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We perform fully relativistic first-principles calculations of the exchange interactions and the magnetocrys-
talline anisotropy energy (MAE) in an Fe/FePt/Fe sandwich system in order to elucidate how the presence of
Fe/FePt (soft/hard magnetic) interfaces impacts on the magnetic properties of Fe/FePt/Fe multilayers. Throughout
our study we make comparisons between a geometrically unrelaxed system and a geometrically relaxed system.
We observe that the Fe layer at the Fe/FePt interface plays a crucial role inasmuch as its (isotropic) exchange
coupling to the soft (Fe) phase of the system is substantially reduced. Moreover, this interfacial Fe layer has a
substantial impact on the MAE of the system. We show that the MAE of the FePt slab, including the contribution
from the Fe/FePt interface, is dominated by anisotropic intersite exchange interactions. Our calculations indicate
that the change in the MAE of the FePt slab with respect to the corresponding bulk value is negative, i.e., the
presence of Fe/FePt interfaces appears to reduce the perpendicular MAE of the Fe/FePt/Fe system. However,
for the relaxed system, this reduction is marginal. It is also shown that the relaxed system exhibits a reduced
interfacial exchange. Using a simple linear chain model, we demonstrate that the reduced exchange leads to a
discontinuity in the magnetization structure at the interface.
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I. INTRODUCTION

Exchange-coupled soft/hard composite magnetic systems
are of significant interest for their potential application in
many different fields of technology such as magnetic recording
media,1 permanent magnets,2 and magnetic microactuators.3

A wealth of different soft/hard materials has been investigated
in the literature (see, e.g., Refs. 4–10). Experimentally, the
Fe/FePt system is a highly suitable system for studying the
fundamental properties of nanocomposite magnetic systems
as the properties are relatively easy to control.11 Moreover,
due to the high magnetization of the saturated α-Fe phase
and the large magnetocrystalline anisotropy energy (MAE) of
the FePt L10 phase, Fe/FePt bilayers are considered an ideal
structure for exchange spring behavior12 and for application
in exchange-coupled composite (ECC) magnetic recording
media. For ECC applications, the (soft) Fe phase, through its
exchange interaction with the (hard) FePt phase, would act as a
lever, reducing the write field. Meanwhile, the thermal stability
of the written information would be ensured by the large MAE
of L10 FePt. Thus, in order to realize such devices, the MAE
of FePt needs to be maintained (if possible, enhanced). The
effect of the Fe/FePt interface on the FePt MAE is therefore a
very important aspect.

The aim of the present work is to investigate in detail the
effect of the Fe/FePt interface on the exchange coupling and
the MAE of an Fe/FePt/Fe system by means of first-principles
calculations. We compare the results of a geometrically
relaxed Fe/FePt/Fe system to the corresponding results for an
unrelaxed system. The latter is similar to the system studied
by Sabiryanov and Jaswal.13 We use the CASTEP code14–16 to
obtain the relaxed ionic coordinates of an Fe/FePt/Fe system.
We then employ the fully relativistic screened Korringa-Kohn-
Rostoker (SKKR) method17 (see Sec. II) to calculate tensorial
exchange interactions and the layer-resolved contributions to

the MAE of the relaxed and unrelaxed Fe/FePt/Fe structures.
Moreover, we evaluate the change in the FePt MAE induced
by the presence of the Fe/FePt interfaces.

Not only is such a study important from the point of view
of understanding the properties of this nanocomposite, but the
site-resolved information is also central to the development and
parametrization of localized-spin models. This strategy has
recently been realized to study an IrMn3/Co(111) interface.18

The exchange interactions and the on-site magnetic anisotropy
constants have been calculated in the antiferromagnetic and
ferromagnetic parts of the system, as well as at the interface
between them, and then used in atomistic spin-dynamics
simulations to investigate the exchange bias effect.19 In
particular, it was found that the exchange bias effect in this
system is mainly governed by large Dzyaloshinskii-Moriya
(DM) interactions20,21 between the Mn and Co atoms at the
interface.

We thus consider the implications of our calculated ab
initio parameters in a multiscale modeling approach. Here
one maps ab initio information onto a Heisenberg-type model
of localized spins to allow calculations of thermodynamic
quantities and magnetization dynamics. By further simplifying
this mapping onto an effective spin Hamiltonian describing a
linear chain, we study domain structures at the FePt/Fe inter-
face using the ab initio parameters. Importantly, the ab initio
calculations show that the relaxed system exhibits a reduced
interfacial exchange coupling. Mapping this information onto
the linear chain model shows that this reduction gives rise to
a discontinuitylike feature in the domain wall structure at the
FePt/Fe interface. The implications for the exchange spring
effect are considered. The functionality of magnetic materials
increasingly relies on structural design at the nanoscale, the
exchange spring phenomenon, its use in permanent magnets
and recording media being an excellent example. Mesoscopic
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FIG. 1. Sketch of the Fe/FePt/Fe multilayer system as stacked in
between two semi-infinite bcc Fe bulk systems along the (001) axis.

calculations often assume bulk exchange coupling across
interfaces, which clearly may not be the case, and will certainly
depend on the material properties in a way which can only be
elucidated by electronic structure calculations.

II. DETAILS OF THE CALCULATIONS

First we describe the geometric structure of the Fe/FePt/Fe
sandwich system that we have chosen for our investigation.
The SKKR method requires the system to be considered in
terms of an intermediate layer region (region I) positioned
between two semi-infinite bulk regions. For region I, we
considered a sequence of atomic layers (ALs) as sketched
in Fig. 1 and detailed in Table I, namely, 7 Fe AL + 17
Pt/Fe/· · · /Fe/Pt AL + 7 Fe AL, enclosed by two semi-infinite
bulk Fe systems.

Using the layer sequence in Table I, we investigated the
following two systems.

System A is a geometrically unrelaxed system with an
overall two-dimensional lattice parameter a2D = aFePt/

√
2 ≈

2.723 Å, where aFePt = 3.852 Å is the experimental in-plane
lattice parameter of the L10 lattice of FePt. Note that 2.723 Å
is within 5% of the experimental lattice parameter of bcc Fe,
a

(expt)
Fe = 2.87 Å. For the FePt part of the system we used the

experimentally measured ratio of cFePt/aFePt = 0.964, while
for the bcc Fe part, cFe = a2D. At the interface between the
Fe and FePt parts of the system, i.e., between ALs −9 and
−10, as well as between ALs 9 and 10 (see Table I), we set
the interlayer separation to

cinterface = cFe + cFePt

4
.

System B is a system in which the interlayer separations are
relaxed using CASTEP.14–16 CASTEP is a widely used electronic
structure code based on plane-wave density-functional theory
(DFT). The core electrons are treated using scalar-relativistic
nonlinear core-corrected Vanderbilt ultrasoft pseudopoten-
tials, with the valence electrons treated using a Kohn-Sham-
Mermin functional and optimized using a preconditioned
Davidson algorithm.22 Here we choose a2D = a

(LDA)
Fe , where

a
(LDA)
Fe is the bulk lattice parameter for Fe obtained using

the localdensity approximation (LDA) in CASTEP, 2.659 Å.
All the interatomic distances of the resulting relaxed structure
were then scaled up by a uniform factor of 1.024 in order to
match the experimental FePt lattice parameter a2D = 2.723 Å
and thus enable a direct comparison with the results for system

TABLE II. Interlayer separations �zp = zp+1 − zp for p � 0
and �zp = zp − zp−1 for p < 0 and the atomic sphere radii Sp =
a2D

3
√

3 �zp/4π , in system A. Note that the interlayer distances
for bcc Fe and L10 FePt are �zFe = a2D

2 and �zFePt = c

a

a2D√
2

with
c

a
= 0.964, respectively, while at the interfaces we choose �z±9 =

(�zFe + �zFePt)/2.

AL index p �zp (a2D) Sp (a2D)

±15 0.5 0.492
±10 0.5 0.492
±9 0.591 0.521
±8 0.681 0.546
±1 0.681 0.546
0 0.681 0.546

A. It should be noted here that the CASTEP geometry relaxation
yields an Fe region that is slightly tetragonal (rather than
cubic), with the ratio cFe/aFe ≈ 1.06. As this tetragonalization
must be due to the presence of the FePt slab, the relaxed
geometry of system B corresponds more closely to a repeated
multilayer structure.

We should mention that we also investigated an unrelaxed
sandwich system with a layout of (1 × 2) Fe/Pt AL + 9 Fe
AL + 17 Pt/Fe/· · · /Fe/Pt AL + 9 Fe AL + (1 × 2) Pt/Fe
ALs enclosed by FePt bulk (system C). Since the considered
Fe and FePt layers are quite thick, as expected, the magnetic
properties (spin moments, exchange interactions, and MAE)
of system C turned out very similar to those of system A. In this
study, we used system C only for calibrating the change in the
MAE of the FePt slab with respect to the MAE of bulk FePt.

For system B, after specifying the vertical coordinate zp

of each atomic layer p from the CASTEP geometry relaxation,
we needed to determine the corresponding atomic volumes
Vp. Here the only strict requirement is that the sum of atomic
volumes within region I should be equal to the total lattice
volume of region I, while the choice of the individual atomic
volumes is somewhat arbitrary. As a simple choice, we related
the atomic volume of each atom in layer p, Vp, to the layer
positions {zp} as Vp = a2

2D(zp+1 − zp−1)/2. For Fe or FePt
bulk, this construction trivially retains the corresponding bulk
atomic volumes. The values of �zp and the atomic radii Sp

(defined through Vp = 4π
3 S3

p) are shown in Table II for system
A. The corresponding values for system B are displayed in
Fig. 2.

For each of the systems A and B, we performed self-
consistent calculations by means of the SKKR method.17

Within the SKKR method, the one-electron Green’s function
of a layered system is evaluated, from which the charge
and magnetization densities are calculated. We used the
local spin-density approximation (LSDA) of the DFT as
parametrized by Vosko et al.,23 with effective potentials and
fields treated within the atomic sphere approximation (ASA).

TABLE I. Numbering of the atomic layers in the 7 Fe AL + 17 Pt/Fe/· · · /Fe/Pt AL + 7 Fe AL sandwich system. Underlines refer to the
Fe layers at the interface between the Fe parts (soft magnet) and the FePt slab (hard magnet).

−15 · · · −11 −10 −9 −8 −7 −6 · · · −1 0 1 · · · 6 7 8 9 10 11 · · · 15
Fe · · · Fe Fe Fe Pt Fe Pt · · · Fe Pt Fe · · · Pt Fe Pt Fe Fe Fe · · · Fe
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FIG. 2. Interlayer spacings �zp (top) and radii of atomic spheres
Sp (bottom) as used for system B. Solid lines serve as guides for the
eye.

The self-consistent calculations were performed within the
scalar-relativistic approximation and an angular momentum
cutoff �max = 3. A semicircular contour with 16 energy points
was used for the necessary energy integrations. The imaginary
part of the energy point closest to the Fermi level was below
10−4 Ry, thus Fermi level smearing effects can be neglected.

The MAE was then evaluated in terms of the fully
relativistic SKKR method. Here we solved the Kohn-Sham-
Dirac equation, i.e., we used the four-component Dirac
formalism implying that the spin-orbit coupling is treated
nonperturbatively. We used the magnetic force theorem,24

in which the total energy of the system can be replaced by
the single-particle (band) energy. Moreover, we employed the
torque method,25 making use of the fact that, for a uniaxial
system, the MAE K can be calculated up to second order in
spin-orbit coupling as

K = E(θ = 90◦) − E(θ = 0◦) = dE

dθ

∣∣∣∣
θ=45◦

, (1)

where θ denotes the angle of the magnetization direction
with respect to the [001] direction of the FePt lattice. Within
the Korringa-Kohn-Rostoker (KKR) formalism, K can be

decomposed into site-resolved contributions Ki ,

K =
∑

i

Ki. (2)

For more details on the torque method within the KKR method
see Ref. 26. We should emphasize that, unlike other approaches
in the literature,27,28 the site resolution of the MAE is based
on a spatial decomposition of the density of states (DOS) (or
Green’s function). Due to the two-dimensional translational
symmetry of the systems, Ki takes the same value for each
site i within a given layer p, which we shall refer to as the
layer-resolved MAE contribution Kp.

Having evaluated the layer-resolved contributions to the
MAE for each Fe/FePt/Fe system, we considered next a
multiscale approach of using our calculated parameters within
a localized-spin model. Supposing that the electronic energy of
a uniaxial magnetic system can be mapped into a generalized
Heisenberg model

H = −1

2

∑

i,j (�=i)

�Si J ij
�Sj −

∑

i

di(�Si · �e)2, (3)

where �Si represents a classical spin, i.e., a unit vector along the
direction of the magnetic moment at site i. The first term stands
for the exchange contribution to the energy, with J ij denoting
the tensorial exchange interaction, and the second term denotes
the on-site anisotropy, with the anisotropy constant di and the
easy magnetic direction �e. The exchange interaction matrix
J ij can further be decomposed into three terms29

J ij = Jij I + JS
ij + JA

ij , (4)

with Jij = 1
3 Tr J ij the isotropic exchange interaction, JS

ij =
1
2 ( J ij + JT

ij ) − J iso
ij I the traceless symmetric part of the

exchange tensor, and JA
ij = 1

2 ( J ij − JT
ij ) the antisymmetric

part of the exchange tensor.
Within the spin model [Eq. (3)] the MAE of a uniaxial

ferromagnetic system can be cast into on-site and intersite
parts

K = Kon-site + Kintersite, (5)

where

Kon-site =
∑

i

di (6)

and

Kintersite = −1

2

∑

i,j (�=i)

(
J xx

ij − J zz
ij

)
. (7)

Defining thus the site-resolved intersite anisotropy as

Ki,intersite = −1

2

∑

j (�=i)

(
J xx

ij − J zz
ij

)
, (8)

the site-resolved MAE in Eq. (2) can be compared within the
spin model to

Ki = di + Ki,intersite. (9)

The exchange interaction matrices are calculated using the
relativistic torque method as described in Ref. 29. The sum
in Eq. (8) over j can be cast into sums over atomic layers
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and over sites within atomic layers. In particular, the latter
suffers from convergence problems since J ij decays, at best,
as 1/R3

ij , where Rij denotes the distance between atoms i and
j . For this reason the corresponding sum was transformed into
an integral in k space, the convergence of which could easily
be controlled; for details see Ref. 29. We again note that,
due to two-dimensional (2D) translational invariance, di and
Ki,intersite are the same for all sites i in a given layer, therefore,
in the following we shall use them as layer-resolved quantities.

III. RESULTS

A. Local spin and orbital moments

The calculated atomic spin moments are plotted in Fig. 3,
displaying a fairly similar picture for the two systems A and B.
In the interior of the FePt slab the moments m

(FePt)
Fe = 2.86μB

and m
(FePt)
Pt = 0.32μB are close to their bulk values in FePt.

Moreover, the Fe moments approach their bulk Fe value at
the edges of region I. Nevertheless, we observe that the bulk
Fe spin moment is slightly enhanced in system B, m

(Fe,B)
Fe =

2.07μB, as compared to system A, m
(Fe,A)
Fe = 1.97μB. This

difference is most likely due to the slight tetragonality of
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FIG. 3. (Color online) Calculated layer-resolved spin moments
(green ∗, Fe; blue �, Pt) for systems A and B. Solid lines serve as
guides for the eye.
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FIG. 4. (Color online) Calculated layer-resolved orbital moments
(green ∗, Fe; blue �, Pt) for systems A and B. Solid lines serve as
guides for the eye.

the Fe unit cell along the z direction (and the associated
increase in volume) as discussed above for system B. An
apparent difference between the spin moments of systems A
and B occurs at the interface: Although the Fe moments at the
interface m±9 are slightly increased in system A, for system
B the enhancement of these moments is more pronounced.
Moreover, unlike in system A, in system B the spin moments
in layer 10, m±10, are also enhanced. This means that, as
expected, the transition of the moments from bulk Fe to bulk
FePt is smoother in the relaxed case.

Using the relativistic SKKR method, the local orbital
moments can also be calculated. These values are displayed in
Fig. 4 across the Fe/FePt/Fe system. Though much smaller in
magnitude, the orbital moments are more strongly affected by
the presence of the Fe/FePt interface than the spin moments.
For example, for both systems we observe a 10% increase in
the Fe orbital moment from 0.065μB at the center of the FePt
phase to 0.072μB at the interface. The orbital moments in the
Fe bulk region of system B exhibit large changes, reaching
nearly 0.060μB in the interfacial Fe layer p = ±9, opposed to
the decreased value of 0.033μB in system A. With regard to
the orbital moments related to the Pt sites, in system B a small
oscillation around m

(orb)
Pt ≈ 0.048μB is observed. In system A
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the oscillation of the Pt orbital moment inside the FePt slab
is negligible, however, at the interface Pt layer p = ±8 the
orbital moment drops from 0.048μB to 0.042μB .

B. Exchange interactions

Figures 5 and 6 show typical Fe-Fe isotropic exchange
interactions Jij in systems A and B, respectively, as a function
of the distance Rij . Here we fixed sites i in three different
atomic layers: in layers ±13, which are representative for Fe
bulk; in layers ±1, characteristic of bulk FePt; and in the
interfacial Fe layers ±9. Furthermore, we displayed separately
the interactions between Fe atoms within the same layer
(intralayer) and in different layers (interlayer).

The Fe bulk region in system A is governed by large ferro-
magnetic nearest-neighbor (NN) interactions [see Fig. 5(a)].
Due to the bcc(001) geometry, these interactions correspond
to interlayer pairs, while the next-nearest-neighbor (NNN)
interactions to both interlayer and intralayer pairs. The
degeneracy of the eight NN interactions is obviously lifted
according to site j being in layers ±14 and ±12 since the
system has no mirror symmetry with respect to layers ±13.
The same applies to the six NNN interactions, for which the
lifting is threefold, namely, for sites j in layers ±14, ±13, and
±12. Similar lifting of degeneracies can also be seen for more
distant pairs. The tetragonal expansion of the bcc structure for
system B [see Fig. 6(a)] clearly shows up in a drastic increase of
the interlayer NNN interactions, while the NN interactions are
slightly reduced. Apparently, the intralayer Fe-Fe interactions
are only slightly influenced by the tetragonal distortion.

The NN and NNN intralayer Fe-Fe interactions in the FePt
slab are strongly ferromagnetic [see Fig. 5(b)]. While the NN
and NNN interlayer interactions are also ferromagnetic, the
Fe-Fe interlayer coupling in this region is governed by the large
antiferromagnetic third NN interaction. Thus, considering
only Fe-Fe interactions, the FePt slab would have a layered
antiferromagnetic ordering, i.e., ferromagnetic within the Fe
layers and antiferromagnetic between layers. However, the
relatively large ferromagnetic NN Fe-Pt interactions (5 meV)
stabilize a ferromagnetic ordering for the FePt slab. We note
that the magnetic ordering of FePt sensitively depends on the
c/a ratio and on the long-range chemical disorder of the Fe
and Pt components.30 Since the geometry of the FePt slab is
nearly the same in systems A and B, the corresponding Fe-Fe
interactions are also very similar for the two systems [compare
Figs. 5(b) and 6(b)].

The exchange interactions of an Fe atom in the interfacial
layers ±9 to other Fe atoms appear to be a combination of those
in the Fe bulk and in the FePt slab, but distinct differences can
also be seen. As can be inferred from Fig. 5(c), in system A the
strong ferromagnetic NN interlayer interactions to the Fe side
(layers ±10) are reduced by about 10 meV, however, the NNN
interlayer interaction is dramatically increased. The interlayer
couplings to the Fe layers in the FePt slab maintain their
dominating antiferromagnetic character. The intralayer Fe-Fe
interactions take mostly positive, but very small values. The
effects of the geometry relaxation can be seen in the remarkable
enhancement of the NNN interlayer Fe-Fe interaction (from
20 meV to 34 meV) and also in an increase of the intralayer
interactions up to a distance of 2a2D.
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FIG. 5. (Color online) Calculated Fe-Fe isotropic exchange in-
teractions Jij for system A as functions of atomic distance with
site i (a) in the bulklike Fe layers p = ±13, (b) in Fe layers in
the FePt slab p = ±1, and (c) in the interfacial Fe layers p = ±9.
We distinguish in-plane Fe-Fe interactions (black •) and out-of-plane
Fe-Fe interactions (red +). Solid lines serve as guides for the eye.

In order to characterize the strength of the isotropic
exchange interactions in a magnetic system, effective exchange
parameters are often used, defined for a given site i as

Ji =
∑

j (�=i)

Jij . (10)
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FIG. 6. (Color online) Same as Fig. 5 but for system B.

For a 2D translationally invariant system, Ji must of course
be identical for each site in a given layer. Therefore, in the
following, we shall label them by layer indices p. For systems
A and B, we calculated Jp by considering all neighbors within
a distance of seven a2D, which ensured a reliable convergence
of the sum in Eq. (10). The calculated layer-resolved effective
exchange parameters are plotted in Fig. 7 for systems A
and B.

Within the FePt slab, the effective exchange interactions of
systems A and B exhibit very similar layer-resolved behaviors.
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FIG. 7. (Color online) Calculated layer-resolved effective
isotropic exchange constants Jp [see Eq. (10)] for systems A and B.
The blue � and green ∗ represent Jp for Pt and Fe layers, respectively.
Solid lines serve as guides for the eye.

The value of Jp for the Fe layers is about 150 meV in the center
of the FePt slab and is slightly enhanced at the edges of the slab
(i.e., towards layers p = ±7). This is mainly a consequence
of an enhancement of the ferromagnetic NN intralayer Fe-
Fe interaction towards the outer layers of the FePt slab. The
effective exchange parameter of about 40 meV observed in
the Pt layers stems mainly from the strongly ferromagnetic
nearest-neighbor Fe-Pt interactions.

The (soft) Fe part of the system is characterized by much
larger effective exchange Jp ∼ 260 meV. This high value
of the effective exchange parameter is a highly important
property of the soft magnet part in exchange-coupled magnetic
recording media as it enables the lever effect in switching
the magnetization of the hard (FePt) phase. It should be
noted that the effective exchange parameters calculated for
the interior of the FePt slab and the Fe bulk part of the system
correspond to mean-field Curie temperatures of T FePt

C ∼ 700 K
and T Fe

C ∼ 1000 K, in good agreement with the corresponding
experimental values.31,32

Approaching the Fe/FePt interface from region I, the effec-
tive exchange of the Fe layers drops rapidly and the interfacial
Fe layers p = ±9 exhibit an effective exchange of merely
∼40 meV, almost identical to the effective exchange of the Pt
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layers. This reduction of Jp originates in the weak intralayer
couplings in layers p = ±9 and the mostly antiferromagnetic
coupling of this layers with the hard layers |p| � 7, largely
compensating for the NN and NNN ferromagnetic interactions
to the soft layers |p| � 10 [see Fig. 5(c)]. Our results for the
effective exchange parameters in the unrelaxed system A are
in satisfactory agreement with those in Ref. 13, although in
that work significantly smaller magnitudes of Jp are reported
as compared to the values presented here.

Interestingly, in system A, the effective exchange of the Fe
layer p = ±10 J±10 ∼ 230 meV, i.e., it almost recovers the
bulk value. In contrast, in system B, J±10 remains remarkably
small (∼160 meV). Also, in system B the effective exchange
exhibits relatively large fluctuations throughout the Fe layers
|p| � 10. These differences could be attributed to the fact that
the geometry of the Fe bulk is different for the two systems
(see Sec. II). Although the oscillations can be seen for all
the interactions of these Fe layers, the strongest contribution
to the oscillatory behavior comes from the ferromagnetic NN
out-of-plane interactions. This is to be expected as the variation
in the interlayer distance (due to the geometrical relaxation)
mostly affect the hybridization between orbitals centered at
adjacent atomic layers.

C. Magnetocrystalline anisotropy energy

Figure 8 shows the layer-resolved MAE contributions Kp

[see Eq. (2)] for systems A and B. The MAE contributions
of the Fe layers in the FePt slab oscillate between about
2.5 meV and 3 meV. The frequency and the magnitude of these
oscillations are different for the two systems, most probably
due to the different boundary conditions. In system B, due to
the evidently smaller amplitude of oscillation, KFe

i settles more
quickly around the bulk value of 3 meV. In both systems, Ki

of all the Pt layers is very small, ∼0.2 meV. In the Fe parts of
the system KFe

i quickly approaches (practically) zero since the
MAE of Fe bulk is on the order of μeV. Note that for system B,
the Fe bulk has a tetragonal distortion of 6%, however, this
generates only a very small MAE of 0.05 meV.

It should be recalled that the site resolution of the MAE
is based on the site-projected DOS. As demonstrated also
by Burkert et al.,33 for ordered FePt this construction leads
to a dominating contribution of the Fe atoms, while the Pt
atoms contribute only about 30% to the MAE. Remarkably,
our relativistic SKKR calculations yield a considerably lower
(<10 %) contribution of Pt. Since the site-resolved MAE
contributions have been shown to depend sensitively on
the band filling,33 the differences in the electronic structure
methods (in Ref. 33 the full potential linear muffin-tin orbital
method was used) can easily explain this difference in the
site-resolved MAE contributions. Moreover, our concept of
site resolution (and that in Ref. 33) may appear confusing
with respect to that of Refs. 27 and 28, where the largest
contribution to the MAE comes from the Pt sites, in line
with the large spin-orbit coupling of Pt. There is, however, no
confusion concerning the two types of site resolutions since
in nonperturbative calculations such as ours the spin-orbit
interaction on the Pt atoms is transferred to the electronic states
at the Fe sites due to the strong 3d Fe–5d Pt hybridization.33
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FIG. 8. (Color online) Calculated layer-resolved contributions to
the MAE Kp (blue �, Pt; green ∗, Fe) for systems A and B. Solid
lines serve as guides for the eye.

As a remarkable difference between systems A and B, in
system B the Fe layers at the interface (layers ±9) exhibit a
contribution of about 1 meV to the MAE, while in system A this
contribution is even negative (∼ − 0.25 meV). In order to gain
an understanding of this difference, we tried applying Bruno’s
arguments in terms of second-order perturbation theory.34,35

To this end, we performed self-consistent scalar-relativistic
calculations (i.e., calculations in which the spin-orbit coupling
is excluded) and calculated the local partial density of states
(LPDOS). In Fig. 9 we plotted the d-like spin- and orbital-
resolved LPDOS at layer 9. The LPDOS clearly shows a
strong spin polarization (almost filled majority-spin band) in
this layer, which is a necessary condition to apply Bruno’s
theory. Apparently, the dz2 LPDOS is nearly insensitive to
the geometry relaxation, while upon relaxation a considerable
weight of the dxz,yz LPDOS (and, to some extent, also of the
dxy,x2−y2 LPDOS) is shifted towards the Fermi level in the
occupied regime in both spin channels. The unoccupied part
of the minority-spin channel of these orbital-resolved states
is also affected by the geometrical relaxation. However, in
the vicinity of the Fermi level only a small increase in the
unoccupied minority-spin LPDOS occurs. (The majority-spin
LPDOS clearly decreases at the Fermi level, but it is not
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FIG. 9. (Color online) Calculated d-like spin- and orbital-
resolved local partial densities of states (LPDOS) for layer 9: dz2 (m =
0) (top), dxz and dyz (m = ±1) (middle), dxy and dx2−y2 (m = ±2)
(bottom). Positive/negative values stand for the minority/majority
spin channels. The zero of the energy is shifted to the Fermi energy.

relevant in our present theoretical estimation.) Since the spin-
orbit interaction gives rise to couplings between the dxz and dyz

states, inducing a perpendicular MAE, as well as to couplings
between the dxz,yz and dz2 states, inducing an in-plane MAE,35

it is hardly possible to identify a well-established difference in
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FIG. 10. (Color online) Calculated layer-resolved on-site (•) and
intersite (◦) anisotropies for systems A and B [see Eq. (9)]. Solid
lines serve as guides for the eye.

the specific local contribution to the MAE regarding the two
systems.

In terms of the localized-spin model as described in Sec. II,
the MAE can be cast into on-site and intersite contributions as
per Eq. (9). Although the microscopic model to construct an
anisotropic spin model differs from the one used in this work,
the results of Mryasov et al.28 strongly suggest that the MAE
of the FePt systems arises mainly from effective Fe-Fe intersite
interactions [Eq. (7)] mediated by the spin-orbit coupling on
the Pt atoms. Mapping our results on the MAE to the spin
model [see Eqs. (5)–(9)] provides a unique opportunity to
check the assertion of Ref. 28. Using the methods introduced
in Ref. 29, we calculated the on-site and intersite parts of the
layer-resolved MAE related to an extended Heisenberg spin
model and plotted these contributions in Fig. 10.

Inspecting Fig. 10 it is indeed obvious that approximately
90% of the MAE of FePt is associated with anisotropic intersite
interactions between Fe atoms. The shape of the Kp,intersite

across the atomic layers p coincides reasonably well with that
of Kp presented in Fig. 8. The on-site anisotropies are quite
stable on the Fe sites within the FePt slab and practically vanish
at the Pt sites. Furthermore, the increase in Kp at the Fe/FePt
interface (i.e., in layers p = ±9) due to relaxation stems
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mostly from the intersite anisotropy. Using the arguments
of Mryasov et al.,28 this can be explained in terms of the
electron scattering between these Fe atoms and the Pt atoms in
the adjacent layer p = ±8, experiencing thus large spin-orbit
coupling. Interestingly, in system A this induced anisotropy
effect is suppressed and the small negative contribution to
the MAE in these layers is of on-site origin. Remarkably,
Eq. (9) is satisfied with good accuracy if Kp is taken from the
direct calculation via the torque method. This lends substantial
credit to the use of the tensorial exchange interactions in
spin-dynamics simulations.

As a final step in our ab initio investigations, we address
the question of how much the MAE of the finite FePt slab
changes with respect to the bulk MAE related to an FePt layer
of the same size. Clearly, this point has a crucial technological
impact, namely, whether the perpendicular MAE can be in-
creased by forming an Fe/FePt multilayer sequence. Regarding
Fig. 8, it is obvious that for the chosen width of the FePt
layer the effect of a single interface can hardly be separated
since the oscillations of Kp indicate a strong interaction
between the two Fe/FePt interfaces (quantum interference
effects). Thus we define the excess MAE generated by the
entire FePt slab as

�KFePt slab =
15∑

p=−15

Kp − 9KFePt, (11)

where in the sum we also include layers from the Fe part
of the system. Note that the MAE of Fe bulk (on the order
of μeV/atom) is neglected and KFePt is the MAE per formula
unit (f.u.) for bulk FePt. We calculated KFePt = 3.37 meV/f.u.,
which, although high in comparison to experiment, is in good
agreement with other theoretical results based on the LSDA or
the LSDA + U approach.36,37

When evaluating �KFePt slab we needed to consider that for
systems A and B the Fermi level of bulk Fe is used instead of
the Fermi level of bulk FePt, which slightly affects the value
of KFePt calculated within the SKKR ASA approach. In order
to calibrate KFePt we used system C [an unrelaxed Fe/FePt/Fe
trilayer immersed in FePt bulk (see Sec. II)]. Indeed, in the
FePt slab of system C the shape we obtained for Ki across
the atomic layers was very similar to that for system A,
while for the innermost FePt layers the bulk MAE KFePt was
retained to within less than 1% numerical accuracy. Since the
corresponding MAE contributions in system A are smaller
by 0.33 meV/f.u., in Eq. (11) we used a corrected value of
3.04 meV/f.u. for KFePt.

For system A, we obtain a reduction in the total MAE,
�KA

FePt slab ≈ −4.2 meV. This reduction stems primarily from
the interfacial layers i = ±9 (see Fig. 8). From this figure it is
obvious that the contribution of one Fe layer to the MAE of the
FePt slab is missing since this Fe layer becomes much rather an
interfacial Fe layer. Upon relaxation, i.e., in system B, the inter-
facial Fe layers have remarkably enhanced contributions to the
MAE (see Fig. 8) as these Fe layers seem to belong rather to the
FePt slab. Moreover, in this case the Fe layers in the FePt slab
have contributions to the MAE closer to that in bulk FePt as
compared to system A. Consequently, for system B the MAE of
bulk FePt is almost entirely retained, �KB

FePt slab ≈ −0.4 meV.
Comparing this value to the total MAE of the FePt slab

immersed in Fe, 26.9 meV, we conclude that the MAE of a
realistic [Fem/(FePt)k]n (m � 10, k � 9) multilayer sequence
is approximately equal to the MAE of nk FePt bulk layers.

IV. IMPLICATIONS FOR MESOSCOPIC SPIN
STRUCTURES

The detailed mapping of the ab initio information onto a
spin model, which will allow, for example, calculations of the
temperature dependence of the MAE values, is beyond the
scope of the current work. Here we give a simple illustration
of the implications of the ab initio results and their effect
on magnetic spin structures and indeed the exchange spring
phenomenon. Specifically, we consider the effect of an abrupt
change in magnetic properties, especially the MAE, which is
known to give rise to pinning of a domain wall at the interface.
Kronmüller and Goll38 developed a micromagnetic model of
magnetization reversal in a material consisting of two coupled
phases with different magnetic properties. It was found that a
domain wall (DW) could be pinned at the interface between
the different layers, the pinning being overcome by a critical
field

Hc = 2K II

M II
s

1 − εKεA

(1 + √
εMεA)2

, (12)

where the superscript II refers to the properties of the hard
phase and εK , εA, and εM refer to the ratio of the anisotropy
constant, the micromagnetic exchange constant, and saturation
magnetization, respectively, in the soft and hard phases. The
coercivity of the hard phase is invariably reduced by all
combinations of material parameters.

However, Eq. (12) was derived under the assumption of bulk
exchange coupling across the interface and it has been shown
by Guslienko et al.39 that the exchange spring effect is strongly
dependent on the degree of coupling at the interface. In Ref. 39
the interface coupling was taken as a variable, but the ab initio
calculations presented here allow us to study the exchange
spring phenomenon with no fitting parameters. We use a simple
spin-chain model as in Ref. 39, treating the low-exchange layer
as an interface providing a weakened exchange between the
FePt and Fe layers. Within each layer we can write down the
spin Hamiltonian

H = −J
∑

i,j (NN)

�Si · �Sj +
∑

i

K
(
Sz

i

)2 −
∑

i

μ �H · �Si, (13)

where J is the intralayer nearest-neighbor exchange coupling,
�Si the unit vector representing the spin direction, K the
anisotropy constant, μ the atomic spin in the given layer, and
�H the applied field.

We allow for reduced exchange coupling at the interfaces
by writing the exchange energy between interface spins as

Hint = −Jint

∑

i,j

�Si · �Sj , (14)

where the spins i,j are in separate layers. Similar to the case
of the IrMn3/Co (111) system in Ref. 18, our calculations
show sizable DM interactions near the interface. Due to
the C4v symmetry, however, the DM energy cancels for
the Néel walls to be investigated in the following. For that
reason, we neglected the DM interactions in our model of
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FIG. 11. (Color online) Calculated domain wall structures prior
to magnetization reversal for fully exchange coupled layers (black •)
and layers coupled with ab initio exchange parameters for the relaxed
system B (blue �). The relaxed system shows a discontinuous DW
structure due to the weak interlayer exchange coupling.

Eq. (14). The equilibrium state of the spin system is determined
by integrating the Landau-Lifshitz equation, without the
precession term

d �Si

dt
= −α �Si × (�Si × �Hi), (15)

with �Hi being the effective field acting on spin i.
Figure 11 shows calculated DW structures prior to mag-

netization reversal for fully exchange-coupled layers and
layers coupled with ab initio exchange parameters for the
relaxed system. In the latter case the interlayer exchange
is approximately 20% of the bulk exchange of FePt. The
associated coercivities are 5.9 and 7.24 T, respectively, reduced
from the bulk coercivity of 14 T due to the exchange spring
effect. For the bulk interlayer exchange case the DW width in
the Fe layer is considerably smaller than the usual expectation
due to the presence of the large applied field. Nonetheless, the
DW is continuous across the interface, in contrast to the case
of the reduced exchange of the relaxed microstructure. The
effect of the reduced exchange on the coercivity is relatively
weak, consistent with the results given in Ref. 39. However,
even relatively small changes can be significant for the design
and operation of practical recording media.

V. CONCLUSION

We have presented first-principles calculations of the
exchange interactions and the magnetocrystalline anisotropy
energy in an Fe/FePt/Fe sandwich system. In particular, we
investigated how the geometrical relaxation influences the
calculated magnetic properties of the system. In accordance
with previous work on an unrelaxed Fe/FePt/Fe system,13

we found a dramatic reduction in the exchange coupling
between the Fe layers at the Fe/FePt (soft/hard) interface.
Moreover, in the relaxed system, these layers add a remarkable
positive contribution to the MAE. From the tensorial exchange
interactions evaluated by means of the relativistic torque
method,29 we have shown that the MAE of the FePt slab
and the interface MAE are dominated by anisotropic intersite
exchange interactions. Moreover, our calculations indicate
that the formation of an Fe/FePt layer sequence reduces the
perpendicular MAE. In the case of a relaxed geometry, which
we consider to be relevant to a multilayer system, this reduction
is slight, on the order of ∼0.4 meV per FePt slab.

We also show that the ab initio parameters will have
a bearing on the mesoscopic spin structures predicted by
atomistic and micromagnetic models. Specifically, the reduced
exchange coupling between FePt and Fe layers gives rise to
a discontinuous spin structure across the FePt/Fe interface.
Although the exchange spring effect still gives rise to a
large coercivity reduction, it is likely that the discontinu-
ous spin structure could affect the magnetization dynamics.
The reduced exchange could also affect the temperature
dependence of the interface MAE values, which could also
have a significant bearing on the magnetic properties. Both
factors require the development of a detailed mapping onto an
atomistic spin model. Further, each material combination in
a magnetic nanostructure will have interface properties that
may differ significantly from the bulk, making further ab
initio studies of interface properties important in terms of the
understanding of the underlying physics of static and dynamic
magnetic properties.
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