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Abstract
A spin model including magnetic anisotropy terms and Dzyaloshinsky–Moriya interactions is
studied for the case of a ferromagnetic monolayer with C2v symmetry like Fe/W(110). Using
the quasiclassical stochastic Landau–Lifshitz–Gilbert equations, the magnon spectrum of the
system is derived using linear response theory. The Dzyaloshinsky–Moriya interaction leads to
asymmetry in the spectrum, while the anisotropy terms induce a gap. It is shown that, in the
presence of lattice defects, both the Dzyaloshinsky–Moriya interactions and the two-site
anisotropy lead to a softening of the magnon energies. Two methods are developed to
investigate the magnon spectrum at finite temperatures. The theoretical results are compared to
atomistic spin dynamics simulations and good agreement is found between them.

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanomagnetism has become one of the most intensively
studied fields in solid state physics, promising many
applications in the near future. Understanding magnetization
dynamics in magnetic nanostructures has a key role in the
development of magnetic devices. Nanosystems often exhibit
different magnetic properties than bulk materials. It is now
well established that the magnon spectrum of a thin magnetic
film has some properties which may remarkably deviate from
the bulk behaviour [1–3]. The dipolar coupling between spins
influences both the magnon dispersion and the lineshape of
the linear response, as studied theoretically [4–6] as well as
experimentally [7–10].

In the case of ultrathin films the magnetic anisotropy and
the Dzyaloshinsky–Moriya (DM) interaction [11, 12] due to
the spin–orbit coupling are more important than the magnetic
dipole–dipole interaction. The magnetic anisotropy results in
a gap in the magnon spectrum [13, 14] necessary to form
long-range order in a two-dimensional (2D) system. Recently

Zakeri et al [15, 16] have detected a so-called magnon
Rashba effect [17] using spin-polarized electron energy loss
spectroscopy for a two-atomic-layer thick Fe film grown
on W(110). In the presence of the Dzyaloshinsky–Moriya
interaction, the energies of the magnons propagating in the
[001] and [001̄] directions are different. This asymmetry has
also been predicted theoretically and calculated from first
principles for an Fe monolayer on W(110) [18]. Recently
Cortès-Ortuño and Landeros [22] studied theoretically the
influence of the Dzyaloshinsky–Moriya interactions on thin
films using a continuous model. Spin-polarized scanning
tunnelling microscopy experiments revealed [23] that the
characteristic length scale of magnetic patterns due to
Dzyaloshinsky–Moriya interactions is comparable with the
lattice constant, where the application of atomistic models
is more relevant than the methods based on the continuous
medium model. The asymmetry of magnon energies
propagating in opposite directions as a consequence of the
Dzyaloshinsky–Moriya interaction was also demonstrated
earlier in the bulk system Cs2CuCl4 [24].
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The aim of the present paper is to study the effect
of the interplay between different types of interactions and
the surface inhomogeneities as well as finite temperature
on the linear response of the system using atomistic spin
dynamics [19]. The system investigated throughout the paper
is a model of an Fe monolayer on W(110). The model contains
isotropic and anisotropic exchange between the nearest
neighbours, Dzyaloshinsky–Moriya interactions between the
next-nearest-neighbour pairs and on-site anisotropy with easy
axis parallel to the [11̄0] direction. The calculated linear
response functions may be comparable to Brillouin light
scattering [20] and ferromagnetic resonance experiments [21].

The finite temperature phenomena of classical spin sys-
tems are usually described by the stochastic
Landau–Lifshitz–Gilbert equations [25–28] treated in an
atomistic approach [29]. The temperature dependence of
the exchange stiffness has been calculated in [30] and,
for FePt, an m1.76 scaling was found, where m is the
average magnetization. In the case of lattice defects, this
will lead to a description different from the continuum
calculations proposed by Arias et al [4]. In recent papers
[14, 31] numerical studies on the temperature dependence
of magnetic excitations have been presented: however, the
magnon softening as an effect of the dynamical equations
was not discussed. There exist several methods for finding ap-
proximate analytical solutions of the Landau–Lifshitz–Gilbert
equation [32–34]. The approach proposed by Raikher and
Shliomis [35] to describe the linear response of noninteracting
spins with on-site anisotropy to external excitations is
extended in this paper by including exchange interactions
between the spins. A variational approach based on the
minimization of the free energy has been introduced to
self-consistently renormalize the finite temperature magnon
energies [36, 37]. Although this is a quantum theoretical
treatment of the problem, its classical limit [38] may be
compared to the solution of the Landau–Lifshitz–Gilbert
equation. This method is extended here to treat a spin
model with Dzyaloshinsky–Moriya interactions. Finally the
theoretical calculations will be compared to simulations
where the stochastic Landau–Lifshitz–Gilbert equations were
solved numerically.

2. Theory

2.1. The model

The magnetic properties of thin films are often described by
a classical Heisenberg model, which turned out to be a very
robust and successful scheme. In order to take relativistic
effects into account, an extended Heisenberg Hamiltonian is
used:

H = 1
2

∑
i6=j

σiJijσj +
∑

i

(
Kxσ

2
ix + Kyσ

2
iy + Kzσ

2
iz

)
−

∑
i

BiMiσi, (1)

where σi denotes a unit vector parallel to the average of the
magnetization within an atomic sphere at site i and Mi stands

Figure 1. Outline of the two-dimensional centred rectangular
lattice. The lattice constants along the x and y axes are

√
2a and a,

respectively. Small arrows drawn in the circles at the lattice sites
correspond to the ground state orientation of the spins. The lattice
vectors pointing to nearest-neighbour sites are labelled by δ1 and
δ2, while those pointing to a next-nearest-neighbour site by δ3.
Displayed are the coupling coefficients appearing in the model of an
Fe/W(110) monolayer, J = Jxx, Jyy, Jzz for nearest neighbours and D
for next-nearest neighbours. The orientations of the
Dzyaloshinsky–Moriya vectors are also shown by large arrows.

for the magnitude of the magnetic moment at the given lattice
point. In the first term of the Hamiltonian (1) Jij are the
3 × 3 exchange interaction matrices, while the second term
represents second order on-site anisotropies, where negative
coefficients specify easy magnetization axes. Note that setting
Kz to zero does not change the Hamiltonian apart from an
additive constant. The last term describes the coupling of the
spins to an external magnetic field, Bi. The exchange tensor
can be rewritten as

Jij =
1
3

Tr
(
Jij
)
· I +

[
Jij + JT

ij

2
−

1
3

Tr
(
Jij
)
· I

]
+

Jij − JT
ij

2
,

(2)

where Tr denotes the trace of a matrix, the superscript
T labels the transposed matrix and I stands for the unit
matrix. The first term corresponds to the isotropic exchange
appearing in the usual scalar Heisenberg model. The second
term, associated with two-site anisotropy, is a symmetric
traceless matrix, similar to the dipolar coupling between the
spins. The third term is an antisymmetric matrix, the three
independent matrix elements of which are equivalent to the
Dzyaloshinsky–Moriya vector, Dij.

For our present investigations, a model for an Fe
monolayer on the (110) surface of bcc W was chosen
(see figure 1). Note that the x, y, z axes of the coordinate
system are parallel to the [11̄0], [001] and [110] directions,
respectively. Both experimental [15] and theoretical [18]
studies confirmed that the Dzyaloshinsky–Moriya interaction
is present in the system. Only the strongest and most relevant
interactions are included in our model that can reproduce the
basic properties of the excitation spectrum: nearest-neighbour
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(NN) exchange interactions, next-nearest-neighbour (NNN)
Dzyaloshinsky–Moriya interactions and an easy-axis on-site
anisotropy. The exchange tensor contains only diagonal
elements Jxx, Jyy and Jzz which are slightly different from each
other due to the spin–orbit coupling, and Jxx < Jyy = Jzz < 0
is taken in order to reproduce a ferromagnetic ground state
with an easy axis along the x direction. The magnitude of the
Dzyaloshinsky–Moriya vector Dij is an order of magnitude
smaller than the exchange coupling and parallel to the [11̄0]
direction, constrained to this direction because the (11̄0) plane
containing the next-nearest neighbours is a mirror plane [11].
The third contribution to the energy is the uniaxial anisotropy
preferring the [11̄0] direction, Kx < 0 and Ky ≥ 0.

2.2. The stochastic Landau–Lifshitz–Gilbert equation

In an adiabatic approach [39], the time evolution of the
localized magnetic moments in a solid at finite temperature
can be described by the stochastic Landau–Lifshitz–Gilbert
equations:

∂Mi

∂t
= −γ ′Mi × (Beff

i + Bth
i )

−
αγ ′

Mi
Mi × [Mi × (Beff

i + Bth
i )], (3)

where Mi = Miσi stands for the localized magnetic moment
at lattice point i, with Mi denoting its magnitude, α is the
Gilbert damping parameter and γ ′ = γ /(1 + α2) with the
gyromagnetic ratio, γ = 2µB/h̄. The magnetic field driving
the motion of the spins contains two terms. The deterministic
term, Beff

i , can be obtained from the effective classical
Hamiltonian (1)

Beff
i = −

∂H

∂Mi
= −

1
Mi

∂H

∂σi
. (4)

The thermal term, Bth
i , is proportional to the three-

dimensional standard Gaussian white noise, ηi [40]

Bth
i (t) =

√
2Diηi(t), Di =

α

1+ α2

kBT

Miγ ′
. (5)

In the rest of the paper the following simplified notation
will be used: Beff

i will stand for γBeff
i , that is it will

be measured in the frequency dimension. Similarly, the
temperature in the frequency dimension, γ kBT/M, will
simply be denoted by T , where it was used that in the
case of a monolayer the magnetic moment has the same
value at every lattice point, Mi = M. The thermal field can
be written as Bth

i (t) = 6ηi(t) with 6 =
√

2αT . The terms

Jαβij /M and Kα/M appearing in the effective field will be

replaced with Jαβij and Kα , respectively. Note that we are
going to use different model values for these parameters in our
calculations. The above definitions and simplifications make
it possible to rewrite equation (3) in the form

Figure 2. Sketch of the axes, ey and ez, and the angle variables, β1i
and β2i, describing small rotations of a spin around the ground state
orientation ex. Also shown are the spin direction of σi and its
projections onto the xz and xy planes.

∂σi

∂t
= −

1

1+ α2 σi ×

(
−

1
M

∂H

∂σi
+6ηi

)

−
α

1+ α2 σi ×

[
σi ×

(
−

1
M

∂H

∂σi
+6ηi

)]
. (6)

2.3. The linear response of the system at zero temperature

The set of equation (6) is nonlinear, coupled between the
lattice points, and contains multiplicative stochastic noise, all
the above contributing to the fact that it is quite complicated
to find analytic solutions. Firstly the equations shall be solved
at zero temperature. The method presented here is a linear
approximation, which describes the magnetic excitation of the
system close to the ground state and the response to a small
dynamic external magnetic field. New variables β1i and β2i
are introduced corresponding to the rotation of the spin vector
around the orthogonal vectors ey and ez transverse to the
ground state ferromagnetic direction ex as shown in figure 2.
The σi vector is expanded in the β1i and β2i variables up to
second order as

σi =


1−

β2
1i

2
−
β2

2i

2
β2i

−β1i

 . (7)

Using the C2v symmetry of the system and expanding
around the ferromagnetic ground state up to second order in
the β1i and β2i variables, the Hamiltonian (1) will take the
form

H =
∑
〈i,j〉1

[
Jxx

(
1−

β2
1i

2
−
β2

2i

2

)
+ Jyyβ2iβ2j + Jzzβ1iβ1j

]
+

∑
〈i,j〉2

Dij(β1iβ2j − β1jβ2i)
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+ Kx

∑
i

(1− β2
1i − β

2
2i)+ Ky

∑
i

β2
2i

−

∑
i

[
Bix

(
1−

β2
1i

2
−
β2

2i

2

)
+ Biyβ2i − Bizβ1i

]
, (8)

where 〈i, j〉1,2 denote summations over the first and second
nearest-neighbour pairs, respectively. The Landau–Lifshitz–
Gilbert equation can be reformulated using the identity

−
∂H

∂σi

∣∣∣∣
⊥

= −
∂H

∂β2i
ey +

∂H

∂β1i
ez, (9)

leading to the zero temperature expression

(1+ α2)
d
dt
β2i =

[
−4Jxxβ1i +

∑
〈j〉1

Jzzβ1j +
∑
〈j〉2

Dijβ2j

− 2Kxβ1i + Bixβ1i + Biz

]

− α

[
−4Jxxβ2i +

∑
〈j〉1

Jyyβ2j −
∑
〈j〉2

Dijβ1j

− 2Kxβ1i + 2Kyβ2i + Bixβ2i − Biy

]
, (10)

(1+ α2)
d
dt
β1i = −

[
−4Jxxβ2i +

∑
〈j〉1

Jyyβ2j −
∑
〈j〉2

Dijβ1j

− 2Kxβ2i + 2Kyβ2i + Bixβ2i − Biy

]

− α

[
−4Jxxβ1i +

∑
〈j〉1

Jzzβ1j +
∑
〈j〉2

Dijβ2j

− 2Kxβ1i + Bixβ1i + Biz

]
. (11)

Note that according to figure 1, in the above equations Dij

takes the value of D or −D.
To uncouple equations (10) and (11), we shall use the

lattice Fourier transform of the variables and external field:

β̂1(2)(kj) =
1
√

n

∑
Ri

e−ikj·Riβ1i(2i), (12)

By(z)(kj) =
1
√

n

∑
i

e−ikj·RiBiy(iz), (13)

where Ri and kj denote real-space lattice vectors and
reciprocal-space wavevectors in the first Brillouin zone,
respectively, and n is the number of atoms in the 2D lattice.
In the following a small amplitude, time-dependent external
excitation Bz(ki, t) = Bz(ki) cosωt is considered, while, in
order to simplify the calculations, Bx(ki) = By(ki) = 0,
Jyy = Jzz and Ky = 0 were chosen. With these assumptions,
equations (10) and (11) will be reduced to

d
dt
β̂2(ki) = [Ĵ(ki)β̂1(ki)+ iD̂(ki)β̂2(ki)− αĴ(ki)β̂2(ki)

+ iαD̂(ki)β̂1(ki)] +
Bz(ki)

1+ α2 cosωt, (14)

Figure 3. Zero temperature magnon spectrum (22) with model
parameters Jxx = −1.02, Jyy = Jzz = −0.99, D = 0.1 and
Kx = −0.1. Note the asymmetry of the spectrum with respect to
ky →−ky as a consequence of the Dzyaloshinsky–Moriya
interaction.

d
dt
β̂1(ki) = [−Ĵ(ki)β̂2(ki)+ iD̂(ki)β̂1(ki)− αĴ(ki)β̂1(ki)

− iαD̂(ki)β̂2(ki)] −
αBz(ki)

1+ α2 cosωt, (15)

where

Ĵ(ki) =
1

1+ α2 [−4Jxx + 2Jyy(cos(ki ·δ1)

+ cos(ki ·δ2))− 2Kx], (16)

D̂(ki) =
1

1+ α2 (2D sin(ki ·δ3)), (17)

with the lattice vectors δ1, δ2 and δ3 as depicted in figure 1.
Introducing the variables β̂+(ki) = β̂2(ki) + iβ̂1(ki) and

β̂−(ki) = β̂2(ki) − iβ̂1(ki), the solution of the differential
equations (10) and (11) can easily be obtained:

β̂+(ki, t) = C+ez+(ki)t

+

∫ t

0

1− iα

1+ α2 Bz(ki)ez+(ki)(t−s) cosωs ds, (18)

β̂−(ki, t) = C−ez−(ki)t

+

∫ t

0

1+ iα

1+ α2 Bz(ki)ez−(ki)(t−s) cosωs ds, (19)

where C+ and C− are constants, and

z+(ki) = (−α − i)
[
Ĵ(ki)− D̂(ki)

]
=
−α − i

1+ α2 ω0(ki), (20)

z−(ki) = (−α + i)
[
Ĵ(ki)+ D̂(ki)

]
=
−α + i

1+ α2 ω0(−ki), (21)

with the characteristic magnon frequencies

ω0(ki) = −4Jxx + 4Jyy + (−4Jyy)

×

[
1− cos

(√
2

2
akx

)
cos

(
1
2

aky

)]
− 2D sin(aky)− 2Kx. (22)

For a typical set of parameters, the spectrum along
the y direction is depicted in figure 3. Two characteristic
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features of the spectrum should be emphasized. Firstly, the
spectrum is not symmetric relative to the 0 point in the
Brillouin zone, ω0(ki) 6= ω0(−ki), since Ĵ(ki) = Ĵ(−ki), but
D̂(ki) = −D̂(−ki). This has already been demonstrated in
previous articles for similar materials, both on theoretical [18]
and experimental [15] grounds. It is important to highlight
that the Dzyaloshinsky–Moriya interaction has no effect
on the magnon energy at the 0 point. Secondly, there is
a gap in the spectrum due to the on-site and two-site
anisotropy terms, the latter one corresponding to the
difference between the diagonal elements of the coupling
tensor. The value for the gap is ω0(ki = 0) = −4

(
Jxx −

Jyy
)
− 2Kx > 0, stabilizing the ferromagnetic ground state. If

the magnetic anisotropy is sufficiently small, in the presence
of the Dzyaloshinsky–Moriya interaction the spectrum may
contain excitations with negative energy. In this case, the
ground state is usually some sort of chiral state [41, 23]
instead of the ferromagnetic ordering described here. In the
long-wavelength limit of the present model, the condition for

a spin-spiral ground state is |D|>
√

4Jyy
(
Jxx − Jyy

)
+ 2JyyKx.

In the solutions (18) and (19), the C+ and C− coefficients
serve only to fulfil the initial condition of the differential
equations, that is the ferromagnetic ground state. The
quantities z+(ki) and z−(ki) in the exponents have negative
real part if the magnon frequencies are positive. In this case,
the eigenmodes of the system, that is the first terms of the
right-hand sides of (18) and (19), decay exponentially and
only the response to the external excitation (second terms)
survives on a long timescale. As discussed above, negative
frequencies indicate that the ferromagnetic state is not stable.

The response of the system to the perturbing field is
properly described by the variance of the angle variables
defined as

S(ki, ω) = 〈|β̂+(ki)|
2
〉 + 〈|β̂−(ki)|

2
〉

− |〈β̂+(ki)〉|
2
− |〈β̂−(ki)〉|

2

= 2
(
〈|β̂1(ki)|

2
〉 + 〈|β̂2(ki)|

2
〉

− |〈β̂1(ki)〉|
2
− |〈β̂2(ki)〉|

2
)
, (23)

where 〈〉 simply denotes time averaging for vanishing
oscillating terms (eigenmodes). In this case the expression of
S(ki, ω) is

S(ki, ω) =

∣∣Bz(ki)
∣∣2

4(1+ α2)

×

{[(
ω +

ω0(ki)

1+ α2

)2

+

(
αω0(ki)

1+ α2

)2]−1

+

[(
ω +

ω0(−ki)

1+ α2

)2

+

(
αω0(−ki)

1+ α2

)2]−1

+

[(
ω −

ω0(ki)

1+ α2

)2

+

(
αω0(ki)

1+ α2

)2]−1

+

[(
ω −

ω0(−ki)

1+ α2

)2

+

(
αω0(−ki)

1+ α2

)2]−1}
,

(24)

which is the sum of four Lorentzian curves. At zero
temperature and without damping (α = 0), the locations
of the peaks correspond to the magnon energies at ki and
−ki wavevectors. The first two terms have peaks at ω < 0
values, because due to the form of the perturbing field the
response of the system, S(ki, ω), will be an even function
of ω. The other two peaks describe the physical behaviour
of the system: if Dzyaloshinsky–Moriya interactions are
present, the energies of the ki and −ki magnons will differ;
therefore, we will get two peaks instead of a single one.
These peaks can be distinguished if the damping is not
too large, that is the half-width of the peaks is smaller
than the distance between them: 4D sin

(
ki · δ3

)
> 2αω0(ki).

However, at ki = 0, S(0, ω) will only have a single peak,
because the Dzyaloshinsky–Moriya interaction has no effect
on the spectrum at the 0 point. Similar results for the
resonance response of Fe/W(110) were obtained in [22], using
a macroscopic model of the film. Note that the damping
decreases the magnon energies. This effect is, however,
negligible, since for ferromagnetic systems generally α � 1.

2.4. Lattice defects

Ferromagnetic resonance is a standard method for studying
the linear response to spatially uniform external excitations.
In this case, the response of the system will only contain
information about excitations with wavevector ki = 0,
the energy of which is, in principle, unaffected by the
Dzyaloshinsky–Moriya interactions. However, if the lattice
contains defects, the quasimomentum is not conserved in
the system, therefore a spatially uniform external field may
create finite wavevector magnons, which are affected by the
Dzyaloshinsky–Moriya interactions.

In order to account for a vacancy or a non-magnetic atom
replacing a magnetic atom, the value of the spin vector was
simply set to zero at the corresponding lattice site. In the
model the same simplifications were used as in (14) and (15),
that is Bx(ki) = By(ki) = 0, Jyy = Jzz and Ky = 0, while a
homogeneous external magnetic field was considered, Biz =

Bz cosωt. In the case of a perfect lattice, equations (10) and
(11) have clearly the same form for every lattice point, that
is the reason why the discrete Fourier transformation could
be used to decouple these equations. However, if a vacancy is
present in the system, these equations take a different form at
lattice points neighbouring the defect, since one of the terms
will be missing. Apart from these six lattice points, the four
nearest-neighbour and the two next-nearest-neighbour sites
around the vacancy, the equations again look the same for all
the spins. Therefore in this model, only the six neighbours
of the vacancy were considered and another ‘average’ lattice
point, which does not miss a coupling due to the presence of
the vacancy. All together, one can get a system of coupled
equations listed in appendix A.1 which have to be solved
simultaneously. By solving these equations, the response to
the external excitation S(ki = 0, ω) was again calculated in
terms of equation (23).

Figures 4(a) and 6(a) show the results of numerical
calculations for S(ki = 0, ω). According to our previous

5
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Figure 4. Response functions for ki = 0 (a) based on the theory
presented in section 2.4 and (b) obtained from numerical
simulations in section 3.1 for the system with isotropic
(Jxx = Jyy = Jzz = −1, solid line) and anisotropic
(Jxx = −1.02, Jyy = Jzz = −0.99, dashed line) exchange
interactions. The other model parameters are α = 0.05,T = 0,
Kx = −0.1 and n = 1024. The result of the lattice defect model is
also shown for the anisotropic Hamiltonian, where the value of the
spin vectors is set to zero at m = 50 different lattice points (dotted
line). The overall features of the peaks in the two panels are in very
good agreement.

expectations based on the creation of finite wavevector
magnons in a disordered system, even in the case of
a homogeneous perturbation, if the Dzyaloshinsky–Moriya
interactions are present, lattice defects visibly decrease the
magnon energy with respect to the case of a perfect lattice,
as shown in figure 6(a). Overall, this is quite a small effect,
proportional to the square of the D/J ratio—this is shown
by the fact that the direction of the shift does not depend
on the sign of this value, that is the same curve is obtained
by setting D/J = ±0.1. On the other hand, the effect is
larger if different diagonal exchange coupling coefficients are
considered, as shown in figure 4(a). It was discussed above
that, even in a perfect lattice, two-site anisotropy increases the
gap in the magnon dispersion at the 0 point. As a consequence
of the lattice defects, this gap is decreased as well and this
effect is larger than the one due to the Dzyaloshinsky–Moriya
interaction. Note that, if only on-site anisotropy is taken into
account, the lineshape of S(ki = 0, ω) is not modified by
lattice defects (see appendix A.1). A possible explanation
for this is that the on-site anisotropy only shifts the magnon
spectrum by an additive constant, being independent of the

wavevector. In general, it can be concluded that lattice defects
may be a source of magnon softening.

2.5. Finite temperature effects: linear response within a
mean field approach

The stochastic Landau–Lifshitz–Gilbert equation (6) de-
scribes the time evolution of the spins at finite temperatures.
Linearizing this set of equations is problematic due to the
special properties of stochastic calculus. It is still possible to
calculate response functions at finite temperatures by solving
a system of deterministic differential equations for the first
and second moments of the spin components. The method
used in this paper to treat interacting particles in a mean field
approach was originally applied by Raikher and Shliomis [35]
for noninteracting magnetic particles possessing an easy
orientation axis. The dynamical equations (6) can be rewritten
in Cartesian indices as

(1+ α2)dσiα = −εαβγ σiβBeff
iγ dt + αBeff

iα dt − ασiασiβBeff
iβ dt

− 62σiαdt − εαβγ6σiβ dWiγ

+ α6dWiα − α6σiασiβ dWiβ , (25)

which is more common in stochastic calculus. Note that in the
above expressions a sum has to be taken over the Cartesian
indices occurring twice. dWiα stands for the differential
form of the one-dimensional Wiener process, with the usual
properties: an almost surely continuous Gaussian stochastic
process starting from Wiα(0) = 0 with first and second
moments 〈Wiα(t)〉 = 0, 〈Wiα(t)Wjβ(t′)〉 = δijδαβmin{t, t′},
respectively. Remember that equation (6) must be interpreted
in the Stratonovich sense of stochastic calculus to yield the
correct thermal equilibrium properties [40]. In addition, here
the equivalent Itô form [42] of the equation was used, hence
the extra term −62σiαdt, which does not appear when simply
calculating the vectorial products. It is straightforward to
calculate the equations for the first and second moments, in
the latter case using Itô’s formula

(1+ α2)
d
dt
〈σiα〉 = −εαβγ 〈σiβBeff

iγ 〉 + α〈B
eff
iα 〉

− α〈σiασiβBeff
iβ 〉 −6

2
〈σiα〉, (26)

(1+ α2)
d
dt
〈σiασmβ〉 = −εαγ δ〈σiγBeff

iδ σmβ〉

− εβγ δ〈σmγBeff
mδσiα〉 + α〈B

eff
iα σmβ〉

+ α〈Beff
mβσiα〉 − α〈σiασmβσiγBeff

iγ 〉

− α〈σiασmβσmγBeff
mγ 〉 − 262

〈σiασmβ〉

+ δim6
2(δαβ − 〈σiασiβ〉), (27)

where 〈〉 denotes the stochastic expectation value. In order
to calculate the linear response, the effective field is divided
into an unperturbed part and a perturbation, Beff

i = Beff,0
i +

Beff,pert
i (t), and the perturbation will be a time-dependent

external magnetic field as in the previous section. In the
absence of the perturbing field, the equilibrium distribution
of the spins corresponds to the Boltzmann distribution, as
this is the property that determines the standard deviation

6
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of the stochastic noise at finite temperatures (see [40]). The
probability density function is then given by

P0({σi}) =
1
Z0

e−
1
T H0({σi}), (28)

where H0({σi}) is the unperturbed Hamiltonian and Z0 is
the corresponding partition function. If the system is in
equilibrium, the moments of the spins will be labelled by
subscript 0. If the perturbation is present, the time-dependent
probability density function can be approximated as [35]

Ppert({σi}) =
(
1+ (σkε − 〈σkε〉0)akε(t)

+ (σkεσlζ − 〈σkεσlζ 〉0)bkε,lζ (t)
)
P0({σi}), (29)

where the time dependence only appears in the akε(t) and
bkε,lζ (t) quantities, which are supposed to be linear in the
perturbing field. Using this assumption, one can rewrite
equations (26) and (27), which turn into a system of linear
differential equations for the akε(t) and bkε,lζ (t) functions.

To simplify the calculations, suppose that the unperturbed
Hamiltonian has the form

H0({σi}) =
∑
〈i,j〉1

(Jxxσixσjx + Jyyσiyσjy + Jzzσizσjz)

+ Kx

∑
i

σ 2
ix, (30)

that is we only consider diagonal coupling coefficients
between the nearest-neighbour spins and easy-axis anisotropy.
This system is time-reversal-invariant, therefore all expecta-
tion values will vanish which contain an odd number of spin
components. Furthermore, it is easy to see that the energy of
the system does not change if we replace σix with −σix at all
lattice points, and the same holds for the y and z components.
This leads to the property that only such expectation values
are different from zero, which contain an even number of
spin components separately for the x, y and z directions. Note
that including an external magnetic field in the Hamiltonian
would break time-reversal invariance, while including the
Dzyaloshinsky–Moriya interaction would break the latter
symmetry, making the calculations more complicated. As
before, Jyy = Jzz was assumed and a perturbing field pointing
towards the z axis, Biz. In this case, only the coefficients akz(t)
and bkx,ly(t) differ from zero and they are determined by the
following coupled equations:

(1+ α2)〈σizσkz〉0
d
dt

akz

= 〈Beff,0
ix σiyσkxσly〉02bkx,ly

− 〈Beff,0
iy σixσkxσly〉02bkx,ly + α〈B

eff,0
iz σkz〉0akz

− α〈Beff,0
iα σiασizσkz〉0akz −6

2
〈σizσkz〉0akz

+ αBiz(1− 〈σ 2
iz〉0), (31)

(1+ α2)〈σiyσmxσkxσly〉0
d
dt

2bkx,ly

= 〈Beff,0
my σiyσmzσkz〉0akz

− 〈Beff,0
mz σiyσmyσkz〉0akz − 〈B

eff,0
ix σmxσizσkz〉0akz

+ 〈Beff,0
iz σmxσizσkz〉0akz + α〈B

eff,0
iy σmxσkxσly〉02bkx,ly

+ α〈Beff,0
mx σiyσkxσly〉02bkx,ly

− α〈Beff,0
iα σiασiyσmxσkxσly〉02bkx,ly

− α〈Beff,0
mα σmασiyσmxσkxσly〉02bkx,ly

− 262
〈σiyσmxσkxσly〉02bkx,ly

− δim6
2
〈σiyσixσkxσly〉02bkx,ly − Bmz〈σiyσmy〉0

+ Biz〈σixσmx〉0, (32)

where bkx,ly = bly,kx was assumed without loss of generality,
since the antisymmetric part of this matrix does not contribute
to the right-hand side of equation (29).

After solving the system of equations, the response of the
system can be calculated as

〈σiz〉(t) = 〈σizσkz〉0akz(t), (33)

which, as akz(t), is linear in Biz. In the case of a periodic, finite
wavevector external excitation, the lattice Fourier transform of
the above quantity must be considered.

Next a mean field approach is introduced, where the
unperturbed Hamiltonian H0({σi}) in (30) is replaced by

Hmf
0 ({σi}) = 4Jxxm

∑
i

σix + Kx

∑
i

σ 2
ix, (34)

where m = 〈σx〉0,mf has to be determined self-consistently.
One has to assume that there is a finite but small Bx external
magnetic field, which chooses one of the degenerate states
(m > 0 or m < 0) at low temperatures due to spontaneous
symmetry breaking. We will assume the m > 0 case, but omit
the Bx → 0+ field in further calculations. Note that, since
〈σy〉

mf
0 = 〈σz〉

mf
0 = 0 holds due to the cylindrical symmetry

of the system, the couplings Jyy = Jzz vanish from the
mean field Hamiltonian. Monte Carlo simulations indicate
that the anisotropy together with the exchange leads to
ferromagnetic ordering below a critical temperature. With
the model parameters Jxx = Jyy = Jzz = −1 and Kx = −0.1,
the critical temperature is Tc ≈ 0.7, and this is only slightly
changed by introducing Dzyaloshinsky–Moriya interactions
of strength D = 0.1. Since the mean field approximation
underestimates the correlations of the system, it may be a
suitable description only well below this critical temperature.

Selecting a single Fourier component in space and time
for the perturbing field, Bjz = eiωteiki·RjBz, within the above
mean field approximation, equations (31) and (32) become

(1+ α2)iωCzza

= (Beff
x − Beff

y (ki))Cxxyy2b− αBeff
x Cxxzza+ αBeff

y (ki)

×
(
Czz − Cyyzz − Czzzz

)
a−62Czza+ αBz(1− Czz),(35)

(1+ α2)iωCxxyy2b

= −
(
Beff

x − Beff
y (ki)

)
Cxxzza

+ αBeff
x

(
Cxxyy − 2Cxxxxyy

)
2b+ αBeff

y (ki)

×
(
Cxxyy − 2Cxxyyyy − 2Cxxyyzz

)
2b

− 362Cxxyy2b+ Bz(Cxx − Cyy), (36)

where, for brevity, the space and time Fourier components
a(ki, ω) and b(ki, ω) are denoted by a and b, respectively.
Furthermore, the notations Beff

x = −2Kx − 4Jxx,Beff
y (ki) =

7
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Beff
z (ki) = (−Jyy)(2 cos(ki ·δ1)+ 2 cos(ki ·δ2)) and Cαβ... =
〈σασβ . . .〉

mf
0 were used.

Introducing the quantities

ω0(ki) = Beff
x − Beff

y (ki), (37)

λ1(ki) = α
[
Beff

x Cxxzz − Beff
y (ki)

(
Czz − Cyyzz − Czzzz

)]
+ 62Czz, (38)

λ2(ki) = α
[
Beff

x

(
2Cxxxxyy − Cxxyy

)
− Beff

y (ki)

×
(
Cxxyy − 2Cxxyyyy − 2Cxxyyzz

)]
+ 362Cxxyy, (39)

the lattice Fourier transform of the spin expectation value (33)
can be expressed as

〈σ̃z〉(ki, t) = Czzeiωta

=

[
α(1− Czz)iω +

α

1+ α2

1− Czz

Cxxyy
λ2(ki)

+
1

1+ α2 (Cxx − Cyy)ω0(ki)

]

×

[
−ω2
+

1

(1+ α2)2

×

(
ω2

0(ki)
Cxxzz

Czz
+
λ1(ki)λ2(ki)

CxxyyCzz

)

+ i2ω
1

1+ α2

×
λ1(ki)Cxxyy + λ2(ki)Czz

2CxxyyCzz

]−1

Bzeiωt. (40)

Since the external excitation is a real-valued function,
the calculations must be repeated for Biz = e−iωteiki·RiBz,
which will simply lead to the conjugate of expression (40).
One can also replace ki with −ki, but this does not change
the form of the expression, corresponding to the fact that
the magnon spectrum is symmetric in the absence of the
Dzyaloshinsky–Moriya interaction. Taking the time average
of the square of the sum of the ω and −ω components
yields 〈

(
2Re〈σ̃z〉

)2
(ki)〉, which is proportional to the absolute

value squared of the right-hand side of (40), in fact, a
doubled Lorentzian function, just as in equation (24) for
zero temperature. Calculating this expectation value makes
it possible to determine the magnon energy (peak location)
and the linewidth at finite temperatures. Our numerical results
will be shown and compared to simulations in section 3.2.
The basic effect is that the magnon energy decreases with
increasing temperature, while the linewidth increases.

2.6. Finite temperature effects: the variational method

Another way of determining the magnon energies at finite
temperatures is a variational method based on a quantum
mechanical treatment first described by Bloch [36] for an

isotropic Heisenberg model on a cubic lattice. The method
was extended to include on-site and two-site anisotropies
as well as different lattice types [37]. In this paper the
method is extended to also include Dzyaloshinsky–Moriya
interactions. For the Hamiltonian again nearest-neighbour
exchange interactions with Jyy = Jzz and next-nearest-
neighbour Dzyaloshinsky–Moriya interactions were assumed:

H({σi}) = Jyy

∑
〈i,j〉1

σiσj +
(
Jxx − Jyy

)∑
〈i,j〉1

σixσjx + Kx

∑
i

σ 2
ix

+

∑
〈i,j〉2

Dij(σiyσjz − σizσjy). (41)

Treating σiα as spin operators, a bosonic representation can
be introduced in terms of the Dyson–Maleev transformation
[43, 44]

σix = S− a†
i ai, (42)

σ+i = σiy + iσiz =
√

2S

(
1−

a†
i ai

2S

)
ai, (43)

σ−i = σiy − iσiz =
√

2Sa†
i , (44)

where the x axis was used as the primary quantization axis;
therefore the bosonic vacuum corresponds to the ground state
of the spin system. It should be emphasized that only the
physical part of the bosonic system, 0 ≤ a†

i ai ≤ 2S, has to
be considered.

The Hamiltonian written in the bosonic operators
describes an interacting system, as it contains terms including
the products of two and four bosonic operators. The
variational approach is based on calculating the free energy,

F = 〈H〉 − TS, (45)

where the expectation value is a thermal average taken with
respect to the eigenstates of a suitable noninteracting model
Hamiltonian

H0
=

∑
k

ωk(T)a
†
kak, (46)

with ak =
1
√

N

∑
ie

ik·Riai, the Fourier transform of the bosonic
operators, and ωk(T) is a temperature-dependent quasiparticle
energy, to be determined later by minimization of the free
energy. In the classical limit, the expectation value of the
original Hamiltonian takes the form

〈H〉 = −4Jyy

∑
k

(
1− γ (1)k

)
nk(T)

− 4
(
Jxx − Jyy

)∑
k

nk(T)

− 2Kx

∑
k

nk(T)− 2D
∑

k

γ
(2)
k nk(T)

+ 2Jyy
1
N

∑
k,k′

(
1+ γ (1)k−k′ − 2γ (1)k′

)
nk(T)nk′(T)

+ 2
(
Jxx − Jyy

) 1
N

∑
k,k′

(
1+ γ (1)k−k′

)
nk(T)nk′(T)

8



J. Phys.: Condens. Matter 25 (2013) 506002 L Rózsa et al

+ 2Kx
1
N

∑
k,k′

nk(T)nk′(T)

+ 2D
1
N

∑
k,k′

γ
(2)
k′ nk(T)nk′(T), (47)

where D is the magnitude of the Dzyaloshinsky–Moriya

vector, γ (1)k = cos(
√

2
2 kxa) cos( 1

2 kya) and γ (2)k = sin(kya) are
geometrical factors characteristic for the lattice, and nk(T) =
〈a†

kak〉 is the occupation number. Also in the classical limit the
Boltzmann entropy

S =
∑

k

ln(nk(T)) (48)

is considered instead of the entropy of a noninteracting
bosonic system. The quasiparticle energies and the occupation
numbers are therefore related to each other through

ωk(T) =
T

nk(T)
. (49)

Requiring that the occupation numbers nk(T) minimize the
free energy F leads to the set of equations

ωk(T) = −4Jyy
(
1− γ (1)k

)
− 4

(
Jxx − Jyy

)
− 2Kx

− 2Dγ (2)k + 4Jyy
1
N

×

∑
k′

(
1+ γ (1)k−k′ − γ

(1)
k′ − γ

(1)
k

)
nk′(T)

+ 4
(
Jxx − Jyy

) 1
N

∑
k′

(
1+ γ (1)k−k′

)
nk′(T)

+ 4Kx
1
N

∑
k′

nk′(T)

+ 2D
1
N

∑
k′

(
γ
(2)
k′ + γ

(2)
k

)
nk′(T). (50)

Equations (49) and (50) can be used to self-consistently
determine the occupation numbers and the temperature-
dependent magnon energies. It is easy to see that, at T = 0,
(50) simplifies to the magnon spectrum in (22). The magnon
energies decrease with increasing temperature since all the
corrections from the interacting part of the Hamiltonian
have a different sign compared to the noninteracting
part. This method obviously does not take into account
the phenomenological Gilbert damping, α, which slightly
modifies the magnon energies in (24) and (40), but this
effect is small if α � 1, which is usual for a ferromagnetic
system. On the other hand, this approximation does not give
any information on the linewidth of the response function.
Although it is possible to determine this quantity using
different quantum theoretical descriptions [45], we do not
discuss such an approach here, since in the quasiclassical limit
the Gilbert damping is responsible for the linewidth, similar
to that given in (24) at T = 0 K. The numerical results from
equations (49) and (50) will also be compared to simulations
later on.

3. Atomistic spin dynamics simulations

3.1. Simulations at zero temperature

To confirm the theoretical results discussed in the above
sections, atomistic spin dynamics simulations were car-
ried out. The code we developed solves the stochastic
Landau–Lifshitz–Gilbert equation (3) on a two-dimensional
lattice, using the stochastic Heun method with the symmetry-
preserving modifications described in [46]. According to
the previous calculations, in the simulations the geometry
of a (110) surface of a bcc lattice was considered and
a ferromagnetic Heisenberg model with nearest-neighbour
coupling of unit strength: J = −1. Choosing the energy scale
also determines a timescale, but during a simulation where
only the stationary properties of the system are examined,
this timescale is only important to determine the length of
the transients that should be omitted from the calculation of
averages. An anisotropy constant Kx < 0 was also used that
reinforced a ground state ferromagnetic order with all spins
parallel to the x axis. This basic model was then extended by
other coupling coefficients, namely, next-nearest-neighbour
Dzyaloshinsky–Moriya interactions (D) or different diagonal
elements in the Jij tensor (Jxx, Jyy, Jzz) describing two-site
anisotropy. The simulations were performed on a lattice of
32 × 32 atoms with periodic boundary conditions. As the
starting configuration the ferromagnetic ground state was
chosen.

A time-dependent, inhomogeneous field 2Bz cos(ki · r)
cos(ωt) was chosen as the external excitation, where ki is a
wavevector in the first Brillouin zone. The response of the
system was calculated as S(ki, ω) = 〈m2

y(ki)〉 + 〈m2
z (ki)〉 −

〈my(ki)〉
2
−〈mz(ki)〉

2, where 〈m(ki)〉 = 〈
∑

j cos(ki ·Rj)σj〉 and
〈〉 stands for time averaging. The difference to the expression
(23) is that the simulation code uses the Descartes components
of the spins instead of the angle variables in the linearized
equations (10) and (11), but close to the ground state these
variables are basically identical (σiy ≈ β2i, σiz ≈ −β1i). In
order to obtain a resonance curve, S(ki, ω) was calculated
for different values of the ω frequency. The value of the Bz
amplitude had to be chosen carefully, since at large values it
may move the spins very far from the ferromagnetic ground
state and the system may become disordered: however, for
small values of Bz the resonance curve is hardly noticeable
over the thermal background.

Choosing the correct value for the Gilbert damping,
α, was also important. On the one hand, large damping
increases the half-width of the resonance curve, meaning
that the frequency can be changed in larger steps, and
more importantly, making the transients decay faster so
shorter simulation times will suffice. On the other hand,
the magnon softening due to the Dzyaloshinsky–Moriya
interaction and the different diagonal coupling coefficients is
almost independent of the damping. This shift in the magnon
energies can be easier detected in the case of sharper peaks
that can be obtained with smaller α.

In the case of lattice defects, the initial configuration
of the simulation was changed by creating small connected

9
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droplets of zero spins in the lattice. The method of the
simulation was the same as in the case of the perfect lattice,
namely, that a time-dependent Bz field of ω angular frequency
was used and the response of the system, S(0, ω) = 〈m2

y〉 +

〈m2
z 〉 − 〈my〉

2
− 〈mz〉

2, was calculated as a function of ω. In
this case ten droplets of zero spins were chosen in the 32× 32
size lattice, each containing five sites, giving a total number of
50 vacancies. Of course, here only the nonzero spins are used
in calculating the averages; the ones set to zero are omitted.

Figure 4 shows the results of the linear approxi-
mation as well as the simulations at ki = 0. Without
Dzyaloshinsky–Moriya interactions, the response of the
system can be modelled by a single resonance curve.
The peak is located approximately at 2|Kx| = 0.2, i.e. at
the energy of the zero wavevector magnon as indicated
by equation (22). Introducing different diagonal coupling
coefficients increases this value by about −4(Jxx − Jyy) =

0.12. The simulations were carried out also for finite
Dzyaloshinsky–Moriya interactions (D= 0.1), but this caused
no detectable difference in the obtained resonance curves,
in agreement with the linear approximation (24). By adding
lattice defects to the system, the magnon energy decreases
if two-site anisotropy is present. If the Hamiltonian only
contains on-site anisotropy, the results of the simulation show
no difference compared to the case of the perfect lattice.

The results of the simulations for finite wavevector
excitations can be seen in figure 5. Here the wavevector
points in the y direction, since (22) suggests that, in
the presence of Dzyaloshinsky–Moriya interactions, the
degeneracy between the ki and −ki magnon energies is
lifted for wavevectors along this direction. The value for

ky is
√

2ky = 2π
√

2
16a , a being the lattice constant, since in

a 32 × 32 lattice this is the smallest allowed wavevector.
Figure 5(a) demonstrates that without Dzyaloshinsky–Moriya
interactions there remains a single peak: however, it is shifted
to a higher energy for finite wavevector. The value of the
shift is consistent with the linear approximation, 4|Jyy|(1 −
cos 1

2 aky) = 4|Jyy|(1 − cos 2π
32 ) ≈ 0.077. In the presence of

the Dzyaloshinsky–Moriya interaction, figure 5(b) shows the
expected splitting of the peak, in agreement with (24). Even
the value of the splitting is in good agreement with the result
of the linear approximation, 4D sin 2π

16 ≈ 0.153.
Figure 6(b) justifies that, in a disordered system, the

Dzyaloshinsky–Moriya interaction does indeed change the
shape of the curve, while it has no effect in a perfect
lattice at ki = 0. Since this effect is expected to be smaller
than the one due to the anisotropy of the diagonal coupling
coefficients, here a smaller value of Gilbert damping constant,
α = 0.02, is used, instead of α = 0.05, making the peaks
sharper. It is observed that both the chiral interaction and
the lattice defects are necessary to change the lineshape, just
as in the theoretical calculations in section 2.4 and as seen
in figure 6(a). The peak is shifted towards lower magnon
energies in the simulation as well as in the calculation.
This effect is, however, somewhat ambiguous for the latter
case, since decreasing the Gilbert damping in the simulation
makes the lineshape more asymmetric, whereas this feature is
absent in the theoretical calculations. Nevertheless, the peak

Figure 5. Simulated response functions at T = 0. Panel (a) shows
the response without the Dzyaloshinsky–Moriya interaction at
ki = 0 (solid line) and at (kx, ky) = (0, 2π

16a ) (dashed line). Panel
(b) displays the response at (kx, ky) = (0, 2π

16a ) without (solid line)
and with the Dzyaloshinsky–Moriya interaction, D = 0.1 (dashed
line). The other parameters are Jxx = Jyy = Jzz = −1, α = 0.05 and
Kx = −0.1. The locations and splitting of the peaks are in good
agreement with the linear approximation (22).

becomes wider with vacancies in the lattice and the maximum
of the peak decreases. Importantly, this effect is practically
unchanged when the spins are set to zero at different sets of
lattice points.

In spin dynamics simulations it is useful to calculate the
spin–spin correlation function [47]

Cα
(
Ri − Rj, tn

)
= 〈σiα(tn)σjα(0)〉 − 〈σiα(tn)〉〈σjα(0)〉, (51)

where α = x, y, z and 〈〉 stands for ensemble average. Here
it is denoted explicitly that the correlation function is only
calculated at discrete time points tn, which will lead to a finite
maximal frequency. This average is achieved by starting the
simulation multiple times from the same initial configuration,
but using different seeds of the random number generator,
leading to different trajectories in the phase space.

The dynamic structure factor is defined as

Sα
(
ki, ωj

)
=

∑
l,m,n

eiki·(Rl−Rm)eiωjtnCα
(
Rl − Rm, tn

)
, (52)

which is the Fourier transform of the correlation function,
discretized in space and time, but also containing a double
summation over the lattice points, which corresponds to a
lattice averaging besides the Fourier transformation. Due to
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Figure 6. Response functions (a) based on the theory in section 2.4
and (b) from numerical simulations in section 3.1 at T = 0 and
ki = 0 in the presence of the Dzyaloshinsky–Moriya interaction,
D = 0.1, for a perfect lattice (solid line) and for an imperfect lattice
(dashed line). The model parameters are Jxx = Jyy = Jzz = −1,
α = 0.02, Kx = −0.1, n = 1024 and m = 50. Note the asymmetric
lineshape of the simulated response functions.

the finite simulation time, we only get the value of the
dynamic structure factor at discrete ωj frequencies, while
the finite size of the lattice leads to a discretization in
the momentum space. Using the space Fourier transform
σ̂α(ki, tn) =

∑
le

iki·Rlσlα(tn), as well as the space and time
Fourier transform σ̃α(ki, ωj) =

∑
neiωjtn σ̂α(ki, tn), of the spin

components, the dynamic structure factor can be rewritten as

Sα
(
ki, ωj

)
= 〈σ̃α(ki, ωj)σ̂α(ki, 0)〉

− 〈σ̃α(ki, ωj)〉〈σ̂α(ki, 0)〉. (53)

Calculating the time Fourier transform of the spin
components is basically the same as calculating the linear
response of the system to an external excitation with time
dependence eiωt, as long as the system is close to the ground
state and the linear approximation is valid. From the complex
y and z components of the dynamic structure factor, the linear
response can be expressed at discrete frequencies as

S
(
ki, ωj

)
=
∣∣Sy
(
ki, ωj

)∣∣2 + ∣∣Sz
(
ki, ωj

)∣∣2, (54)

a suitable real quantity for describing the deviation of the
system from its ferromagnetic ground state. For a given ki

wavevector, S(ki, ωj) is expected to have a similar form to
the theoretical results, namely, equation (24) at T = 0 and
equation (40) at finite temperature.

Figure 7. Contour plot of calculated dynamic structure factor
(logarithmic scale), S(ki, ωj), see equation (54), as a function of the
ky component of the wavevector as well as the angular frequency,
with the parameters Jxx = Jyy = Jzz = −1,D = 0.1, Kx = −0.1,
α = 0.05,T = 0.01 and kx = 0. The time delay for calculating the
spin values was set to 1t = 1, corresponding to a maximal
frequency of ωmax = π . The resolution in frequency is 1ω = 2π

1000 ,
because the length of the examined time interval was tmax = 1000.
The values for the wavevector are ky = j 2π

16a , where a is the lattice
constant and j is an integer between −16 and 16 because of the
lattice size 32× 32. At high wavevectors, the magnon energies are
higher than ω = π , but these values appear mirrored due to the
discretization in time. The open circles represent the magnon
spectrum calculated from the linear approximation at T = 0,
equation (22).

For the case of isotropic coupling (J = −1) and the
presence of on-site anisotropy (Kx = −0.1) as well as of
the Dzyaloshinsky–Moriya interaction (D = 0.1), figure 7
shows S(ki, ωj) as a function of the wavevector along the y
direction and the angular frequency. The magnon excitations
correspond to peaks in the ky–ω plane. In these simulations
no exciting external field was applied, since the excitations of
the spin system can appear solely due to the finite temperature
(T = 0.01). Importantly, the theoretically calculated magnon
dispersion based on equation (22) is in fairly good agreement
with the peaks of the dynamic structure factor obtained from
simulations.

Figure 8 shows the effect of lattice defects on the dynamic
structure factor. Here a homogeneous external excitation Bz
was applied with an angular frequency ω = 0.2, since it makes
it easier to realize the difference between the contour diagram
with and without lattice defects. Since the quasimomentum is
not conserved, a zero wavevector excitation will be scattered
and will appear at other wavevectors at the same frequency.
This is indicated as a horizontal stripe in the figure at ω =
0.2. As before, thermal excitations are also scattered to finite
wavevectors, but the corresponding stripes (peak positions)
are more difficult to notice since the original peaks are also
smaller due to lattice defects.

3.2. Simulations at finite temperature

We determined the linear response of the system, S(ki, ωj),
from simulations at finite temperatures as well. Lorentzian
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Figure 8. Contour plot of calculated dynamic structure factor
(logarithmic scale), S(ki, ωj), as a function of the ky component of
the wavevector as well as the angular frequency when the value of
the spins is set to zero at 50 different lattice points. The parameters
of the simulations were Jxx = Jyy = Jzz = −1,D = 0.1, Kx = −0.1,
α = 0.05,T = 0.01 and kx = 0, and an external excitation Bz was
applied, with zero wavevector and angular frequency of 0.2. Note
the horizontal stripe at ω = 0.2 corresponding to magnon scattering.

Figure 9. Calculated magnon frequencies at (kx, ky) = (0, 2π
16a ) for

temperatures 0.01 ≤ T ≤ 0.2. The results of the simulations
(squares) are compared to those from the mean field approach
(dashed line) and from the variational method (solid line), see
sections 2.5 and 2.6. The model parameters are
Jxx = Jyy = Jzz = −1,D = 0, Kx = −0.1 and α = 0.05.

functions were fitted to the resonance curves and the fitting
parameters for the location and the half-width of the peaks
were compared to the theoretical predictions from the mean
field approach (40) and the variational method (49) and (50).

Figure 9 depicts the magnon frequency as a function of
temperature at a given wavevector. Both the mean field and
the variational methods are in good qualitative agreement with
the simulations as they reproduce the decrease of the magnon
frequency with increasing temperature. Due to the missing
Gilbert damping, in the case of the variational method, a
seemingly constant shift compared to the values from the
simulations can be inferred from the figure. In the mean field
approximation, the slope of the curve is slightly different from
that of the simulations. The decreasing energy of the magnons
may be explained by the decreasing magnetization, which

Figure 10. Calculated magnon frequencies for wavevectors
ki = (0, ky) at temperatures T = 0 and 0.2. For T = 0, filled squares
represent the results of the simulations, while the solid line
corresponds to values calculated by using equation (22). For
T = 0.2, open circles represent the results of the simulations, the
dashed line is calculated by using the variational method and the
dotted line using the mean field approach. The parameters are
Jxx = Jyy = Jzz = −1, D = 0, α = 0.05 and Kx = −0.1.

Figure 11. Calculated magnon frequencies for wavevectors
ki = (0, ky) at temperatures T = 0 and 0.2. For T = 0, filled squares
represent the results of the simulations, while the solid line
corresponds to values calculated by using equation (22). For
T = 0.2, open circles represent the results of the simulations and the
dashed line is calculated by using the variational method. The
parameters are Jxx = Jyy = Jzz = −1, D = 0.1, α = 0.05 and
Kx = −0.1.

is also a linear function of the temperature in the classical
Heisenberg model at low temperatures.

Figures 10 and 11 show the results for finite wavevectors.
At T = 0, both theoretical methods give the same magnon
spectrum apart from a factor of (1 + α2)−1, and this is
in relatively good agreement with the simulations. At T =
0.2, the variational method again recovers the results of the
simulations with a high accuracy. The mean field approach
reproduces qualitatively well the decrease of the magnon
dispersion as compared to T = 0, but overestimates the
magnon frequencies at low wavenumbers and underestimates
them at high wavenumbers. According to the results depicted
in figure 11 the variational method is suitable for describing
the magnon spectrum at finite temperatures also in the
presence of Dzyaloshinsky–Moriya interactions.
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Figure 12. The half-width of the resonance curve at the wavevector
(kx, ky) = (0, 2π

16a ) between temperatures T = 0 and 0.5. The error
bars correspond to the error of the fitting parameters. The
parameters Jxx = Jyy = Jzz = −1,D = 0, Kx = −0.1 and α = 0.05
were used for the simulations. The half-width first decreases with
increasing temperature due to the decreasing magnon energy, see
equation (24) and figure 9, and then starts to increase due to
magnon–magnon scattering.

The present results on the temperature dependence of
the magnon dispersion make it possible to quantitatively
revise the spin-wave spectra of Fe/W(110) obtained from ab
initio calculations [17, 18] as compared to the experiments
performed at T = 120 K [13, 15]. Recalling the Curie
temperature TC = 223 K, this implies a ratio of T/TC ' 0.54.
As mentioned earlier, Monte Carlo simulations resulted in
TC ' 0.7|J| for the present model; thus the temperature of
the experiment corresponds to T ' 0.38 on our temperature
scale. From figure 9 one can then easily extrapolate a value of
ω ' 0.2 at this temperature, which means a relative decrease
of 0.3 for the magnon frequency. Since the energy scale
of ab initio magnon spectra corresponding to T = 0 was
typically twice as large as that in the experiment, we can
conclude that a large part—at least 60%—of the difference
can be accounted for by the direct effect of finite temperature
transversal spin fluctuations on the magnon spectrum. The
rest of the difference might be attributed to changes of the
spin-Hamiltonian parameters, mainly due to longitudinal spin
fluctuations [14].

Finally, the half-width w of the resonance curves is
investigated as a function of the temperature. In figure 12 two
distinct regions are apparent: the half-width decreases almost
linearly up to T = 0.3, then it rapidly increases. To explain this
behaviour, we recall expression (24) indicating that, at T =
0,w ' 2αω0, where ω0 is the resonance frequency. Supposing
a similar relationship at low temperatures, the decrease of
ωk(T) with increasing T , see figure 9, implies a decrease of
the half-width, with an almost strict proportionality with T .
This effect is present in the linear response theory based on the
stochastic Landau–Lifshitz–Gilbert equations [35], but only
in the noninteracting case. Within our mean field treatment
for an interacting spin model, see (40), the half-width always
increases with increasing temperature, which is reflected
in the simulations only at higher temperatures. Note that,
in a quantum theoretical description [6, 45], this widening

corresponds to the decrease of the magnon lifetime due to
increased magnon–magnon scattering.

4. Summary and conclusions

A model Hamiltonian of a ferromagnetic thin film was ex-
amined using the quasiclassical stochastic Landau–Lifshitz–
Gilbert equation (3). The model included the exchange
interaction and Dzyaloshinsky–Moriya interaction as well as
on-site and two-site anisotropy terms. It was found that, at
zero temperature and close to the ground state, the linear
response of the system to periodic external excitation can be
described by a resonance curve (24), and the locations of the
peaks on this curve can be interpreted as magnon energies.
The expression (22) for the magnon dispersion relation at
zero temperature unambiguously confirms that the anisotropy
terms induce a gap, while the Dzyaloshinsky–Moriya
interaction leads to an asymmetry in the spectrum.

The effect of lattice defects was also investigated for
the zero wavevector excitation in an approximation of the
dynamical equations. It was found that the presence of defects
leads to the softening of the magnon energy if two-site
anisotropy or Dzyaloshinsky–Moriya interaction is present in
the system, but the lineshape does not change if only on-site
anisotropy is considered. Since the chiral interaction has no
effect on the magnon energy in the 0 point in a perfect lattice,
this decrease of the magnon energy must be a consequence of
magnon scattering at lattice defects.

Two models were discussed for finite temperature effects.
The mean field result (40) was based on the solution of the
moment equations calculated from the dynamical equations.
For simplicity, we solved the equations for the case when the
Dzyaloshinsky–Moriya interaction was absent. The solution
indicated that the magnon energy decreases with increasing
temperature, while the linewidth of the resonance curve
increases. The variational method (49) and (50) was based
on a quantum theoretical treatment: here we included the
Dzyaloshinsky–Moriya interaction but obtained information
only for the magnon energies which, in correspondence with
the mean field result, also indicated a decreasing behaviour
with increasing temperature.

The theoretical calculations were then compared to
numerical spin dynamics simulations, where the linear
response of the system was calculated as a function of the
frequency of an external excitation field perpendicular to
the magnetization. The dynamic structure factor was also
calculated, providing information about the magnon spectrum
in the whole Brillouin zone. The simulations were in generally
good agreement with the theoretical results, although it
was found that the lineshape of the linear response curve
becomes asymmetric by decreasing the damping parameter.
For the finite temperature magnon energies, both theoretical
methods and the simulations provided consistent results. The
mean field approach showed increasing deviations at higher
temperatures and higher wavevectors as compared to the
other method. The results were used to provide a quantitative
correction to the ab initio spin-wave spectrum on Fe/W(110)
related to finite temperature effects that made possible a better
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comparison with available experiments. It was also found that
the resonance linewidth in the simulations first decreases with
increasing temperature, then rapidly increases, while within
the mean field approximation the decreasing part is absent.

In conclusion, the results of the theoretical methods
presented here were in good agreement with numerical
simulations. It is worth generalizing them to other lattice
types, including three-dimensional structures, to other types
of interactions, or even to antiferromagnets. Finally, it is worth
mentioning that strong effects of point-like defects on the
magnon lifetime in noncollinear antiferromagnets have very
recently been demonstrated by Brenig et al [48].

Acknowledgments

The authors thank Ulrich Nowak and Denise Hinzke for
enlightening discussions. Financial support was provided
by the Hungarian National Research Foundation (under
contracts OTKA 77771 and 84078). The work of LS
was supported by the European Union, co-financed by the
European Social Fund, in the framework of TÁMOP 4.2.4.
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Appendix

A.1. The linearized equations of motion in the case of lattice
defects

As noted in section 2.4, one has to consider the angle
variables at the four nearest-neighbour and the two next-
nearest-neighbour sites of a vacancy separately from the
others, since when one writes down equations (10) and (11)
for these lattice points, some terms will be missing. Lattice
points further away from the vacancy will be described by an
‘average’ angle variable, since all of their nearest-neighbour
and next-nearest-neighbour lattice sites contain a spin. Of
course these points are not exactly equivalent, since a lattice
point that is two lattice vectors far from the defect has a
common neighbour with the vacancy, while this is not true for
lattice points further away. This difference is only noticeable
in higher order calculations.

For this ‘average’ angle variable, one has to sum up the
linearized equations (10) and (11) for all lattice points and
divide them by the number of lattice points. Here the effect
of the vacancy is that a term must be subtracted from the
original equations, corresponding to the nearest-neighbour
and next-nearest-neighbour sites of the defect. Since in a large
enough lattice the effect of a single defect is hardly noticeable,
multiple vacancies can be considered by multiplying this
subtracted term by their number: this is a relatively good
approximation if the vacancies are still far from each other.
This means that if in a lattice with n points, m spins are set
to zero, the correct normalization for the ‘average’ variable
is β̂α = 1

n−m

∑
iβα,i for α = 1, 2. Using the notations in

figure A.1, it can be seen that out of the six lattice points next
to the vacancies, only four of them lead to different equations.
Therefore, the following ten linear differential equations are

Figure A.1. Similar to figure 1 with the notation used in
appendix A.1 to describe the spins at the nearest neighbours and
next-nearest neighbours of a lattice vacancy, J ↑, J ↓,D ↑ and D ↓.

to be solved simultaneously:

(1+ α2)
dβ2J↑

dt
= −3Jxxβ1J↑ + 2Jzzβ̂1

+ Jzzβ1D↑ + Dβ̂2 − Dβ2J↓

− 2Kxβ1J↑ − α(−3Jxxβ2J↑

+ 2Jyyβ̂2 + Jyyβ2D↑ − Dβ̂1

+ Dβ1J↓ − 2Kxβ2J↑)+ Bz cosωt, (A.1)

(1+ α2)
dβ1J↑

dt
= −(−3Jxxβ2J↑ + 2Jyyβ̂2

+ Jyyβ2D↑ − Dβ̂1 + Dβ1J↓

− 2Kxβ2J↑)− α(−3Jxxβ1J↑

+ 2Jzzβ̂1 + Jzzβ1D↑ + Dβ̂2

− Dβ2J↓ − 2Kxβ1J↑)

− αBz cosωt, (A.2)

(1+ α2)
dβ2J↓

dt
= −3Jxxβ1J↓ + 2Jzzβ̂1

+ Jzzβ1D↓ − Dβ̂2 + Dβ2J↑

− 2Kxβ1J↓ − α(−3Jxxβ2J↓ + 2Jyyβ̂2

+ Jyyβ2D↓ + Dβ̂1

− Dβ1J↑ − 2Kxβ2J↓)+ Bz cosωt, (A.3)
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(1+ α2)
dβ1J↓

dt
= −(−3Jxxβ2J↓ + 2Jyyβ̂2

+ Jyyβ2D↓ + Dβ̂1 − Dβ1J↑

− 2Kxβ2J↓)− α(−3Jxxβ1J↓ + 2Jzzβ̂1

+ Jzzβ1D↓ − Dβ̂2

+ Dβ2J↑ − 2Kxβ1J↓)

− αBz cosωt, (A.4)

(1+ α2)
dβ2D↑

dt
= −4Jxxβ1D↑ + 2Jzzβ̂1

+ 2Jzzβ1J↑ + Dβ̂2

− 2Kxβ1D↑ − α(−4Jxxβ2D↑

+ 2Jyyβ̂2 + 2Jyyβ2J↑

− Dβ̂1 − 2Kxβ2D↑)+ Bz cosωt, (A.5)

(1+ α2)
dβ1D↑

dt
= −(−4Jxxβ2D↑

+ 2Jyyβ̂2 + 2Jyyβ2J↑ − Dβ̂1

− 2Kxβ2D↑)− α(−4Jxxβ1D↑

+ 2Jzzβ̂1 + 2Jzzβ1J↑

+ Dβ̂2 − 2Kxβ1D↑)− αBz cosωt, (A.6)

(1+ α2)
dβ2D↓

dt
= −4Jxxβ1D↓ + 2Jzzβ̂1 + 2Jzzβ1J↓

− Dβ̂2 − 2Kxβ1D↓ − α(−4Jxxβ2D↓

+ 2Jyyβ̂2 + 2Jyyβ2J↓

+ Dβ̂1 − 2Kxβ2D↓)+ Bz cosωt, (A.7)

(1+ α2)
dβ1D↓

dt
= −(−4Jxxβ2D↓

+ 2Jyyβ̂2 + 2Jyyβ2J↓ + Dβ̂1

− 2Kxβ2D↓)− α(−4Jxxβ1D↓

+ 2Jzzβ̂1 + 2Jzzβ1J↓

− Dβ̂2 − 2Kxβ1D↓)− αBz cosωt, (A.8)

(1+ α2)
dβ̂2

dt
= [−4(Jxx − Jzz)− 2Kx + Bx]β̂1

− α[−4(Jxx − Jyy)− 2Kx]β̂2

−
m

n− m
{−2(Jxx − Jzz)

× (β1J↑ + β1J↓)+ D(β2D↑ − β2D↓)

− α[−2(Jxx − Jyy)(β2J↑ + β2J↓)

− D(β1D↑ − β1D↓)]} + Bz cosωt, (A.9)

(1+ α2)
dβ̂1

dt
= −[−4(Jxx − Jyy)− 2Kx)β̂2

− α(−4(Jxx − Jzz)− 2Kx]β̂1

−
m

n− m
{−[−2(Jxx − Jyy)

× (β2J↑ + β2J↓)− D(β1D↑ − β1D↓)]

− α[−2(Jxx − Jzz)(β1J↑ + β1J↓)

+ D(β2D↑ − β2D↓)]}

− αBz cosωt. (A.10)

Similar to expression (23), the linear response of the
system at ki = 0 is now defined as

S(ω) = 〈β̂2
2 〉 + 〈β̂

2
1 〉 − 〈β̂2〉

2
− 〈β̂1〉

2. (A.11)

Equations (A.1)–(A.10) are equivalent to a system of
linear algebraic equations through Fourier transformation in
time, which can be easily solved numerically. It is important
to note that, in the absence of the Dzyaloshinsky–Moriya
interaction (D = 0) and two-site anisotropy (Jxx = Jyy = Jzz),
equations (A.9) and (A.10) are uncoupled from the first eight
ones, and with the applied normalization they do not depend
on the number of atoms in the lattice. Therefore it can be
concluded that S(ω) is not affected by lattice defects if only
isotropic exchange interactions and on-site anisotropy are
present in the system.
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