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Microscopic theory of magnetism in the magnetocaloric material Fe2P1−xTx (T = B and Si)
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Landau phenomenological theory in combination with first-principles calculations was used to reveal the origin
of the metamagnetic nature and the unusually strong dependence of the ordering temperature with doping of
the Fe2P compound. We show that the magnetism of the two sublattices occupied by Fe atoms has an entwined
codependency, which is strongly influenced by alloying. We furthermore demonstrate that a constrained disordered
local moment approach combined with Monte Carlo simulations can only reproduce the experimental ordering
temperatures in these technologically important prototype alloys for magnetocaloric refrigeration.
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Magnetic refrigeration techniques have recently been
suggested as an alternative for efficient cooling in various
applications.1 In current research efforts to find the most suit-
able candidates, a large variety of materials has been explored,
from first-order magnetostructural transitions with localized
magnetic moments to second-order-type transitions with
itinerant magnetism.2–6 Although materials with first-order-
type magnetostructural transitions offer large magnetocaloric
effects (MCEs) around room temperature, the accompanying
thermal and magnetic hysteresis inhibits their applicability.
Metamagnetic transitions based on magnetoelastic interactions
caused by the onset of exchange interaction (striction) also
provide large MCEs but at a low hysteresis cost.

One of the most feature-rich materials of this kind is
CoMnSi, with a pronounced magnetic-field-induced metam-
agnetism and associated negative MCE due to the giant magne-
toelastic coupling within the antiferromagnetic ground state.7

Furthermore, a large positive MCE over the itinerant electron
metamagnetic transition of LaFe13−xSix has been widely
reported.8 This itinerant electron metamagnetic transition is
simultaneously followed by an approximately 0.5% increase
in volume, without a significant change in the cubic symmetry,
and has been ascribed to the multiple energy minima in the total
energy versus magnetization profile.9

Currently, a competitor for the latter system is represented
by the (Fe,Mn)2(P,Si,As) alloys,2 where the magnetoelastic
transition of the hexagonal lattice is accompanied by a large
MCE. In these rare-earth free alloys the metamagnetic transi-
tion temperature of the Fe2P parent compound (∼219 K)10,11

has been successfully raised to room temperature with the
partial replacement of Fe by Mn and P by As or Si.12

Prior to the interest in these materials as a magnetic
cooling medium, the peculiar magnetoelastic transition of
the Fe2P compound was thoroughly investigated.13–15 Yamada
and Terao16 reported that Fe atoms at the tetrahedral 3f site
show metamagnetic behavior responsible for the first-order
transition at TC . They proposed a model based on Landau-

Ginzburg theory by taking into account the effect of spin
fluctuations. The unusually strong dependence of TC upon
doping quantities of the p-block elements of As,17 Si,18 or B19

onto the P site, however, is not understood. For instance, 8
at% of B doubles the magnetic ordering temperature (Table I),
allowing fine-tuning of the magnetic transition for cooling
applications.

In this article, we use density functional theory combined
with the Landau phenomenological model and Monte Carlo
(MC) simulations to study comparatively the strong magnetic
ordering dependence of the metamagnetic Fe2P compound
with doping by B and Si. We show that small alloying effects
lead to locally stabilized ferromagnetism of the otherwise
metastable magnetic Fe sublattice. We furthermore demon-
strate that collective ferromagnetic (FM) theory would signifi-
cantly overestimate the Curie temperature, while the theory of
a constrained disordered local moment can reasonably explain
the remarkable composition dependence of the TC of these
magnetocaloric compounds.

Fe2P1−xTx (x = 0 when T = P, x � 15% when T = B,
and x � 25% when T = Si) crystallizes in a hexagonal crystal
structure (space group P 62m)11,18–20 with two types of triple-
occupied Fe sites: Fe-I in the tetrahedral-3f positions and
Fe-II in the pyramidal-3g positions. Both the volume and the
hexagonal axial ratio (c/a) change upon doping the P site
(Table I).

The nature of magnetism and the magnetic phase transition
have often been discussed via the Landau expansion of the
magnetic energy, viz., E(M) = 1

2AM2 + 1
4BM4 + 1

6CM6,
with C > 0. The sufficient condition for an FM ground state at
0 K is A < 0 (Stoner criteria). Ferromagnetism appears even
for A > 0 if AC/B2 < 3/16 and B is large and negative.21

Furthermore, the FM solution can be stabilized by an internal
(exchange) or by an external (applied) magnetic field, when
3/16 < AC/B2 < 9/20.21,22 The former is the case for the
Fe-I sublattice in Fe2P, where the FM ordering appears as a
result of the exchange field created by the Fe-II atoms.16 The
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TABLE I. Experimental volume (V ), c/a ratio, and TC for
Fe2P,11,20 Fe2P0.9Si0.1,18 and Fe2P0.92B0.08.19 The dimensionless quan-
tity κ is reported in the last column (see text for definition).

V (Å3) c/a TC (K) κ

Fe2P 103.10 0.589 219 0.263
Fe2P0.9Si0.1 103.92 0.578 370 0.247
Fe2P0.92B0.08 102.14 0.570 450 0.208

metamagnetic behavior of the Fe-I sublattice is reactivated at
temperatures close to TC , when the exchange field of the Fe-II
sublattice drops below a critical value.

We investigate the magnetism in Fe2P and Fe2P1−xTx

(T = B and Si) solid solutions by considering the magnetic
energy in terms of the chemical composition and local
magnetic moments m1 and m2 on the Fe-I and Fe-II atoms,
respectively (Fig. 1). For each composition, the total energies
were calculated as a function of magnetic moments using the
exact muffin-tin orbital method.23 We adopted the local spin
density approximation,24 which turned out to give a good
description of the magnetic properties of Fe2P.15,16,25 The
chemical and magnetic disorder was treated via the coherent
potential approximation.26 All calculations were performed
for the experimental structures (Table I). The numerical
parameters were set so that the total energy was converged
within 0.1 mRy/atom.

For all three systems in Fig. 1, the magnetic energy shows
a minimum around m1 ∼ 1 and m2 ∼ 2 and a saddle point
around m1,m2 ∼ 0. The local minimum (maximum) in terms
of m1 (m2) around the latter stationary point indicates a
metamagnetic Fe-I (FM Fe-II) sublattice. Since the energy
plateau around the saddle point decreases with doping, we
envisage that the metastable finite-moment state of the Fe-I
site is shifted toward lower energies with doping by B or Si.

In order to shed light on the behavior of the Fe-I sublattice,
we separate the magnetic energies originating from the two
types of Fe sublattices according to

E(m1,m2) = 1
2a1m

2
1 + 1

4b1m
4
1 + 1

6c1m
6
1

+ 1
2a2m

2
2 + 1

4b2m
4
2 − Jm1m2, (1)

where the Landau coefficients (a1, b1, c1, a2, and b2) and the
exchange interaction between the two magnetic sublattices (J )
are obtained by fitting the magnetic energy calculated as a func-
tion of M = m1 + m2, with the constraint ( ∂E(m1,m2)

∂(m1−m2) )M = 0.
Note that invoking higher order terms for m2 has a negligible
influence on the other six parameters. A similar expression
was used by Yamada and Terao.16

According to Eq. (1), the dimensionless quantity κ ≡
a1c1/b

2
1 defines the relative stability of the FM ordering of

the Fe-I sublattice, compared to the nonmagnetic state. It
is found that Fe2P has the largest κ (Table I), which means
that the finite-moment state of the Fe-I sublattice (when the
interaction with the Fe-II site is neglected) is the least stable,
compared to that of the doped systems. For Fe2P0.92B0.08, κ is
close to the FM limit 3/16 (0.19), indicating that the stability
of the finite-moment state of Fe-I is significantly increased by
B doping. For the Si-doped system, κ is in between that of
pure and that of B-doped Fe2P.

For a detailed analysis, we now express the magnetic energy
as a function of m1, eliminating the FM interaction (Jm2) of
the Fe-II sublattice (according to our calculations J is always
positive). The corresponding magnetic energy E(m1,m2 = 0)
is shown in Fig. 2. This energy has a global minimum at m1 = 0
for all three systems and an inflection point/local minimum at
m1 ∼ 1 for the pure Fe2P/doped systems. Hence, in all alloys
considered here, the magnetic ordering of the Fe-I sublattice
is stabilized by the exchange field created by the Fe-II
sublattice.

We propose the following scenario for the magnetic
transition in pure and doped Fe2P systems. When the average
magnetic moment of the Fe-II sublattice is sufficiently large,
say above a critical value mc

2, then Jm2 is strong enough
to order the magnetic moments on the Fe-I sublattice. A
finite temperature reduces the average moment of the Fe-II
site (also the Fe-I site) so that, with increasing temperature,
one approaches from above mc

2. This happens for Fe2P- as
well as for B- or Si-doped compounds. However, according
to Fig. 2, in Fe2P0.9Si0.1 and, especially, in Fe2P0.92B0.08 the
Fe-I sublattice has a stronger internal tendency to form a
finite-moment state compared to Fe2P. Thus, the value of mc

2 is
smaller for B- and Si-doped systems than for Fe2P. Therefore,

FIG. 1. (Color online) Magnetic energy surface (in units of mRy) for Fe2P, Fe2P0.9Si0.1, and Fe2P0.92B0.08 calculated as a function of the
local magnetic moments at Fe-I (m1) and Fe-II (m2) sites. Energies are shown relative to the nonmagnetic value at m1 = m2 = 0.
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FIG. 2. Magnetic energy [E(m1,m2)] plotted as a function of m1

for m2 = 0. Solid line, Fe2P; dashed line, Fe2P0.9Si0.1; and dashed-
dotted line, Fe2P0.92B0.08.

it should be possible to reach higher ordering temperatures in
the alloyed samples compared to the host compound.

Based on the above microscopic picture, one would antic-
ipate that the magnetic exchange interactions calculated for
an FM state of Fe2P-based systems, with an accompanying
large moment of the tetrahedrally coordinated Fe atom, do
not represent well the state of affairs close to the ordering
temperature. This is because fluctuations of the moments
on the pyramidally bonded Fe atom diminish the exchange
interaction between the magnetic sublattices, which brings
forth the metamagnetic behavior of the Fe-I sublattice at
(or close to) the ordering temperature. A more consistent
approach to this problem is the disordered local moment27

model. Here we adopt a constrained disordered local moment
(cDLM) model with a vanishing configurational-averaged total
magnetic moment at the Fe-I sites, whereas the disordered
local Fe-I moments as well as the FM Fe-II moments were
determined fully self-consistently.

With exchange parameters (Jij , with i and j denoting Fe
positions) evaluated for both the FM and the above cDLM
configurations, we made use of MC simulations to estimate
the Curie temperature. Exchange interactions were calculated
within the magnetic force theorem.28 Curie temperatures were
estimated using MC simulations based on the Metropolis
algorithm as implemented in the UppASD program29 in
combination with the cumulant crossing method.30

The results of the MC simulations are shown in Fig. 3. It is
apparent that the Curie temperature for all alloy concentrations
is considerably overestimated by using the exchange coupling
constants (Jij values) obtained from the FM configuration.31

Moreover, using the FM Jij values, we find that 15% B
produces an ∼55% increase in TC , compared to the ∼130%
increase seen in experiments.11,19 The failure of the FM
reference state is due to the fact that this state cannot capture
the effect of metamagnetic behavior of the Fe-I moment near
the transition temperature, which influences the Jij and, in
turn, the value of the theoretical TC . However, a calculation
using the cDLM configuration at the Fe-I site reproduces well
the behavior of the ordering temperature, both the absolute
values and, more importantly, the strongly increasing trend of
TC with respect to doping.
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FIG. 3. Theoretical Curie temperatures calculated for FM
(squares) and cDLM (circles) states. Experimental data11,19 are shown
by triangles.

The magnetic properties of the two Fe sites of the Fe2P-
based magnetocaloric materials show a pronounced codepen-
dence. Our study demonstrates that this coupling becomes less
significant with increasing B or Si substitution at the P site, as
a result of lowering the energy of the finite-moment FM state
of the Fe-I sublattice with doping. The intricate dependence
of the magnetic moment on the Fe-I site and the coupling
to the Fe-II site bring about an order-disorder transition of
the magnetism that is different compared to that of simple
ferromagnets like FM Fe. The escalating temperature causes
fluctuations in the Fe-II moment and gradually removes its
exchange coupling to the Fe-I moment. With increasing B or Si
concentration the Fe-I moment has a greater internal stability
and can hence maintain a finite value at higher temperatures. In
a bootstrapping scenario, this sustains the exchange coupling
between the Fe-I and the Fe-II sites, so that the Fe-I moment
survives and the ordering temperature is pushed dramatically
to higher temperatures.

The disclosed picture of a delicate and entwined coupling
between Fe-II and Fe-I magnetism is consistent with obser-
vations of TC with respect to B and Si doping and provides
a crucial microscopic explanation for why Fe2P-based ma-
terials have suitable magnetic properties for magnetocaloric
applications. The atomistic approach presented here could
be especially valuable in the design of new magnetocaloric
materials with a tailored metamagnetic transition around room
temperature.
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