV for the trimers, while this value increased up to about 15 meV per 3 Cr
atoms for the hcp packed mono-layer.

Keywords: antiferromagnetism, triangular lattice, frustration, magnetic anisotropy, chirality,
Cr, Au(1 1 1)

(Some figures may appear in colour only in the online journal)

1. Introduction

It is still a challenge to accurately describe frustrated magnetic
systems both experimentally and theoretically. Developments
in spin-polarized scanning tunnelling microscopy (SP-STM)
made it possible to explore non-collinear magnetic structures
in atomic resolution [1, 2]. Frustrated non-collinear magnetic
structures were reported by Gao et al [3] for Mn islands
deposited on Ag(1 1 1) surfaces. Based on topographic
measurements, which only collect information from the Mn
layer and the topmost Ag layer, they concluded that fcc
up and hcp down type islands and fcc stacked stripes were
present. They demonstrated that the islands exhibit a 120◦

Néel magnetic structure and the orientation of the Mn moments
differs by 30◦ between fcc and hcp stacked islands, most

likely due to spin–orbit coupling which is different for the
two stackings. The latter phenomenon made it possible to
distinguish the islands with different stackings.

The simplest system exhibiting geometric frustration is
an antiferromagnetically (AF) coupled symmetric trimer. An
equilateral compact chromium trimer deposited on the (1 1 1)
surface of gold is an archetype of such a system. The first
non-collinear magnetic calculations of supported metallic 3d
triangular trimers were presented fifteen years ago by Uzdin
et al [4]. Within the vector Anderson model they showed
that a supported equilateral Cr trimer exhibited zero net
magnetic moment with the atomic moments enclosing 120◦

angles. Ab initio investigations of the compact Cr trimer
deposited on Au(1 1 1) surface were first performed by Gotsits
et al [5]. They performed spin-polarized electronic structure
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Figure 1. Top view of the fcc(1 1 1) supporter and the deposited trimers. The atomic positions in the first (second) layer are marked with the
lattice of empty circles (× signs). The positions of the ad-atoms are displayed as filled red circles. The blue double arrows mark the two
possible lateral displacements between the trimers and the atomic rows of the supporter measuring towards the base of the trimers. For the
symmetry analysis of the interaction matrices we use local coordinate systems as displayed in red. The ground state magnetic configurations
are drawn by the thick red arrows. The indicated chiralities in the sub-captions refer to the (5) definition.

calculation using the projector augmented-wave method with
the spin–orbit coupling (SOC) included for optimizing the
geometric and the magnetic configuration. Starting the
optimization from fcc sites, they found that the equilateral
geometry was preserved in equilibrium and the average of the
magnetization at all the sites occurred in the plane enclosing
120◦ with each other. The 120◦ Néel state was also found to
be the lowest energy magnetic configuration of the Cr trimer
supported on a Au(1 1 1) surface by Bergman et al [6] using
an extension of the real space linear muffin tin orbital method
(RS-LMTO) within the atomic sphere approximation (ASA),
with relativistic effects included within the scalar relativistic
approximation.

Using fully relativistic constrained self-consistent multi-
ple scattering Green’s function electronic structure calcula-
tions [7] and adiabatic spin dynamics [8] to search for the
ground state, Stocks et al [9] also concluded that the ground
state of the compact Cr trimer on Au(1 1 1) is the 120◦ Néel
state. The energy of the two magnetic configurations with op-
posing chirality turned out to be different as has been confirmed
by Antal et al [10]. They pointed out that the Dzyaloshinskii–
Moriya (DM) interaction is responsible for the lifting of the
degeneracy of the states with opposite chiralities.

The 120◦ Néel state of a Cr mono-layer (ML) on a Pd(1 1 1)
substrate was observed by Waśniowska et al [11] by SP-STM
measurements. From first-principles calculations on flat spin
spirals, they predicted the ground state to be the 120◦ Néel
state which is in agreement with the measurements. They
found the Cr ML energetically to be more favourable in fcc
than in hcp stacking by about 162 meV/Cr atom. Palotás
et al [12] demonstrated by first principles calculations that the
two possible Néel states with opposite chiralities of a Cr mono-
layer on Ag(1 1 1) are energetically inequivalent. They also
showed that the magnetic contrast of the simulated SP-STM
image was sensitive to the electronic structure of the tip and to
the bias voltage.

The aim of the present work is to systematically investigate
the magnetic anisotropy of the four Cr trimers and to compare
them to those of Cr mono-layers deposited on Au(1 1 1).
After presenting the geometrical structure of the clusters and
mono-layers we briefly describe the applied methods used to
determine the electronic and magnetic structure of the systems.

By exploiting the point group symmetry of the systems, a
suitable classical Heisenberg model is constructed which is
then applied to give analytic forms of the rotational energies.
These forms are used to analyse and discuss the results of the
ab-initio calculations for the four different trimers and for the
mono-layers with fcc and hcp stacking. The chirality of the
trimers and the mono-layers is discussed and the values of the
accessible model parameters are given.

2. Details of the calculations

The high symmetry adsorption sites of a fcc(1 1 1) surface are
the fcc hollow, the hcp hollow, the bridge and the on-top sites.
The on-top positions of the Cr on Au(1 1 1) are energetically
unfavourable as was pointed out by Gotsits et al [5]. For trimers
occupying the bridge positions, the bond length would be close
to half of the lattice constant of the underlying supporter which
is too short compared to the relaxed bond length predicted by
ab-initio calculations [5]. Considering these facts, in this paper
we investigate fcc and hcp stacked compact trimers located
only at the hollow sites of the substrate.

Equilateral trimers can be deposited in the hollow
positions of the fcc(1 1 1) surface in four different
configurations as is shown in figure 1. By labelling the
inequivalent layers of the fcc lattice along the [1 1 1] direction
with capital letters, the order of the fcc stacking is ABCABCA,
while the order for the hcp stacking is ABCABCB, where the
last (boldface) symbol corresponds to the deposited trimers or
mono-layers. Fcc and hcp stacked trimers can both be either up
or down triangles, see figure 1, which can be distinguished by
the lateral displacement between the supporter atomic rows and
the base of the triangle as indicated by the blue double arrows
in figure 1. Note that one cannot distinguish between a fcc up
and a hcp down island (fcc down and hcp up) if one only sees
the island itself and the topmost supporter layer which is the
situation in a constant current non-magnetic STM experiment.

Previous studies on Cr clusters forming an equilateral
triangle considered the fcc up trimer [5, 6, 9, 10] and, according
to our knowledge, the magnetic properties of the other compact
Cr trimers have not been investigated yet. The four clusters
are, however, different: the Cr atoms in a fcc up or a hcp
down cluster surround an interstice in the first supporter layer
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(breezy triangle) while in a fcc down or a hcp up cluster they
surround a substrate atom (crammed triangle). The trimers
with fcc and hcp stacking together with the substrate exhibit
a C3v point group symmetry where the C3 axis intersects the
centre of the triangle normal to the substrate and the reflection
planes contain the C3 axis and one of the cluster atoms. For
the mono-layers with fcc and hcp stacking the C3v point group
symmetry also holds with the C3 axes intersecting the centre
of an elementary triangle or a Cr atom. Note that the mono-
layers contain alternating up and down triangles. The two types
of triangles are inequivalent, i.e. one type of triangle cannot
be transformed into the other type by any of the symmetry
operations of the system.

The electronic structure of the Cr mono-layers and the
Cr trimers on top of the Au(1 1 1) surface was calculated in
terms of the fully relativistic screened KKR method [13, 14]
within the local spin-density approximation (LSDA) [15], of
the density functional theory as parametrized by Perdew and
Zunger [16]. In particular, for the clusters we applied the
embedded cluster Green’s function technique [17] based on
the KKR method. The effective potentials and fields were
treated within the atomic sphere approximation (ASA) and
a cutoff of �max = 2 for the angular momentum expansion
was used. For the case study presented in this work we
neglected the relaxation of the layer-layer distances and the
2D lattice constant of gold (a2D = 2.874 Å) was applied in all
calculations. Correspondingly, in the case of the trimers the
three Cr atoms occupied hollow positions above the topmost
Au layer. Note that we also neglected geometrical relaxations
of the Cr atoms that might modify the quantitative results.
In this work, however, we concentrated on the effects related
to the different lateral positions of the Cr nano-structures on
Au(1 1 1). In order to let the electron density relax around
the cluster, the first neighbour shell was also included in the
embedded cluster. The magnetic ground state configurations
for the trimers were determined self-consistently by using the
procedure described in reference [18]. The obtained directions
of the magnetic moments at the Cr atoms are depicted in
figure 1.

The direction of the exchange field on the three Cr sub-
lattices in the mono-layers were fixed according to figure 1(a)
in the case of fcc stacking, while according to figure 1(d) in the
case of hcp stacking. For very low coverage of Cr on Au(1 1 1)
surface Boeglin et al reported a spin magnetic moment of
4.5 ± 0.4 µB/atom for single ad-atoms while the average spin
magnetic moment rapidly vanished with increasing island size
indicating antiferromagnetic arrangement, however, the details
of the AF order have not been explored [19]. The most
probable configuration is a 120◦ Néel structure, however, spin
structures like row-wise or double-row-wise antiferromagnetic
alignments [20], or even a 3D spin structure [21] have been
predicted for a 2D triangular lattice. Since our interest is
focused on the magnetic anisotropy properties of a 120◦ Néel
structure we have not attempted to explore the energetics of the
different magnetic configurations. In order to confirm that the
120◦ Néel structure represents a local minimum of the energy,
we investigated the spin-excitation spectrum of the mono-layer
with both stackings. The details of the calculation are given
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Figure 2. Spin-excitation spectra with a reference of a 120◦ Néel
structure of a Cr mono-layer on Au(1 1 1) with hcp and fcc stacking.
The inset displays the special points of the hexagonal surface
Brillouin zone.

in the appendix. The spectrum along the special directions
of the first Brillouin zone is depicted in figure 2. From our
calculations we obtained no imaginary frequencies indicating
that the reference magnetic configuration, i.e. the 120◦ Néel
structure is not a meta-stable state.

3. Spin model

The magnetic properties of thin films and clusters of transition
metals can often be successfully described by a classical
Heisenberg model

H =
∑
〈i,j〉

σT
i Jijσj +

∑
i

σT
i Kiσi (1)

where the first summation runs over the interacting pairs
of spins, σi is a unit vector parallel to the magnetization
at site i, Jij are generalized exchange interaction matrices
and Ki represents the second-order on-site anisotropy matrix.
It should be emphasized that the tensorial character of the
exchange coupling, as well as the on-site anisotropy, are the
consequence of the SOC. Without loss of generality, the Ki

matrices are chosen to be symmetric and traceless. The
Jij exchange matrices can be decomposed into an isotropic
part of Jij = 1

3 Tr Jij , a traceless symmetric anisotropic part

defined as JS
ij = 1

2

(
Jij + JT

ij

)
− Jij I and an antisymmetric

part given by JA
ij = 1

2

(
Jij − JT

ij

)
. The latter term is usually

formulated with the Dzyaloshinskii–Moriya vector, Dij , as
σT

i JA
ijσj = Dij

(
σi × σj

)
.

We start our study of the magnetic anisotropy by symmetry
considerations regarding the spin-Hamiltonian (1) for the
trimers. Since the exchange tensors, J13, J32 and J21, as well as
the on-site anisotropy matrices, K1, K2 and K3, are related in
terms of appropriate similarity transformations, it is sufficient
to explore the structure of one of them. Considering the trimers
in figure 1 with respect to the local coordinate systems, J13 and
J31 are obviously related to each other as

J31 = (
Ryz

)T
J13R

yz = (
Ryz

)T
J31

TRyz , (2)
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where Ryz denotes the reflection to the yz plane. The
anisotropy matrix K2 must be invariant under the same
operation. The matrices satisfying the above requirements are
parametrized as:

J31 =

J− 1

2Szz−Sϕϕ Dz −Dy

−Dz J− 1
2Szz+Sϕϕ Syz

Dy Syz J+Szz


 (3)

and

K2 =

− 1

2Kzz−Kϕϕ 0 0
0 − 1

2Kzz+Kϕϕ Kyz

0 Kyz Kzz


 . (4)

The Néel spin-structure of the mono-layer can be
described by considering a magnetic unit cell containing three
atoms, i.e. in terms of three magnetic sub-lattices. The
spin-variables can then be sorted out according to the three
magnetic sub-lattices, σa (a = 1, 2, or 3) and the coupling
between the sub-lattices a and b, Jab, is defined as the sum of
the corresponding exchange tensors: Jab = ∑

j∈b Jij for any
i ∈ a. If all the sites are located in the same sub-lattice, Jaa will
contribute to the Ka anisotropy matrix, which will be the same
for all sub-lattices. Due to the C3v symmetry of the mono-
layer, it turns out that the terms Kϕϕ and Kyz in equation (4)
disappear.

Following the method proposed by Szunyogh et al [22]
to analyse the magnetic anisotropy of IrMn and IrMn3 the
energies of the systems are calculated during the simultaneous
rotation of the antiferromagnetic configuration around the three
fold axis and around an axis parallel to the magnetization on
one of the sites or sub-lattices. In the following this energy will
be referred to as rotational energy. A similar procedure has
been applied to study the magnetic anisotropy for IrMn3/Co
interface [23] and for a cobalt nanocontact [18].

The two types of 120◦ Néel structures can be distinguished
by investigating the chirality of the configurations. According
to Antal et al [10] the chirality vector for a trimer is defined as

κ = 2

3
√

3
(σ1 × σ2 + σ2 × σ3 + σ3 × σ1) . (5)

For in-plane spin-configurations, the κ vector is parallel to
the z axis and its z component, κz, being either +1 or −1
characterizes the spin-configurations. The chiralities of the
obtained spin-configurations for the trimers are also given in
figure 1.

In the case of an in-plane Néel spin structure of a mono-
layer, the chirality for the up and down triangles alternates
between the values of +1 or −1. In this case, we associate the
chirality of the mono-layer with the chirality of the up triangles.
The energy of the Néel structures with opposite chiralities may
be different due to the non-vanishing z component of the DM
vector. While rotation around the three fold axis does not alter
the chirality of an in plane Néel configuration, a 180◦ rotation
around an axis parallel to the magnetization on one of the sites
will reverse its value.

The rotational energies were calculated in the spirit of
the magnetic force theorem [24]. The effective potentials and

exchange fields determined in ground state configurations were
fixed and the change in energy of the system with respect to the
rotational angle is approximated by the change in band energy:

Eb
({σi}

) =
∫ εF

−∞
(ε − εF) n

(
ε, {σi}

)
dε = −

∫ εF

−∞
N

(
ε, {σi}

)
dε

(6)

where εF is the Fermi energy, n
(
ε, {σi}

)
and N

(
ε, {σi}

)
stand for the density of states (DOS) and for the integrated
DOS, respectively and {σi} indicates the dependence of these
quantities on the spin configuration of the system. For the
trimers, the band energy was calculated by using Lloyd’s
formula [25]:

Eb
({σi}

) = −
∫ εF

−∞
ln det

[
1 + τ h

(
tC

({σi}
)−1 − t−1

h

)]
dε,

(7)

where th and τ h denote the single-site scattering matrix and
the scattering path operator (SPO) for the host confined to
the sites in the cluster, C, respectively, while tC denotes the
single-site scattering matrices of the embedded atoms [17] and
we omitted a constant shift of the energy not affected by the
magnetic configuration. Note that using formula (7) charge-
density oscillations up to infinity are taken into account in the
evaluation of the band energy, while the direct integration of
the local DOS in equation (6) is always restricted to a given
environment of C only. To calculate the SPO of the layered host
systems, the energy integrations were performed by sampling
16 points on a semicircular path in the upper complex semi-
plane and 3300 k-points were used in the irreducible wedge of
the surface Brillouin zone (SBZ). We checked the accuracy
of the SBZ-integrals by performing the same calculations
using 1900 k-points in the irreducible wedge of the SBZ and
a deviation of up to 4% was found in the resulting model
parameters. In the case of the mono-layers we used a fine
adaptive k-set ranging from 7320 k-points in the SBZ at the
Fermi energy to 840 k-points at the bottom of the band and we
note that the calculations were carried out with three atoms per
unit cell, i.e. the magnetic unit cell of the Néel structure.

Using the parametrization given by equations (3) and (4)
simple expressions can be derived for the rotational energies
based on the Heisenberg model. For the rotations around the
three fold axis the energy has the form of

E+
z (ϕ) = E0z, (8)

E−
z (ϕ) = E0z − 3

√
3Dz + 3

(
Sϕϕ + Kϕϕ

)
cos(2ϕ), (9)

where E0z is an energy independent on the angle of rotation and
the ± superscripts indicate that a configuration with positive or
negative chirality is rotated rigidly around the axis. Similarly,
when the configuration is rotated around the axis parallel to
the magnetization at the 2nd Cr atom or at the 2nd sub-lattice
the energy can be given as:

E±
y (ϑ) = E0y ±

[
3
√

3

2
Dz − 3

2

(
Sϕϕ + Kϕϕ

)]
cos(ϑ)

+

[
3

8

(
Sϕϕ + Kϕϕ

)
+

9

16

(
Szz − 2Kzz

)]
cos(2ϑ). (10)

4



J. Phys.: Condens. Matter 26 (2014) 436001 L Balogh et al

The ± superscript here indicates the chirality at ϑ = 0. We
note again that the rotation around the y axis reverses the
chirality but the rotation around the z axis does not alter the
chirality.

By comparing these rotational energy functions to the
results of the first principles calculations the values of the
coefficients of the trigonometric functions can be extracted.
From equation (10) the energy difference between the positive
and the negative chirality configuration can be read : �E =
E+

y (0) − E−
y (0) = 3

√
3Dz − 3(Sϕϕ + Kϕϕ). Here we

emphasize that even in the absence of DM interactions the
chiral degeneracy is lifted by the anisotropy parameters, Sϕϕ

and Kϕϕ .
Since the relative angle between the spins does not change

during the global spin rotations, the contributions of the
isotropic exchange cancel out and the J parameter of the model
is not accessible through the E±

z (ϕ) and E±
y (ϑ) functions.

Regarding the focus of the recent work, the factual value of the
isotropic exchange is, therefore, irrelevant. Furthermore, we
note that the rotational invariant fourth order terms introduced
by Antal et al [10] do not contribute to the rotational energy.

4. Trimers

In the case of the trimers, the spin moments of the Cr atoms
are scattered between 4.18 µB and 4.22 µB while the orbital
moments are between 0.021 µB and 0.038 µB depending on the
geometry and the magnetic structure. These values are in good
agreement with the results of previous studies: 3.15 µB/atom
if geometrical relaxation is included [5]; 4.25 µB/atom [6] and
4.4 µB/atom [10] if it is neglected. For the orbital moment
also small values have been reported: �0.036 µB/atom with
geometrical relaxation included [5] and ≈0.03 µB/atom [10]
without relaxation.

The rotational energies are calculated with a resolution of
3◦ for all four trimers and the results are shown in figure 3. The
parameters in equations (9) and (10) are obtained as the Fourier
components of the rotational energies and listed in table 1.
Using these parameters the functions given by equations (9)
and (10) fit with a high accuracy to the results provided by the
ab-initio calculations.

From figure 3 it can be inferred that the energy minimum
corresponds to κz = +1 for the fcc up and hcp down trimers
and to κz = −1 for the fcc down and hcp up trimers, see also
figure 1. Note, however, that in the case of the fcc up trimer
the energy difference between the two chiral states is found to
be −18 µeV which is near the computational accuracy of our
method.

In the case of the κz = −1, the relative orientation
of the magnetization vector and the easy direction set by
the on-site anisotropy term (Ki) is the same for the three
Cr atoms and this situation is preserved during the global
in-plane rotation, therefore, the anisotropy energies of the
single atoms are simply summed up. The same argument
holds for the two-site anisotropies (JS

ij ), thus, as indicated by
equation (9), we expect a cos(2ϕ) angular dependence for the
in-plane rotational energy. This is clearly confirmed by the
first principles calculations, see the lower graph of figure 3.
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Figure 3. Rotational energy of the trimers, E+
y (ϑ) (upper graph) and

E−
z (ϕ) (lower graph). The symbols refer to the trimer geometries

shown in figure 1. The points forming the lines were calculated with
a resolution of 3◦. The κz component of the chirality vector is
indicated above the upper graph and we note that a global rotation
about the z axis (lower graph) does not alter the chirality. The
energy curves are shifted to zero at the initial configuration, ϑ = 0
or ϕ = 0.

For the in-plane rotational energy of the κz = +1 trimers
we expect the anisotropy terms to cancel since the second order
in-plane anisotropy energies are sampled at angles ϕ1 = ϕ,
ϕ2 = 120◦ +ϕ and ϕ3 = 240◦ +ϕ, for which

∑3
i=1 cos2ϕi = 3

2 ,
i.e. independent of the angle of rotation. The magnitude of the
rotational energies of the positive chirality trimers was indeed
found below 7 µeV, indicating a very small deviation between
the spin model (1) and the ab initio calculation. Similarly, Szu-
nyogh et al [22] found a cos(2ϕ) angular dependence of the
rotational energy of IrMn3 with an amplitude of 10.42 meV
in the so-called T 1 state with negative chirality, while for
the states with positive chirality the rotational energy had no
angular dependence up to an absolute error of 2 µeV.

It can be seen from table 1 that the trimers with a similar
environment, i.e. the breezy and the crammed triangles, exhibit
similar parameter values. This is, in particular, valid for the
out-of-plane and in-plane anisotropy parameters, Szz − 2Kzz

and Sϕϕ + Kϕϕ , respectively. The z component of the DM
vector turned out to be similar for the fcc down and the hcp
up (crammed) trimers, but Dz for the fcc up and the hcp down
(breezy) trimers are rather different. We notice that for a fcc
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Table 1. Fitted spin-model parameters entering equations (9)
and (10) together with the energy difference between the two chiral
states, �E = E+

y (0) − E−
y (0), for the four different trimers and the

two mono-layers (ML).

Trimer/ML Sϕϕ + Kϕϕ Dz Szz − 2Kzz �E

fcc up −0.128 −0.077 −0.629 −0.018
fcc down 0.050 0.242 −0.714 +1.110
hcp up 0.048 0.276 −0.711 +1.288
hcp down −0.118 −0.401 −0.625 −1.730
fcc ML <1. µeV −1.086 −0.469 −5.643
hcp ML <1. µeV 2.972 −0.482 +15.444

The values are given in units of meV.

up trimer Antal et al [10] reported a value of Dz = 0.97 meV
which is a remarkable difference compared to our present value
of Dz = −0.077 meV. There are, however, distinct differences
between the two calculations. On the one hand, here we
included one shell of environment around the atoms forming
the trimer, whereas in reference [10] only the Cr atoms were
taken into account in the self-consistent calculations. On the
other hand, we calculated the rotational energies in terms of
the Lloyd’s formula, equation (7), while Antal et al [10] used
equation (6) to evaluate the band-energy.

In the case of the fcc up trimer, we repeated the magnetic
force theorem calculation of the rotational energies by using the
self-consistent effective potentials and fields from the negative
chirality configuration and found that even in this case the
positive chirality state was lower in energy. Remarkably,
however, Stocks et al [9] found considerable difference for
�E = E+

y (0)−E−
y (0) if they used the (negative chirality) Néel

state (�E = +7 meV) or the out-of-plane ferromagnetic state
(�E = −4 meV) for the self-consistent reference potential
and field calculation.

Regarding the in-plane anisotropy (see the lower graph
of figure 3), for the fcc up and hcp down trimers we found a
value of Sϕϕ + Kϕϕ which is about 50% larger in magnitude as
compared to the fcc up trimer calculations of Stocks et al [9].
The reason for this difference is the same as mentioned above
in the context of Dz. In the case of fcc down and hcp up
trimers, the reversed (positive) value of Sϕϕ + Kϕϕ means that
the ground state of these trimers is rotated by 90◦ with respect to
the conventional, high symmetry directions of the Néel state,
see figures 1(b) and (c). Similarly, Gao et al [3] found that
triangular Mn islands of different stackings exhibit different
easy directions inside the 120◦ Néel structure.

5. Mono-layers

For both fcc and hcp stacked mono-layers we obtained a spin
magnetic moment of 3.70 µB and an orbital magnetic moment
of 0.02 µB for the Cr atoms. The band energies, while rotating
the magnetic configuration around the axis lying in the plane
of the mono-layer, are shown in figure 4. Using the parameters
in table 1 the result of the first principles calculations can be
fitted with high accuracy by the function given in equation (10).
Due to the fact that each site in the mono-layer forms a C3

symmetry centre, the energy of the system contains at best
fourth order terms (∼cos(4ϕ)) in the case of in-plane global
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Figure 4. Rotational energy of the mono-layers about the y axis,
E+

y (ϑ). The lines were calculated with a resolution of 10◦. The κz

component of the chirality vector is indicated above the graph. The
energy curves are shifted to zero at the initial configuration, ϑ = 0.

rotations. Correspondingly, the band energy turned out to be
practically independent on the angle of rotation around the C3

axis, Sϕϕ +Kϕϕ < 1 µeV. Note that Szunyogh et al found non-
vanishing in-plane anisotropy parameters for the (1 1 1) layers
in bulk IrMn3 [22] and at the IrMn3/Co interface [23] since
for these systems the above symmetry does not apply.

Fitting the out-of-plane rotational energy in figure 4
to equation (10), we obtain nearly the same Szz − 2Kzz

parameters for the fcc and hcp mono-layers. These parameters
are somewhat reduced in magnitude as compared to those
for the trimers. As is obvious from the nearly cos ϑ-like
dependence of the band-energy curves in figure 4, the out-of-
plane rotational energies are dominated by the normal-to-plane
components of the DM interactions and Dz is the opposite in
sign for the fcc and the hcp mono-layers. Note that for the
mono-layer case Dz is the only interaction which distinguishes
between the two Néel states with opposite chiralities.

The Dz parameters are almost an order larger in magnitude
for the mono-layers than for the trimers, see table 1. This
can be understood with the following reasoning. The main
contribution to the DM interactions is due to the nearest Cr
neighbours. Since in the case of mono-layers the number
of nearest neighbours is three times larger then those in the
trimers, a corresponding enhancement of Dz is expected. More
quantitatively, the magnetic unit cell of the mono-layers is
composed of 3 up and 3 down elementary trimers. Hence,
a first estimation of the energy difference between the two
chirality states of the mono-layer could be 3 times the sum of
the energy differences of the trimers. (It should be recalled that
the chirality index of the up and down trimers are opposing in
a mono-layer, therefore, the chiral energy of the down trimer
should be subtracted from that of the up trimer.) From the data
of table 1 we calculate �EML/

(
�Eup − �Edown

) = 5.003
for the fcc mono-layer and 5.118 for the hcp mono-layer. The
large deviation of these values from 3 indicates that the spin-
interactions in a mono-layer are rather different from those in
the trimers and/or interactions between more distant pairs have
important contributions.
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6. Conclusions

With regard to the 120◦ Néel structure, we systematically
investigated the in-plane, out-of-plane and chiral magnetic
anisotropy energies of Cr trimers in four different geometries
and also of fcc and hcp stacked Cr mono-layers deposited on
the Au(1 1 1) surface. We showed that the DM interactions
depend intriguingly on the geometry. It turned out that the
magnetic ground state of the systems was formed due to
an interplay between the DM interactions and the two-site
anisotropy. The actual values of the corresponding parameters
determine the energy barrier between the local energy minima
related to the magnetic states with different chiral indices.
Moreover, we revealed an unconventional in-plane easy axis
in fcc down and in hcp up trimers. It should be noted that, in
terms of SP-STM experiments, the different magnetic states
of otherwise indistinguishable fcc and hcp stacked Mn over-
layers on Ag(1 1 1) became identifiable [3]. The theoretical
investigation of the underlying phenomena thus might gain
considerable attention.

Acknowledgments

Financial support was provided by the Hungarian National
Research Foundation (contract No. OTKA 84078) and in part
by the European Union under FP7 Contract No. NMP3-SL-
2012-281043 FEMTOSPIN. The work of LS was supported
by the European Union, co-financed by the European Social
Fund, in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001
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Appendix. Magnetic excitation in a 3-sub-lattice
antiferromagnet

In order to derive the spin-wave Hamiltonian for the Néel
antiferromagnetic configuration we will follow the method
detailed in [26]. The time evolution of the magnetic moments
is given by the Landau–Lifshitz equation [27]. In a local
coordinate system where the direction of the magnetization in
sub-lattice p, σp and two transverse unit vectors, e1

p and e2
p,

form a right-hand system it has the following form [28]:

M
∂αpi

∂t
= γ

∂Eb

∂βpi

(A.1)

M
∂βpi

∂t
= −γ

∂Eb

∂αpi

, (A.2)

where Eb is the band energy of the system, M is the
magnetization and αpi and βpi are the angle of rotation around
the transverse directions e1

p and e2
p at site i of the sub-lattice

p. Introducing the variables

qpi =
√

M

γ
αpi, ppi =

√
M

γ
βpi, (A.3)

and expanding the energy up to second order around the Néel
state the Landau–Lifshitz equation has the form of [26]:

∂qpi

∂t
=

∑
qj

(
Bpi,qj qqj + Api,qjpqj

)
, (A.4)

∂ppi

∂t
=

∑
qj

(−Cpi,qj qqj − Bqj,pipqj

)
, (A.5)

where the Api,qj , Bpi,qj and Cpi,qj matrices are related to
the second derivatives of the band energy with respect to the
transverse change of the exchange field:

Api,qj = γ

M

∂2Eb

∂αpi∂αqj

, Bpi,qj = γ

M

∂2Eb

∂αpi∂βqj

,

Cpi,qj = γ

M

∂2Eb

∂βpi∂βqj

. (A.6)

The analytic formulas for the second derivatives can be found
in [18]. After applying a lattice Fourier transform in space and
a continuous Fourier transform in time the magnon frequencies
will be the solutions of the following eigenvalue equation:(

u(k)

v(k)

)
= iω(k)

(
B(k) A(k)

−C(k) −B+(−k)

) (
u(k)

v(k)

)
,

(A.7)

where the A(k), B(k) and C(k) 3 × 3 matrices are the Fourier
transform of the corresponding second derivatives, e.g.

Apq(k) =
∑

j

Ap0,qj eikRj (A.8)

with Rj running over the lattice sites of the q-th sub-lattice.

References

[1] Bode M, Heide M, von Bergmann K, Ferriani P, Heinze S,
Bihlmayer G, Kubetzka A, Pietzsch O, Blügel S and
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