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We derive ab inito exchange parameters for general noncollinear magnetic configurations, in terms of a

multiple scattering formalism. We show that the general exchange formula has an anisotropiclike term

even in the absence of spin-orbit coupling, and that this term is large, for instance, for collinear

configuration in bcc Fe, whereas for fcc Ni it is quite small. We demonstrate that keeping this term

leads to what one should consider a biquadratic effective spin Hamiltonian even in the case of collinear

arrangement. In noncollinear systems this term results in new tensor elements that are important for

exchange interactions at finite temperatures, but they have less importance at low temperature. To

illustrate our results in practice, we calculate for bcc Fe magnon spectra obtained from configuration-

dependent exchange parameters, where the configurations are determined by finite-temperature effects.

Our theory results in the same quantitative results as the finite-temperature neutron scattering experiments.
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The noncollinear magnetic alignment, when a global
magnetization axis is not easily identified, can appear as
the ground state of several magnetic materials [1], e.g.,
spin-spiral or spin-glass systems, for nonequilibrium, dy-
namical systems and for magnets at finite temperatures
where it is universal. Considering the rigid spin and
adiabatic approximation, the calculation of exchange in-
teraction between well-defined moments is crucial for
atomistic, first-principles spin-dynamics simulations and
for the interpretations of experimental results. One ex-
ample of an experimental work where a detailed calcula-
tion of the interatomic exchange interaction for different
noncollinear spin configurations is needed is the Skyrmion
state, e.g., of bulk Fe0:5Co0:5Si, where this complex mag-
netic structure is stabilized at finite temperature [2].
Similar questions arise for the Skyrmion state of thin films,
e.g., of FeGe, where finite temperature plays a cruical role
in stabilizing a Skyrmion crystal [3,4]. Another example of
where little is known in detail about finite-temperature
effects of interatomic exchange is the classical Invar alloys,
e.g., the Fe-Ni alloy in the fcc lattice, which is known to
have a zero thermal expansion which is caused by several
competing noncollinear configurations that are tuned by
finite temperature and volume [5]. For this material the
interatomic exchange clearly is expected to depend
strongly on temperature and volume [5], although a
detailed knowledge is lacking since theoretical tools
directly coupling spin configuration to interatomic ex-
change are lacking. Materials where the interatomic ex-
change has an apparent temperature (or strain) driven
transition from favoring a collinear arrangement to a

more complex structure, like a Skyrmion lattice or
spin spiral, is not unique for metals, it can also be
seen in insulators like for the doped antiferromagnet
La2Cu0:97Li0:03O4 [6].
Clearly, the electronic structure and, as a direct conse-

quence via the multiple scattering formalism of Ref. [7],
the evaluation of the interatomic exchange interactions
depend in general on the configuration of the atomic spins.
This calls for a self-consistency procedure where, for a
starting guess of the spin configuration, the interatomic
exchange parameters of a suitable spin Hamiltonian are
evaluated, after which a new spin configuration can be
determined, e.g., by means of atomistic spin dynamics,
and the whole procedure may be iterated until self-
consistency. Although the formula in the case of collinear
arrangement has been known for a long time, due to the
seminal work of Ref. [7], even for correlated systems [8], a
counterpart for noncollinear arrangement is lacking. In this
Letter we derive a general formula for both collinear and
noncollinear spin systems, where we make use of the
magnetic force theorem [9,10]. This is combined with
spin-dynamics simulations to evaluate relevant spin con-
figurations as a function of finite temperature. Our analysis
is expressed in terms of multiple scattering formalism
(MSF) [11]. Analyzing the one- and two-site spin rotations,
we map the analytically derived exchange parameters onto
effective spin Hamiltonians, and discuss their appropriate-
ness for collinear and noncollinear spin arrangements, and
we illustrate our results with a numerical simulation of the
magnon energies of bcc Fe at elevated temperature.
Examples of other direct applications of the method
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described here relate to ultrafast spin dynamics in multi-
sublattice magnets [12] and to the analysis of the remagne-
tization process in ultrafast magnetization processes [13].

The fundamental equation of a scalar relativistic MSF is
given as [11]

ð��1
ij ÞL�;L0�0 ¼ PiL��0�ij�LL0 �G0

ij;LL0���0 ; (1)

where �ij stands for the scattering path operator (SPO), Pi

denotes the inverse of the single site scattering operator
(ISO), L stands for the angular momentum and magnetic
quantum numbers, � refers to the spin index, G0 is the free
(or bare) structure constant, and indices i and j refer to the
considered lattice sites. Later on in our presentation we
omit the orbital and spin indices. We introduce a general
notation for the ISO as follows:

Pið"Þ ¼ p0
i I2 þ ~pi � ~� ¼ p0

i I2 þ pi ~ni � ~�; (2)

where the unit vector ~ni refers to the magnetic spin moment
at site i, ~� are the Pauli matrices, I2 is the unit matrix in spin
space, p0

i denotes the nonmagnetic part, and the vector ~pi

stands for the magnetic part of the ISO. Introducing a
similar notation for the SPO, it can be written that

�ijð"Þ ¼ T0
ijI2 þ ~Tij � ~�; (3)

where the vector ~Tij has three (x, y, and z) matrix compo-

nents, which enables us to treat a noncollinear arrangement.
We write the variation of ISO as

�Pi ¼ pi� ~ni � ~�; (4)

where� ~ni stands for the deviation of a spinmoment after an
infinitesimal rotation at site i. We also introduce the tensor

A��
ij ¼ 1

�

Z "F

�1
d"ImTrLðpiT

�
ijpjT

�
jiÞ; (5)

where indices � and � run over 0, x, y, or z. We note that

A��
ij ¼ A��

ji because of the properties of the trace. The

collinear alignment is an important special case when the
global coordinate system can be chosen so that the vector
~Tij has only nonzero values of the z component between

every site, implying all A��
ij ’s are equal to zero except for

A00
ij and Azz

ij . We henceforth refer to A00
ij and Azz

ij as the

collinear exchange parameters, and the other elements as
noncollinear exchange parameters. (The collinear align-
ment usually corresponds to the ferromagnetic ground

state in this work.) Introducing quantities T"
ij ¼ T0

ij þ Tz
ij

and T#
ij ¼ T0

ij � Tz
ij for collinear systems and using the

time-reversal symmetry, one obtains the well-known
expression [7]

A00
ij � Azz

ij ¼
1

�

Z "F

�1
d"ImTrLðpiT

"
ijpjT

#
jiÞ; (6)

which can be defined for any (noncollinear) configuration as

JLij ¼ A00
ij � Azz

ij ; (7)

and will be referred to as the Liechtenstein-Katsnelson-
Antropov-Gubanov (LKAG) formula.
According to Andersen’s local force theorem [9,10], the

total energy variation can be written as the variation of
the integrated density of states time energy (first moment).
The so-called Lloyd formula [14] says how to calculate this
from ISO and SPO, see Eqs. (2) and (3), in the presence of
any perturbation, e.g., for a rotation of a spin moment. We
speak of one-site spin rotation when this perturbation is
given due to a rotated magnetic moment only at one site i
with infinitesimal angle ��. In that case the detailed deri-
vation of the total energy variation is written in
Appendix A in the Supplemental Material [15]; here, we
give the final result in collinear limit (Tx

ij ¼ Ty
ij ’ 0),

�Eone
i ¼ �2

X
j�i

JLij�n
z
i : (8)

Note that this equation is obtained without making any
assumption of an effective spin Hamiltonian, and is instead
a direct consequence of multiple scattering theory.
Therefore, any effective spin Hamiltonian should repro-
duce the results of Eq. (8), in the collinear limit, as regards
the energy of one-site rotations. It should be noted that �nzi
is proportional to ð��Þ2; therefore,Pj�iJ

L
ij is positive for a

ferromagnetic ground state. The effective (Weiss) field can
be obtained from Eq. (8), and any desired spin Hamiltonian
should recover it in the collinear limit.
Next, we consider two-site spin moment rotations; i.e.,

two spin moments at site i and j are rotated simultaneously
in opposite directions with angle ��. Using the Lloyd
formula we find that an interaction term appears in the
variation of the total energy expression. This variation can
be written for the general, noncollinear case as

�Etwo
ij ¼ �EHT

ij þ �EAT
ij ; (9)

where

�EHT
ij ¼ �2

�
A00
ij � X

�¼x;y;z

A��
ij

�
� ~ni � � ~nj; (10)

and

�EAT
ij ¼ �4

X
�;	¼x;y;z

�n�i A
�	
ij �n	j ; (11)

i.e., we obtain a Heisenberg-type (HT) and an anisotropic-
type (AT) term expressed by generalized exchange pa-
rameters, as given in Eq. (5). The details of the derivation
of Eqs. (9)–(11) can be found in Appendix B in the
Supplemental Material [15].
As we mentioned earlier, only parameters A00

ij and Azz
ij

should be considered in the collinear limit; therefore,
for this case, the two-site energy variation formula sim-
plifies to
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�Etwo
ij ¼ �2JLijð�nxi �nxj þ �nyi �n

y
jÞ � 2Gij�n

z
i�n

z
j; (12)

whereGij ¼ A00
ij þ Azz

ij , implying that we have to deal with

two parameters to describe the exchange interaction even
in the case of collinear spin arrangement. The parameter JLij
describes the transversal (x or y) part of the energy varia-
tion and the longitudinal (z) part is characterized by the
parameter Gij, which are proportional to ð��Þ2 and ð��Þ4,
respectively. In the collinear limit it is sufficient to keep
only the HT term in Eq. (9), as was done in Ref. [7]. In this
case �Etwo

ij equals �EHT
ij , which can be briefly written as

�2JLij� ~ni � � ~nj. By limiting to the bilinear scalar

Heisenberg effective spin model with exchange parameter
JLij, we also recover in the collinear limit the energy varia-

tion described by Eq. (8), as derived in Appendix C in the
Supplemental Material [15], a result that is in agreement
with Ref. [7].

However, in order to keep both HT and AT terms in the
general two-site MSF energy deviation formula (9), we
attempt to map the MSF parameters onto a bilinear tenso-
rial effective Hamiltonian; see Eq. (44) in Appendix C in
the Supplemental Material [15]. In Appendix C of
Ref. [15] we derive the total energy variation from the
tensorial spin Hamiltonian and show that it is not consis-
tent with the expression of Eq. (8), a fact that implies that
one cannot map noncollinear MSF parameters onto a
tensorial effective Hamiltonian.

This motivates us to take an alternate approach and
consider higher order spin terms in the spin Hamiltonian,
in the spirit of Ref. [16]. The simplest extension is the
biquadratic effective Hamiltonian

H Q ¼ �Xi�j

ij

J0ij ~ni � ~nj �
Xi�j

ij

Bijð ~ni � ~njÞ2; (13)

where a revised bilinear parameter J0ij is introduced in

addition to the biquadratic one Bij. Deriving the two-site

energy variation formula from Eq. (13), we obtain that the
biquadratic two-site rotation energy deviation can be writ-
ten as a sum of a biquadratic Heisenberg-type term and
anisotropic-type term; see Eqs. (51) and (52) in
Appendix C of Ref. [15], respectively.

Comparing Eqs. (10) and (11) with Eqs. (51) and (52) in
Appendix C of Ref. [15], one can identify

J0ij ¼ A00
ij � 3Azz

ij ; Bij ¼ Azz
ij : (14)

In the case of one-site rotations, the leading term can
be written as �Eone

i ¼ �2
PðJ0ji þ 2BjiÞ�nzi , where

J0ji þ 2Bji ¼ A00
ji � Azz

ji ¼ JLji, i.e., Eq. (8) has been recov-

ered. This is a required condition for any effective spin
Hamiltonian, since the analysis from multiple scattering
theory establishes Eq. (8). Hence, the recovery of Eq. (8)
when considering one-site rotations shows that the col-
linear MSF parameters can be mapped onto a biquadratic
model.

The numerical calculations of these parameters have
been implemented in terms of a real-space linear muffin
tin orbital atomic sphere approximation code; see
Ref. [17]. The linear muffin tin orbital formalism used in
this work and its connection to MSF is discussed in
Ref. [18], and it has been shown that it results in LKAG
parameters which are consistent with other electronic
structure methods [19]. The calculated exchange parame-
ters between the first nearest neighbor sites are shown in
Figs. 1 and 2 for bcc Fe and fcc Ni, respectively. We
obtained that Azz

ij ¼ Bij is much larger than A00
ij for nearest

neighbors in bcc Fe. Also, JLij is drastically different than

J0ij, showing the importance of higher order spin interac-

tions; see Fig. 1. It might seem, from Fig. 1, that the
biquadratic Hamiltonian (with J0ij and Bij) and the bilinear

Hamiltonian (with JLij) give different excitation energies. In

the collinear limit they actually give rise to the same
excitation energies, since, as follows from Eqs. (7) and
(14), the relationships J0ij þ 2Bij ¼ JLij and, consequently,

�EHT
ij ¼ �EQHT

ij hold for all pairs. On the other hand, in the

case of fcc Ni first neighbor pairs, the Azz
ij and, therefore,

the biquadratic parameter are very small, so that JLij and J
0
ij

are close to each other, as shown in Fig. 2. Figure 2 shows
that Azz

ij (hence, Bij) deviates from the general trend, in the

case of fourth nearest neighbor interaction. This is counter-
balanced by a larger value of J0ij for this interaction dis-

tance. Hence, also in this case will the biquadratic
Hamiltonian and the bilinear Hamiltonian give rise to the
same excitation energies, in the collinear limit. The data in
Fig. 2 result in a lower value of Bij, which implies that the

bilinear term is more dominating for fcc Ni.
Most importantly, our formulation allows us to consider

noncollinear spin configurations and to calculate magnon
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FIG. 1 (color online). Collinear exchange parameters (A00 and
Azz) between the first eight neighbors in bcc Fe. JL, see Eq. (7),
and J0, see Eq. (14), are derived parameters for the bilinear and
biquadratic spin Hamiltonians, the biquadratic B equals Azz,
which is rather large for nearest neighbors.
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spectra from these configurations. In Fig. 3 we show the
calculated exchange parameters between two nearest neigh-
bors, when rotating only one spin of a bcc Fe lattice. It can
be seen that the collinear parameters are decreasing and the
noncollinear parameters are increasing when � increases.

In order to estimate how the finite temperature induced
spin order of the lattice influences the exchange interaction,
and the magnetic excitation energies, we performed
Monte Carlo simulations (with 128 Fe atoms) using the
parameters of Eq. (7), and we performed a statistical analy-
sis of the distribution of angles between the spins on the
simulation box. We find that at 300 K the average deviation
of an atomic spin moment from the global quantization axis

is �̂ ¼ 28�, while in the case of 500 K this deviation was

�̂ ¼ 39�. We then performed a calculation of the

parameters in Eqs. (5) and (14) using a spin configuration

with deviations (�̂’s) from the global magnetization direc-
tion, with angles given by the Monte Carlo simulations
(e.g., 28� at room temperature). Similarly to the case
when only one spin moment was rotated, the noncollinear
parameters become significant for larger average spin-
moment deviation. We then performed a statistical analysis
of these parameters and obtained averages over different
site and�, 	 indices. We analyzed these average exchange

parameters in the cases of �̂ ¼ 0�, 5�, 10�, 25�, and 40�.
For small angles, the collinear parameters are, as expected,
dominant. At room temperature the noncollinear parame-
ters are roughly 30%of the collinear ones, and at 500K, i.e.,
in the case of 40� average angles between atomic and global
magnetization direction, the collinear and noncollinear pa-
rameters are of the same order.
We then calculated the spin wave spectra along the �-H

direction, for finite temperature configurations. The result
is shown in Fig. 4. These spin-wave spectra are obtained
from configuration-dependent LKAG exchange parame-
ters evaluated for noncollinear configurations correspond-
ing to temperatures ranging from 0 to 500 K. As Fig. 1
shows that the first and second neighbor values are domi-
nant, we evaluated the spectra from these parameters only.
At zero temperature (� ¼ 0) we obtained a spin-wave

stiffness constant of 287 meV �A2, whereas a magnetization
measurement at 4.2 K resulted in Dexpt¼280–330meV �A2

[20,21]. In Fig. 4 we compare our theory with the experi-
mental data of Ref. [20], where the top thick (black) line
shows the calculated spectrum from collinear LKAG ex-
change parameters, and the open circles represent
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FIG. 2 (color online). Collinear exchange parameters between
the first eight neighbors in fcc Ni. The bilinear parameter of
bilinear model JL and the bilinear parameter of biquadratic
model J0 are very close to each other in fcc Ni, Azz � A00.
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FIG. 3 (color online). Comparison of the collinear exchange
parameters (blue circles and blue squares) and noncollinear
parameters (green diamonds and green triangles) between two
nearest neighbor sites of bcc Fe as a function of angle rotating
one magnetic moment with angle �.
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FIG. 4 (color online). Spin-wave dispersion relation calculated
at different temperatures along the �-H direction. The top thick
(black) line shows the calculated spectrum from collinear LKAG
exchange parameters, open circles come from magnetization
measurement at 4.2 K [20] The middle thick (yellow) line
corresponds to the calculated spectrum at 300 K and the filled
circles refer to the room temperature neutron scattering mea-
surement data [22].
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experimental data. These experimental values were eval-
uated from the experimental spin-wave stiffness constant,
using the expression Dexptq

2, and it may be seen that

experiment and theory agree. Reference [22] has carefully
examined the temperature dependence of magnetic excita-
tions of iron from neutron scattering data, and the mea-
sured room temperature spin-wave spectrum of bcc Fe is
shown in Fig. 4 by filled black circles. It is found that
experimental values are close to our calculated room tem-
perature (yellow) curve. The experimental room temperate
spin stiffness value is 230, to be compared to our calculated

value of 219 meV �A2. Furthermore, Fig. 2. in Ref. [22]
shows measured spectra along the (110) direction, starting
from low values and increasing T up to the Curie tempera-
ture. The measured trend is obvious, softer curves are
observed with increasing temperature, in a fashion which
is similar to our calculations (Fig. 4).

We have here derived a general expression for the inter-
atomic exchange coupling that describes the interaction
between magnetic moments for both collinear and noncol-
linear (finite temperature) spin configurations. The possi-
bility to evaluate exchange interactions from the electronic
structure of a noncollinear spin system allows us to con-
sider an effective spin Hamiltonian with temperature-
dependent exchange coupling parameters. It opens up for
finite temperature investigations via a self-consistency pro-
cedure of both the electronic structure and spin configura-
tions, as described in the introduction of this Letter. This
enables accurate finite-temperature spin-dynamics simula-
tions of magnetic materials, and forms a platform for
analyzing magnetization dynamics in general, including
ultrafast dynamics. The approach described here is aimed
at finding the most relevant part of the space of spin
configurations, and to evaluate as accurately as possible
the interatomic exchange interaction here. This is different
from the approach of spin-cluster expansions that aim at
introducing sufficiently many terms (of the order of several
30–50) in an expansion of the exchange energy [23], so that
a good description of any possible configuration could be
obtained, albeit without self-consistency of the atomic spin
system. Whether cluster expansions, or the approach pro-
posed here, is better suited to in general describe the
dynamics of magnetic materials becomes a numerical exer-
cise where the two different methods should be compared
in how they reproduce a large body of experimental finite-
temperature data. Such an exhaustive comparison is outside
the scope of the present study.
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