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Abstract
On the basis of the fully relativistic screened Korringa–Kohn–Rostoker method we investigate
the variation in the magnetocrystalline anisotropy energy (MAE) of hexagonal close-packed
cobalt with the addition of platinum impurities. In particular, we perform calculations on a
bulk cobalt system in which one of the atomic layers contains a fractional, substitutional
platinum impurity. Our calculations show that at small concentrations of platinum the MAE is
reduced, while at larger concentrations the MAE is enhanced. This change in the MAE can be
attributed to an interplay between on-site Pt MAE contributions and induced MAE
contributions on the Co sites. The latter are subject to pronounced, long-ranged Friedel
oscillations that can lead to significant size effects in the experimental determination of the
MAE of nanosized samples.

(Some figures may appear in colour only in the online journal)

1. Introduction

Cobalt alloys, such as CoPt or CoPd, are ubiquitous in the field
of magnetic recording and of particular interest to the field of
ultrafast magneto-optics [1]. In terms of magnetic recording,
increasing areal densities require decreased grain size, which
in turn requires increasing values of magnetocrystalline
anisotropy energy (MAE) to ensure thermal stability of
written information [2]. Currently this is achieved using
CoPt alloys with perpendicular anisotropy. Consequently an
understanding of the origin of the MAE in CoPt is an
important practical problem. Since the magnetic properties
of these alloys are highly sensitive to the amount and
the spatial distribution of the Pt content, understanding the
effects of alloying is an important issue. The effects on the
magnetic properties of CoPt as functions of the platinum

content have been studied extensively, both theoretically [3]
and experimentally [4, 5]. Moreover, in recent experimental
work [6] it was demonstrated that the MAE of cobalt can be
tuned by letting platinum impurities migrate into the cobalt
system. Generally it is agreed that the addition of platinum to
a magnetic material, such as Fe or Co, influences the magnetic
properties, in particular, the MAE of the material primarily
through the strong spin–orbit coupling of Pt [7].

The aim of the present work is to elucidate from first
principles the effect on the MAE of bulk hcp Co by the
addition of platinum. To this end, we use the fully relativistic
screened Korringa–Kohn–Rostoker (SKKR) method as
combined with the coherent potential approximation (CPA),
which is well suited to describing substitutional alloys [8].
Our model focuses on Pt alloying in a (0001) atomic plane
of a hcp Co bulk system, from the case of an impurity

10953-8984/12/406001+08$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/40/406001
mailto:cja505@york.ac.uk
http://stacks.iop.org/JPhysCM/24/406001


J. Phys.: Condens. Matter 24 (2012) 406001 C J Aas et al

to the case of a complete filling of the layer by Pt. After
briefly discussing the computational methods we present the
calculated MAE as a function of the Pt concentration and
analyze the results in terms of layer- and species-resolved
contributions to the MAE. We note that recording media are
complex alloy systems, often containing Cr to promote grain
boundary separation. It is often found that the maximum
MAE as a function of Pt concentration is limited by, for
example, the formation of new phases [9] or the presence
of stacking faults [10–12]. Here we are concerned only with
the intrinsic enhancement of the MAE introduced by the Pt
impurities. Remarkably, this analysis highlights the role of
long-ranged Friedel oscillations in forming the MAE of the
system. Specifically, we demonstrate a layer dependence of
the valence charge which makes the effect of the Pt impurities
long-ranged. This might have significant impact on the
determination of the MAE of thin film samples corresponding
to the systems studied in this work. In particular it might
be expected to give rise to finite-size effects in the MAE
of granular thin films for magnetic recording which would
become more significant as the grain size is reduced.

2. Computational details

The central feature of the SKKR method is the evaluation of
the electronic Green’s function of a layered system. Here, a
layered system refers to a system exhibiting two-dimensional
translational symmetry in each (infinite) atomic plane,
but in which there are no symmetry requirements along
the third axis. From the Green’s function one can then
determine a number of physical quantities of interest, such
as site-projected charges, spin and orbital moments and
the total energy of the system. As the method is well
documented elsewhere [13, 14], here we present only some
details of our calculations. The calculations were performed
within the local spin-density approximation (LSDA) of
density-functional theory (DFT) as parametrized by Vosko
et al [15] The effective potentials and fields were treated in
the framework of the atomic sphere approximation (ASA).
The substitutional Pt alloying was treated within the coherent
potential approximation (CPA) [8, 16].

The above LSDA–ASA method fails in predicting the
orbital moment and the MAE for hcp Co correctly, see
also [17]. Although there is an implication that a full-potential
treatment improves the agreement with experiment [18],
we employed a rather simple, heuristic extension of
the relativistic electron theory by the orbital polarization
(OP) correction [19–21], as implemented within the KKR
method by Ebert and Battocletti [22]. The corresponding
Kohn–Sham–Dirac equations were solved using a spherical
wave expansion up to an angular momentum number of
` = 3, although the OP correction was applied only for
the ` = 2 orbitals. It should be mentioned that orbital
polarization effects are more realistically described in terms
of the LSDA + U method [23], in particular, using a
corrected random-phase approximation treatment for the
screened Coulomb interaction [24].

The magnetocrystalline anisotropy energy was evaluated
within the magnetic force theorem [17, 25], in which the total
energy of the system can be replaced by the single-particle
(band) energy. As noted by Nonas et al [26] this approach
cannot be used if the size of the spin magnetic moments
strongly depend on their orientation, as in, for example, the
case of magnetic 5d impurities deposited on Ag(001) surface.
Moreover, we employed the torque method [27], making use
of the fact that, for a uniaxial system, the MAE, K, can be
calculated up to second order in spin–orbit coupling as

K = E(θ = 90◦)− E(θ = 0◦) =
dE

dθ

∣∣∣∣
θ=45◦

, (1)

where, in the case of hcp geometry, θ denotes the angle of
the spin polarization with respect to the (0001) direction,
i.e., the direction perpendicular to the hexagonal planes. Note
that the ẑ-axis of the (global) frame of reference in our
calculations is defined to be parallel to the (0001) direction.
Within the KKR formalism, K can be decomposed into site-
and species-resolved contributions,

K =
∑
i,α

sαi D(α)i , (2)

where sαi denotes the concentration of species α at site i and

D(α)i denotes the corresponding derivative of the band energy.

Using Lloyd’s formula [28], D(α)i can be calculated as [29]

D(α)i = −
1
π

Im
∫ ε

(n̂)
F

dεTr

(
∂t(α,n̂)i (ε)−1

∂θ
τ
(α,n̂)
ii (ε)

)
, (3)

where ε(n̂)F is the Fermi energy and, in case species α occupies

site i, t(α,n̂)i (ε) and τ (α,n̂)ii (ε) stand for the angular momentum
matrices of the single-site t operator and the site-diagonal
scattering path operator, respectively. All these quantities
are calculated at the direction of the magnetization n̂ =
( 1
√

2
, 0, 1
√

2
), corresponding to θ = 45◦ in equation (1). The

derivative of the t-matrix is evaluated as described in [30]. The
energy integral in equation (3) can be accurately performed
by sampling 20 energy points on an asymmetric mesh along
a semi-circle contour in the upper complex semi-plane. In
order to achieve an accuracy within 5% for the MAE, a
sufficiently dense mesh in the two-dimensional Brillouin zone
(2D-BZ) was used to evaluate τ (α,n̂)ii (ε): at the energy point
closest to the Fermi energy, we used 5764 k-points in the
irreducible wedge of the 2D-BZ, corresponding to more than
34 000 k-points in the full 2D-BZ. Due to the two-dimensional
translational symmetry of the system, the MAE should be
related to a 2D unit cell, therefore, in the following the index
i in equation (2) is used to label atomic layers.

The SKKR method as applied to layered systems requires
the system to be divided into a middle region wedged between
two semi-infinite bulk regions. Adhering to this requirement,
the effect of platinum alloying in a single atomic layer of
bulk hcp Co was investigated by considering a layered system
as shown in figure 1. Each atomic layer in the semi-infinite
bulk regions corresponds to pure hcp Co bulk. Since the
middle region needs to contain an integer number of unit cells

2
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Figure 1. Sketch of the geometry of the system containing NL hcp
unit cells, i.e., 2NL atomic layers wedged between two perfect
semi-infinite bulk Co systems. In the zero-indexed layer (black
circles) a random substitutional alloy with platinum, Co1−sPts, is
considered. Note that the ẑ-axis is defined to be parallel to the
(0001) direction of the hcp crystal.

and since each unit cell spans two atomic layers, this region
consists of 2NL hexagonal Co layers stacked along the (0001)
direction. In one of the two central layers of the middle region,
namely, in the one indexed by 0 in figure 1, a fraction s of
the Co atoms are replaced by Pt atoms. From here on, this
layer will be referred to as the impurity layer. It should also be
mentioned that in this work no attempts are made to trace any
structural relaxation effects of the hcp Co lattice caused by Pt
impurities. To support this approach, we note that in [31] the
change in the MAE of an FePt slab due to surface relaxation
is reported to be only about 5%.

To take into account relaxation of the effective potentials
and fields, we performed self-consistent calculations with
NL = 14, i.e. for 28 layers in total. One important
consequence of the geometrical construction shown in figure 1
is that the calculation of K in equation (2) is confined to layers
within the middle region, i.e., for −(NL − 1) ≤ i ≤ NL. This
means that the long-ranged Friedel oscillations that arise due
to the presence of Pt impurities are necessarily truncated. In
order to safeguard against any numerical artifacts caused by
this truncation, we increased the number of atomic layers in
the middle region until the layer-resolved MAE converged to
within about 1% accuracy to the bulk Co MAE at the outer
edges of the middle region. According to our calculations
(see below), this condition requires NL = 40, i.e., 80 atomic

Figure 2. Calculated layer-resolved Co contributions, D(Co)
i , to the

MAE, see equation (3), across the system shown in figure 1 for
s = 0.01 (red +) and s = 0.02 (black •). The MAE of bulk Co is
indicated by the solid black horizontal line. Solid lines connecting
the symbols serve as guides for the eye.

layers in total. We performed these calculations of the MAE
by appending the perfect bulk potential of hcp Co to the
layers −39 ≤ i ≤ −14 and 15 ≤ i ≤ 40, i.e., neglecting
self-consistency effects for these atomic layers. To check the
accuracy of this approach, we compared D(Co)

i for atomic
layer no. 14 (with relaxed self-consistent potential) with that
for atomic layer no. −14 (with appended Co bulk potential)
and obtained that the two values agree to within 0.02%.

3. Results and discussion

To test our computational method, we first determined
the MAE of bulk hcp Co. Excluding the OP correction
we obtained an easy-plane magnetization and a MAE of
6.7 µeV/Co atom, while including the OP correction we
instead obtained an easy axis perpendicular to the hexagonal
Co planes and a MAE of 84.4 µeV/Co. The latter result is in
good agreement with the experimental value of 65.5 µeV [32]
and with the experimental easy axis being along the (0001)
direction. Our result also compares well with that of Trygg
et al [18], who calculated K = 110 µeV for hcp Co using a
full-potential LMTO method including OP correction.

As described in section 2, we performed calculations of
the MAE of a bulk Co system in which a single layer has
been substitutionally alloyed by Pt in a fraction of 0 < s ≤ 1.
The layer-resolved Co contributions to the MAE, D(Co)

i , see
equations (2) and (3), are shown in figure 2 for s = 0.01 and
s = 0.02. Remarkably, even such small amounts of Pt induce
large fluctuations in D(Co)

i : in the impurity layer (i = 0) and
in the Co layers near the impurity layer (1 ≤ |i| ≤ 4) the
relative changes of D(Co)

i with respect to the bulk Co MAE
reach 10%. In particular, the Co contribution from layers
i = ±1 is enhanced to nearly 94 µeV, while that those from
layers i = ±2 are reduced to nearly 76 µeV for s = 0.02.
For layers further away from the impurity layer (|i| ≥ 5),
oscillations in D(Co)

i with rapidly decreasing amplitude can
be seen. Reassuringly, the layer-resolved Co contributions
approach the bulk Co MAE towards the outer edges of the

3
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Figure 3. (a) Calculated valence charge on the Co atoms, Q, and
(b) relative shift of the Madelung potentials with respect to the bulk
case, 1VMad, for layers −13 ≤ i ≤ 13 and for a Pt concentration,
s = 0.02. Solid lines serve as guides for the eye.

middle region chosen in our calculations (i→ NL = 40 and
i → −(NL − 1) = −39). The mirror symmetry around the
impurity layer, D(Co)

i = D(Co)
−i , is also fulfilled with a high

accuracy.
Our earlier studies of the MAE of impurities [33, 34],

justified that the MAE is extremely sensitive to the presence
of Friedel oscillations in the charge density. It is, therefore,
tempting to relate figure 2 to the change in the valence charge
on the Co atoms with respect to the distance from the impurity
layer. From figure 3(a) we can see that the Co atoms in
the impurity layer and, in particular, the Co atoms in layers
adjacent the impurity layer gain some extra charge, while the
charge transfer to more distant Co layers drops rapidly. The
energy shift of the layer-resolved Co valence band position is
well described by the layer-resolved change in the Madelung
potential. (Note that within the ASA the Madelung potential
in each atomic plane is a constant.) As is obvious from
figure 3(b), an enhanced (reduced) charge at the Co sites is
accompanied with a downward (upward) shift of the valence
states. Comparing with figure 2, this shift of the valence
states correlates directly with the MAE contributions of the
Co layers adjacent the impurity layer, but, clearly enough,
the changes in the MAE contributions from more distant Co
layers are also subject to fine details of the valence states
influenced by the Pt alloying.

Figure 4. Calculated species-resolved MAE contributions (a) for
the impurity layer: D(Pt)

0 (black • ) and D(Co)
0 (blue N ) and (b) for

Co layers: D(Co)
1 (black •), D(Co)

2 (red +), D(Co)
3 (green ×) and D(Co)

4
(purple �). Solid lines connecting the symbols serve as guides for
the eye.

The effect on the species-resolved MAE by alloying with
Pt is demonstrated for the whole range of s in figure 4,
showing D(Co)

i for layers 0 ≤ i ≤ 4, together with the

direct contribution of Pt, D(Pt)
0 . In the impurity layer i =

0, see figure 4(a), the Co contribution D(Co)
0 is reduced

by the addition of Pt for concentrations up to about s =
0.15 and then enhanced for concentrations 0.15 < s < 0.50.
For concentrations s > 0.50,D(Co)

0 is again reduced with

increasing s and at s ≈ 0.9, D(Co)
0 even becomes negative.

Note that D(Co)
0 for s → 1 (not calculated here) would

correspond to the contribution of a single Co atom in a pure
Pt layer which, in general, would differ from zero. The on-site
platinum contribution, D(Pt)

0 , approaches the very small value
of 0.01 meV as s→ 0, rapidly increases up to 0.30 meV at
s ≈ 0.5 and then saturates at D(Pt)

0 ≈ 0.35 meV for larger s.

It can be inferred from figure 4(b), that Pt alloying
most dramatically influences the Co contribution at the layers
adjacent to the impurity layer: D(Co)

1 increases almost linearly
from the bulk MAE at s = 0 to about 0.7 meV at s = 1.
As already seen in figure 2, the Co contributions D(Co)

i from
layers further out (2 ≤ i ≤ 4) decrease with increasing s and
even becomes negative at s ≈ 0.25 for i = 2 and 3. For s > 0.5

4
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Figure 5. (a) Calculated valence charge on the Co atom, Q, and (b)
relative shift of the Madelung potential with respect to the bulk case,
1VMad, for layer 1 as a function of the Pt concentration, s. Solid
lines serve as guides for the eye.

these contributions show a modest increase, but D(Co)
2 still

remains negative.
It is worth investigating the change of valence states

projected onto the Co atoms in layer 1. From figure 5(a) it
is obvious that the valence charge at this Co atom increases
almost linearly with s from 9.00 e to 9.16 e. This increase in
the valence charge is necessarily accompanied by a downshift
of the corresponding valence states, as characterized by the
change in the Madelung potential, which is also linear s, see
figure 5(b). The large enhancement of the MAE contribution
from layer 1, D(Co)

1 , can therefore be related directly to the
monotonic shift of the corresponding valence states.

The dependence of the MAE of hcp Co on the band-filling
was investigated in [17] and, in the range of 9 ≤ Q . 9.2,
a much weaker dependence was obtained as for D(Co)

1 , see
figure 4(b). The main difference between the two studies is
that in our case the change in the band-filling is accompanied
by the breaking of the bulk symmetry upon the addition
of Pt atoms, giving rise to an enhanced uniaxial magnetic
anisotropy when a complete Pt layer is being formed. A
similar argument seems to apply for the rapid increase in
the on-site contribution of Pt, see figure 4(a). Furthermore,
we stress that our calculations rely on a non-perturbative
treatment of spin–orbit coupling, therefore, unlike to [35],
it is not obvious to relate a simple microscopic mechanism
to the spatial and species-resolved decomposition of the

Figure 6. The change in the MAE, 1K, of a system of 81 atomic
layers, see equation (4), as a function of the Pt concentration, s. The
solid line connecting the symbols serves as a guide for the eye.

MAE. According to [34] we can, however, suppose that the
spin-polarized valence electrons at the Co sites experience
strong spin–orbit coupling upon hybridizing with mobile
conduction electrons that scatter on Pt sites. This picture
is consistent with the large enhancement of D(Co)

1 with
increasing Pt concentration.

While the species- and layer-resolved contributions to the
MAE are very illuminating for a microscopic description of
the variations in the MAE, from an experimental point of
view only the MAE of the whole system can be accessed.
Here, this means considering the MAE of the entire middle
region illustrated in figure 1 for NL = 40. In order to extract
the change in this MAE induced by the Pt impurities, we
define the excess MAE, 1K(s), by subtracting the MAE of
the ‘unperturbed’ cobalt bulk layers,

1K(s) = sD(Pt)
0 + (1− s)D(Co)

0 + 2
40∑

i=1

D(Co)
i − 81KCo,

(4)

where KCo is the calculated MAE of hcp bulk Co (84.4 µeV).
Note that we have taken into account the off-center
positioning of the impurity layer by doubling the Co
contributions D(Co)

i for i ∈ [1, 40], thus, in total, a system of
81 layers is considered.

1K is shown as a function of s in figure 6, demonstrating
that for small concentrations of platinum (s < 0.24) the
addition of platinum to bulk cobalt actually reduces the total
MAE of the system by about 80 µeV. This is in strong
contrast to the on-site contribution of Pt, D(Pt)

0 , being positive
for all values of s as seen in figure 4(a). The reduction in
MAE for low s, therefore, stems from the decrease in the
cobalt contributions D(Co)

i with increasing s, in particular,
for i = 0, 2, 3 and 4, see figure 4. 1K becomes positive for
s > 0.24 as the increasing on-site contribution, D(Pt)

0 , gets
larger weight (note that it is multiplied by s) and due to the
large enhancement of D(Co)

1 . At s = 1,1K = 1.4 meV, which
is approximately four times the on-site platinum contribution,
D(Pt)

0 ≈ 0.35 meV for s = 1.
For nanosized systems, it might be of interest to consider

the change in the MAE per platinum atom in the system, K̄Pt,

5



J. Phys.: Condens. Matter 24 (2012) 406001 C J Aas et al

Figure 7. Black circles: calculated change in the MAE per Pt atom,
K̄Pt, see equation (5), as a function of the Pt concentration, s. The
black solid line connecting the symbols serves as a guide for the
eye. Red dashed line: the change in the MAE per Pt atom added,
KPt, see equation (6), as calculated from a polynomial fit of 1K(s)
in figure 6.

defined by

K̄Pt(s) =
1K(s)

s
, (5)

and also, the change in the MAE per platinum atom added to
the system, KPt, obviously given by

KPt(s) =
d(1K(s))

ds
. (6)

We obtained KPt(s) by fitting a fourth-order polynomial to
the function 1K(s) in figure 6 and then finding the derivative
of this function analytically. As apparent from figure 7, both
K̄Pt and KPt are monotonically increasing with increasing s,
starting with the same value of about −1 meV at s = 0 (see
later). It follows directly from figure 6, that K̄Pt crosses zero
at s ≈ 0.24, while KPt crosses zero at s ≈ 0.11 (i.e. where
the function 1K(s) reaches its minimum). For a complete
platinum layer immersed in bulk cobalt, i.e. for s = 1, K̄Pt =

1K ≈ 1.4 meV. A comparison with figure 4 shows that about
25% of this value arises from the direct contribution of Pt,
D(Pt)

1 , and the rest from the induced contributions at the Co
atoms. Interestingly, the change in the MAE by addition of a
Pt atom to the system, KPt, exhibits a surprisingly large value
of about 2.5 meV at s = 1. From figure 4(a) it can be inferred
that the on-site Pt contribution D(Pt)

0 has nearly zero slope in
this region of s, thus, this large value of KPt stems mainly from
an increase in D(Co)

i for 1 ≤ |i| ≤ 4 near s = 1.
In the limit s→ 0, corresponding to the case of a single

Pt impurity in bulk Co, K̄Pt and KPt should be identical, since
for small s the function 1K(s) exhibits, in principle, a linear
dependence. This is fairly well confirmed by our calculations.
KPt(0) can then be expressed as

KPt(0) = D(Pt)
0 (0)− KCo +

40∑
i=−40

dD(Co)
i (s)

ds

∣∣∣∣∣
s=0

. (7)

The physical meaning of the above equation is that adding
a Pt impurity to bulk Co has two effects on the MAE of
the system: the first two terms, D(Pt)

0 (0) − KCo, represent the

Figure 8. Calculated derivatives of the layer-resolved Co
contributions to the MAE, equation (8), for the Pt concentration
s = 0.02. The solid line serves as a guide for the eye.

direct contribution of a Co atom being replaced by a Pt atom,
whereas the last term of equation (7) quantifies the induced
change in the MAE contributions from the Co atoms that
are not being replaced by Pt. Since the direct contribution is
about −0.07 meV, see also figure 4(a), the value of KPt(0) =
−1 meV can again only be explained by the induced Co
contributions.

In figure 8 we show the approximate layer-resolved
derivatives calculated as

dD(Co)
i (s)

ds

∣∣∣∣∣
sj

=
D(Co)

i (sj+1)− D(Co)
i (sj−1)

sj+1 − sj−1
, (8)

for sj = 0.02 with j indexing the Pt concentrations in
ascending order. Clearly, this figure is closely related to
figures 2 and 4: for small s, the Co contributions {D(Co)

i }

show an increasing tendency with increasing s for |i| = 1
and |i| ≥ 7, while they decrease for 2 ≤ |i| ≤ 5. Apparently,
this latter effect overcomes the former one, leading to the
relatively large value of KPt(0) = −1 meV.

We also investigated possible effects of the Friedel
oscillations on the MAE by truncating the sum in equation (4)
and considering the variation in K̄Pt against the number N of
Co planes included in the sum,

K̄Pt(s,N) =
1
s

(
sD(Pt)

0 + (1− s)D(Co)
0

+ 2
N∑

i=1

D(Co)
i − (2N + 1)KCo

)
, (9)

for 1 ≤ N ≤ 40. The function K̄Pt(N) for s = 0.01, 0.05, 0.10
and 0.20 is shown in figure 9. For all cases, the maximum of
K̄Pt(N) occurs at 2N + 1 = 3 planes, i.e. including only one
Co layer on each side of the impurity layer. This is because the
induced effect on D(Co)

1 by the addition of platinum is strongly
positive for all s, see figures 2 and 4(b). There is a significant
minimum in the calculated K̄Pt(N) at 2N + 1 ≈ 11 planes.
Comparing with figure 2, it is obvious that this minimum
is due to the reduction of D(Co)

i for 3 ≤ |i| ≤ 5 caused by

6
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Figure 9. Calculated excess MAE per platinum atom, K̄Pt, as a
function of the number of planes N included in the sum in
equation (9) for s = 0.01 (red +), s = 0.05 (green ×), s = 0.10
(blue N) and s = 0.20 (black •).

the addition of Pt. K̄Pt(N) then exhibits a local maximum at
2N+1 ≈ 31, mostly due to the Co contributions in layers 8 ≤
|i| ≤ 15 counterbalancing the Co contributions of opposite
sign in layers 3 ≤ |i| ≤ 5. Concerning the overall accuracy
of the calculated MAE, the effects of the Friedel oscillations
remain significant for about 2N + 1 < 70 planes, i.e. for 35
layers on either side of the impurity layer. In general, the
variation in K̄Pt with N spans more than 1.5 meV for all values
of s. This of course has significant implications for measuring
the MAE in thin film samples, as up to about 2N + 1 < 40
planes, i.e. for film thicknesses d < 8 nm, the change in the
MAE induced by the Pt impurities located at the center of
the sample, is expected to be extremely sensitive on the film
thickness. Note that this finite-size effect is superimposed on
and, most likely, amplified by quantum interferences arising
from the boundaries of the finite film sample [31].

It should be noted that, being a mean-field approach,
the CPA completely neglects both structural and electronic
short-range-order effects. Such short-range-order effects
are likely to be most strongly pronounced for small Pt
concentrations s. Therefore, our results in the low-s limit
should be tested against another method. By employing a
fully relativistic real-space embedded cluster Green’s function
technique as combined with the SKKR method [36] we
made an attempt to test the effect of electronic relaxations
around a Pt impurity placed in hcp bulk Co. We performed
self-consistent calculations for a cluster containing a Pt
impurity and the neighboring Co atoms up to three nearest
neighbor (NN) distances of the hcp lattice (aNN). Note that our
embedded cluster included 158 Co atoms around the central
Pt atom, sorted out geometrically as follows: (i) 36, 2 × 30,
2 × 19 and 2 × 12 Co atoms in layers 0, ±1, ±2 and ±3,
and (ii) 12, 56 and 158 Co atoms within the spheres centered
around the Pt site having the radii of aNN, 2aNN and 3aNN,
respectively. The MAE for this cluster was again calculated
using the magnetic force theorem. By summing up all the
site-resolved contributions of the MAE in the cluster within
the spheres as mentioned above, we obtained the values for
KPt, 0.67 meV, −0.31 meV and −0.38 meV, respectively.

Obviously, a direct comparison of these values with those for
the layered system is hardly possible, since, according to the
geometrical classification (i), the KPt for the cluster refers to
an incomplete summation over sites in the respective layers.
Nevertheless, comparing with the values in figure 9 related to
2N + 1 = 3, 5 and 7 and for the concentration of s = 0.01
being closest the case of an impurity, we can conclude that
both the trend and the magnitude of KPt are in satisfactory
agreement between the CPA and the real-space calculations.

4. Summary and conclusions

Using the fully relativistic screened Korringa–Kohn–Rostoker
method combined with the coherent potential approximation,
we have studied the MAE of a bulk hcp Co system in which
one of the (0001) atomic plane has been alloyed with Pt for
the whole concentration range, 0 < s ≤ 1. We conclude that
low concentrations of platinum reduce the overall MAE of this
system and that the origin of this reduction are the induced
changes in the MAE contributions from the Co atoms. In the
limit s→ 0 (bulk Co), the change in MAE per platinum atom
added is approximately−1 meV. At larger concentrations, the
direct MAE contribution of the platinum, which is positive for
all Pt concentrations, starts to increase, but the overall change
in MAE due to the addition of platinum is still dominated
by induced Co contributions. Interestingly, in the limit of a
completely filled Pt layer, addition of one Pt atom increases
the MAE of the system by about 2.5 meV. We also investigated
the effect of long-ranged Friedel oscillations and established
a large sensitivity of the MAE on the number of Co layers
included in the calculations. This might have a significant
impact on the experimental determination of the MAE in thin
film samples of this type of system.
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