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In order to explain the anisotropic Rashba-Bychkov effect observed in several metallic-surface-state systems,
we use k · p perturbation theory with a simple group-theoretical analysis and construct effective Rashba
Hamiltonians for different point groups up to third order in the wave number. We perform relativistic
ab initio calculations for the (

√
3 × √

3)R30◦ Bi/Ag(111) surface alloy, and from the calculated splitting of
the band dispersion we find evidence of the predicted third-order terms. Furthermore, we derive expressions for
the corresponding third-order Rashba parameters to provide a simple explanation of the qualitative difference
concerning the Rashba-Bychkov splitting of the surface states at Au(111) and Bi/Ag(111).
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I. INTRODUCTION

Since the first experimental verification by LaShell et al.,1

the spin-orbit–induced splitting of Shockley states on metallic
surfaces called the Rashba-Bychkov (RB) effect2 gained focus
of experimental and theoretical research. These investigations
range from the prototypical L-gap surface states at Au(111)
and Ag(111)3–7 and also at Au(110),8–10 through Li/W(110)
and Li/Mo(110) overlayers11 and the Gd(0001) surface,12 to a
large number of metallic surfaces and surface alloys related to
Bi, Pb, or Sb where the 5p and 6p orbitals show a pronounced
spin-orbit splitting.13–28 This huge interest is mainly triggered
by potential spintronics applications in relation to the Datta-
Das transistor,29 the spin Hall effect,30 and the anomalous Hall
effect.31

While accurate ab initio calculations satisfactorily account
for most features of the measured dispersion relations of
metallic surface states, there is an obvious need to explain the
RB effect in terms of simple models containing a few, easily
identifiable parameters. The simplest effective Hamiltonian
of a two-dimensional electron gas, subject to spin-orbit
interaction (SOI), includes in addition to the kinetic energy
ε0 + h̄2k2

2m∗ (k and m∗ being the wave vector and the effective
mass of the electrons, respectively), a Rashba term:2,32

HR(k) = αR(kxσy − kyσx), (1)

where αR is the so-called Rashba parameter and σi (i = x,y,z)
denote the Pauli matrices. The corresponding eigenvalues,
ε±(k) = ε0 + h̄2k2

2m∗ ± αR k (k = |k|), show an isotropic split-
ting for k �= 0, and at least for moderate values of k, they
readily can be fit to most experimental and ab initio dispersion
relations.

Although not yet detected experimentally,8 an RB splitting
that is anisotropic in k space is obvious for the surface states at
Au(110). The C2v point-group symmetry33 of the system not
only implies an anisotropy of the effective mass, m∗

x �= m∗
y ,

but, as discussed in terms of k · p perturbation theory,10,35 it
leads to a Rashba Hamiltonian containing two independent

Rashba parameters, α1
R and α2

R:

HR (k) = α1
R kxσy + α2

R kyσx. (2)

Fully relativistic ab initio calculations confirmed the existence
of the anisotropic RB splitting at Au(110),9 matching with a
high accuracy to the eigenvalues of the effective Hamiltonian
in Eq. (2).10

Even in the case of high-symmetry surfaces, i.e., having
a point group of C3v or C4v , several studies13,15,18,24,26,27

called attention to an anisotropic RB splitting. In Ref. 34
the anisotropic RB effect at Bi/Ag(111) and Pb/Ag(111)
surfaces was reproduced by using a nearly-free electron model
and explained due to in-plane structural inversion asymmetry.
From the group-theoretical analysis in Ref. 35 it is, however,
clear that under C3v and C4v point-group symmetry an effective
2 × 2 Hamiltonian that is linear in the components of k must
be of the form of Eq. (1); hence it cannot explain the observed
anisotropy of the RB splitting. Thus we conclude that in
these systems the anisotropic RB effect can be described by
a Hamiltonian containing at least third-order polynomials of
kx and ky . It should be noted that the second-order terms are
related to the kinetic energy (effective mass terms) that are
irrelevant to the RB splitting.

To construct Rashba Hamiltonians up to third order in
k, in the present work we use k · p perturbation theory
and group-theoretical methods different from Ref. 35. Our
analysis of the effective Hamiltonian is closely related to
that of Ref. 36, where, for the case of C3v symmetry, the
correct form of H (k) is derived up to third order in k

and the corresponding band dispersion was used to explain
the hexagonal warping of the surface states’ Fermi contour
observed experimentally in the topological insulator Bi2Te3.37

A unified phenomenological description of anisotropy effects
on the Rashba and the topological insulator surface states under
C3v symmetry has recently been exploited based on such an
effective Hamiltonian.38

We also perform relativistic ab initio calculation for the
Bi/Ag(111) ordered alloy in (

√
3 × √

3)R30◦ superstructure
and confirm that for higher values of k, but still in the measured
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range, third-order terms of the Rashba Hamiltonian are needed
to reproduce the RB splitting and that these terms are of the
predicted form. Moreover, using explicit expressions of the
third-order Rashba parameters within k · p perturbation theory
and calculated spectral densities at the Brillouin zone center we
are able to give a simple explanation of why the Au(111) and
the Bi/Ag(111) surface states exhibit isotropic and anisotropic
RB splitting, respectively.

II. PERTURBATION THEORY
AND SYMMETRY ANALYSIS

Let Q be a high-symmetry point of the surface Brillouin
zone (SBZ), for which a pair of spin-degenerate eigenstates
exists on a nonmagnetic surface. Due to time reversal symme-
try, this is always the case if Q = −Q + K is satisfied, where
K is a two-dimensional (2D) reciprocal-lattice vector. Such
points are the center of the SBZ (�) and some special points
at the boundary of SBZ, such as the X, Y, and S points for a
primitive rectangular lattice, the M and X points for a square
lattice, and the M point for a hexagonal lattice. Regarding what
follows, our investigations will concern solely this case termed
as the proper Rashba effect.9 As pointed out in Ref. 9, due to
double-group symmetry degeneracy can happen at points of
the SBZ that don’t meet the above condition, like the K point
for a hexagonal lattice (improper Rashba effect).

To describe the surface band around Q it is worth to label the
corresponding Bloch states by the wave number with respect
to Q, ψQ+k, and introduce a new wave function φk as

ψQ+k (r) = eikrφk (r) , (3)

with the boundary condition φk(r + T) = eiQTφk(r), where T
is a 2D real-lattice vector. Considering the Hamilton operator
H = p2

2m
+ V + HSO, with the crystal potential V and HSO

denoting the spin-orbit interaction,

HSO = h̄

4m2c2
(∇V × p) · σ , (4)

and the wave functions φk satisfy the eigenvalue equation

[H0(k) + HSO(k)] φk = ε(k)φk (5)

with

H0(k) = (h̄k + p)2

2m
+ V, (6)

and

HSO(k) = h̄

4m2c2
[∇V × (h̄k + p)] · σ . (7)

Following the recipe used in Ref. 10, in the first step we
look for the solution of the Schrödinger equation,

H0(k)φ0
k = ε0(k)φ0

k, (8)

which can be elucidated, e.g., in terms of k · p perturbation
theory. Although such a calculation provides deeper insight
into the problem,10 in this section we just make use of the
symmetry properties of the solutions, ε0(k) and φ0

k. First
we note that since H0(k) is independent of the spin, the
solutions of Eq. (8) remain degenerate in spin space. Time

reversal symmetry, TH0(k)T −1 = H0(−k) with T ψ = ψ∗,
then immediately implies

ε0(−k) = ε0(k), (9)

φ0
−k = (

φ0
k

)∗
, (10)

where the phase of φ0
k has been fixed without loss of generality.

Clearly from Eq. (9), a polynomial form of ε0(k) contains
only even powers; the first nontrivial (second-order) terms are
obviously related to the effective masses.

We can draw further relations from point-group symmetry.
Let GQ be the small group of Q, i.e., gQ = Q + K for any g ∈
GQ, and K denoting an appropriate reciprocal-lattice vector.
Using the standard definition for the action of a symmetry
operation, (g ◦ f )(r) = f (g−1r), from the symmetry of the
Hamilton operator, g ◦ H0(k) = H0(gk), one easily can derive

ε0(gk) = ε0(k), (11)

g ◦ φ0
k = φ0

gk. (12)

In the second step, using HSO(k) as perturbation and φ0
k χs

with χs being spin eigenfunctions (s = ± 1
2 ) as unperturbed

wave functions, first-order degenerate perturbation theory is
applied. The Rashba Hamiltonian HR(k) is defined as the
corresponding 2 × 2 matrix,

HR(k) = α(k) · σ , (13)

where

α(k) = 〈
φ0

k

∣∣ h̄

4m2c2
(∇V × (h̄k + p))

∣∣φ0
k

〉
. (14)

Our present goal is to derive the polynomial form of α(k).
To this end we note two symmetry properties that can be
obtained from Eqs. (10) and (12):

α(−k) = −α(k), (15)

stating that αi(kx,ky) can be expanded in terms of polynomials
of odd power, and

α(g k) = det(g) gα(k), (16)

where det(g) = 1 for proper rotations and det(g) = −1 for
improper rotations. Equation (16) is then used to set up linear
equations for the coefficients cl

i of the nth-order polynomials of
αi(kx,ky) = ∑

l=1,...,n cl
ik

l
xk

n−l
y (i = x,y,z). Solving this set of

linear equations serves to search for the vanishing coefficients,
in principle, for any power n, and hence to determine the form
of HR(k).

Another systematic way to obtain HR(k) relies on the
observation that Eq. (16) can be used to formulate the
invariance of the Rashba Hamiltonian as

HR(k) = α(g k) · [det(g) gσ ] , (17)

also implying that σ transforms as an axial vector. Sorting
out the components of k and σ according to irreducible
representations of GQ, their direct products can again be
decomposed into irreducible representations. Equation (17)
states that only the total symmetric irreducible representations
from this decomposition can contribute to HR(k). From the
corresponding tables of the point groups33 one can easily
construct the possible terms entering HR(k) according to
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TABLE I. Possible terms of the Rashba Hamiltonian for different point groups (first row) containing first-order (second row) and third-order
(third row) polynomials of kx and ky .

Chx C2 C3 C4 C2v C3v C4v

kxσy , kxσx , kxσx + kyσy , kxσx + kyσy , kxσy , kxσy − kyσx kxσy − kyσx

kyσx , kxσy , kxσy − kyσx kxσy − kyσx kyσx

kyσz kyσx ,

kyσy

k3
xσy , k3

xσx ,
(
k3

x + kxk
2
y

)
σx+ k3

xσx + k3
yσy , k3

xσy ,
(
k3

x + kxk
2
y

)
σy− k3

xσy − k3
yσx ,

k2
xkyσx , k3

xσy ,
(
k2

xky + k3
y

)
σy , k3

xσy − k3
yσx , k2

xkyσx ,
(
k2

xky + k3
y

)
σx , k2

xkyσx − kxk
2
yσy

k2
xkyσz , k2

xkyσx ,
(
k3

x + kxk
2
y

)
σy− k2

xkyσx − kxk
2
yσy , kxk

2
yσy ,

(
k3

x − 3kxk
2
y

)
σz

kxk
2
yσy , k2

xkyσy ,
(
k2

xky + k3
y

)
σx , kxk

2
yσx + k2

xkyσy k3
yσx

k3
yσx , kxk

2
yσx ,

(
k3

x − 3kxk
2
y

)
σz ,

k3
yσz kxk

2
yσy ,

(
k3

y − 3k2
xky

)
σz

k3
yσx ,

k3
yσy

increasing powers of kx and ky . In the Appendix this procedure
is illustrated for the simple case of point group C2v . As one of
the main results of this work, in Table I we list the possible
terms up to third order in k that can enter HR(k) for different
point groups relevant to surfaces of crystals.

Finally, in this section we comment on the method used
in Ref. 35. In this work a Hamiltonian including SOI but
excluding all k-dependent terms was considered as the unper-
turbed system and the twofold degenerate solutions φ1 and
φ2, corresponding to the wave number Q as the unperturbed
solutions. The perturbation was therefore taken as H′(k) =
h̄
m

kp + h̄2

4m2c2 (∇V × k) · σ and, similar to our strategy, first-
order degenerate perturbation theory was applied. The form
of the effective Rashba Hamiltonian, H ′

ij (k) = 〈φi |H′(k) |φj 〉
(i,j = 1,2), is then determined via the invariance conditions,

H ′(gk) = D (g) H ′(k) D (g)−1 , (18)

where D(g) is a 2 × 2 unitary double-point-group representa-
tion of g. In the case of Abelian point groups (Chx , C2, C3, and
C4), the degenerate states form time-reversed pairs and D(g)
can simply be set up from the characters of the corresponding
one-dimensional irreducible representations. Following from
the definition of H ′(k), in Ref. 35 the first-order Rashba
Hamiltonians were obtained for the groups Chx , C2v , C3v , and
C4v . It is, however, straightforward to show that when applied
to the Hamiltonian (13), Eq. (18) is equivalent with condition
(17);39 hence using double-group representations leads to the
same results as listed in Table I.

III. THIRD-ORDER RASHBA SPLITTING AT Bi/Ag(111)

By using the screened Korringa-Kohn-Rostoker (KKR)
method40 we performed calculations for the (

√
3 × √

3)R30◦
ordered surface alloy Bi/Ag(111) to obtain a quantitative veri-
fication of our prediction of a third-order Rashba Hamiltonian.
A 2D lattice constant of 2.892 Å related to fcc Ag bulk and,
according to geometry optimization we performed in terms of

the VASP method41 and also in agreement with previous LAPW

calculations,19 an outward buckling of 36% (0.85 Å) for the
Bi atoms was considered. In accordance with the concept of
perturbation theory, we performed self-consistent calculations
within the scalar-relativistic approach, while we included SOI
only when calculating the dispersion relation of the surface
states. The local spin-density approximation as parametrized
by Vosko et al.42 was applied, and the effective potentials and
fields were treated within the atomic sphere approximation
(ASA) with an angular momentum cut–off of 	max = 2. For
a better positioning of the surface states with respect to the
Fermi energy, we determined the Fermi level of bulk Ag by
using 	max = 3. The energy integrations were performed by
sampling 12 points on a semicircular path in the upper complex
semiplane, and for the necessary k integrations we selected
36 k points in the irreducible segment of the surface Brillouin
zone.

As is well-known, ASA gives a rather poor description of
the surface potential barrier, pushing, in general, the surface
states to significantly low binding energies. In order to cure
this problem, the positions of the empty-sphere layers are
usually relaxed in appropriate amounts.43 Probably due to
the large relaxation of the Bi atoms, in the present case,
this procedure was not successful in getting reliable binding
energies. According to our experience, the main reason for this
deficiency was the very low value of the Madelung potential
for the empty spheres adjacent to the Ag2Bi surface layer.
Shifting this potential up artificially by about 0.5 Ry (near
to that of the constant vacuum potential) indeed resulted in
an upward shift of the Bi surface states close to the energy
region comparable to the experiment. Nevertheless, we should
emphasize that the first-principles calculations we present
now serve for illustrating the predictions of the perturbation
theory presented in Sec. II rather than for providing a precise
comparison to experiment.

The calculated dispersion relations of the Bi surface states
are shown in Fig. 1 along the � M direction of the SBZ. As
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FIG. 1. Calculated dispersion relations of the surface states of
Bi/Ag(111) along the � M direction of the SBZ. Lower branches:
spz states, upper branches: px,py states.

explained above, we managed to place the occupied spz band
by only 0.3 and 0.1 eV lower in binding energy as compared to
the experiment and a previous KKR calculation,18 respectively.
Consequently, the position and also the shape of the mainly
unoccupied Bi pxpy surface band agree well with those from
similar first-principles calculations.22 Particular features of
this band, namely, a large deviation from a parabolic shape and
a visual merging of the Rashba-split branches for k > 0.2 Å−1,
imply highly anisotropic effects that, most probably, go beyond
the validity of perturbation theory. Therefore in what follows
we deal only with the analysis of the occupied surface states.
The maxima of the Bi spz band are shifted from the � point by
k0 = 0.1 Å−1 and, using a parabolic fit around the maxima, we
obtained an effective mass of m
 = −0.36 me. These values
are in reasonably good agreement with experimental data,
k0 = 0.13 Å−1 and m
 = −0.35 me.18

In the case of C3v symmetry the effective Rashba Hamilto-
nian can be written up to third order in k as (see Table I),

HR( k ) = (
α1k + α1

3 k3
)
(cos ϕ σy − sin ϕ σx)

+ a2
3 k3 cos 3ϕ σz , (19)

with the polar coordinate ϕ = arccos(kx/k). Note that the
x axis was chosen along the � − K direction of the SBZ.
Obviously, there are two kinds of third-order contributions to
the Hamiltonian (19): an isotropic one with coefficient α1

3 and
an anisotropic one with the coefficient α2

3. The square of the
splitting of the eigenvalues, �ε(k) = [ε+(k) − ε−(k)]/2, can
then be expressed as

�ε(k)2 = (
α1k + α1

3 k3
)2 + (

α2
3

)2
k6 cos2 3ϕ. (20)

In Fig. 2 we plotted �ε(k)2 along the � K and the � M
directions, together with different fitting functions related
to Eq. (20). It can be seen that a parabolic fit (dots), α1k

2

with α1 = 1.74 eV Å, applies well to the two curves only
for about k < 0.07 Å−1. Up to k ∼ 0.13 Å−1 the two curves
still coincide; however, the isotropic third-order contribution
is needed for a good fit. Here we used a fitting function

FIG. 2. (Color online) Square of the calculated splitting �ε(k) =
[ε+(k) − ε−(k)]/2 of the occupied surface states of Bi/Ag(111).
Squares: � M direction, circles: � K direction (see the sketch of
the SBZ in the inset). Dotted and solid lines display first-order and
third-order fits as described in the text.

(α1k + α1
3 k3)2 with the same value for α1 as before and

α1
3 = −14.2 eV Å

3
. For wave numbers k > 0.13 Å−1, the

anisotropy of the RB splitting becomes apparent: along � M
(φ = π/2) the previous fit applies, while along � K (φ = 0)
the fitting function had to be extended by the anisotropic term,
(α2

3)2 k6 with α2
3 = 9.4 eV Å

3
.

It is worthwhile to mention here that the parameters fitted
in Ref. 38 to the occupied surface band of Bi/Ag(111), α1 =
2.95 eV Å and α2

3 = 18 eV Å
3
, show remarkable differences

as compared to our fitted values. On the one hand, this can
be understood that in Ref. 38 constant-energy contours related
to experiments and first-principles calculations18,44 were used
for fitting. On the other hand, it should be emphasized that the
fit of Ref. 38 disregarded the isotropic third-order term α1

3 k3

in the Rashba Hamiltonian (19). In contrast, our numerical
results clearly support the appearance of both the isotropic
and the anisotropic third-order terms for the Bi spz surface
states of Bi/Ag(111), consistent with the functional form as
derived from group-theoretical methods.

IV. COMPARISON OF THE RASHBA EFFECT AT Au(111)
AND Bi/Ag(111)

It is well known from experiments and ab initio
calculations1,3–6 that the Au(111) L-gap surface states show
a highly isotropic (first-order) Rashba splitting. Since both
systems, Au(111) and Bi/Ag(111), exhibit C3v symmetry, the
question naturally arises as to why there is a remarkable
difference concerning third-order RB splitting. In order to
find, at least, a qualitative understanding of the problem,
we extended the k · p perturbation calculations presented in
Ref. 10 for the case of C2v symmetry to C3v symmetry and
found the following expressions for the third-order coefficients
in Eq. (19):

α1
3 = h̄4

4m4c2

∑

n,m

〈φ0| px | φ+
n 〉〈φ+

n |∂zV |φ+
m〉〈φ+

m |px |φ0〉(
ε0 − εE

n

)(
ε0 − εE

m

)

(21)
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and

α2
3 = h̄4

4m4c2

∑

n,m

〈φ0| px | φ+
n 〉〈φ+

n |∂xV |φ−
m〉〈φ−

m |px |φ0〉(
ε0 − εE

n

)(
ε0 − εE

m

) .

(22)

From the above formulas it turns out that third-order correc-
tions to the effective Hamiltonian arise from an admixture
between the surface state, φ0 of spz orbital character at
energy ε0, and those corresponding to the two-dimensional
irreducible representation, E, φ±

n with px ± ipy character, at
energy εE

n . Note that all these states are eigenstates of the

Hamiltonian H = p2

2m
+ V at the center of the surface band Q.

It is remarkable that, similar to the isotropic first-order Rashba
parameter, the strength of the isotropic contribution α1

3 depends
on the partial derivative of the crystal potential normal to the
surface ∂zV , while the coefficient for the anisotropic term α2

3
is related to the in-plane gradient of the potential ∂xV .

In Fig. 3 we plotted the scalar-relativistic, orbital projected
densities of states (Bloch spectral functions) at the � point
in an appropriate energy window around the surface states of
Au(111) and Bi/Ag(111). In case of Au(111) (see the upper
panel of Fig. 3) the localized surface state shows up in a sharp
peak near the Fermi level (ε0 � −0.07 eV), while the bulk
bands are located below –1 eV. In particular, the edge of the
bulk subband of E symmetry (dxz,dyz states) closest to the
surface state is by �ε = 1.77 eV below ε0.

The situation is entirely different for Bi/Ag(111), where
the highly localized Bi spz and pxpy states are far in energy
from the bulk states. Since in this case only the Bi pxpy states
of E symmetry contribute to Eqs. (21) and (22), �ε = 0.27 eV
enters the corresponding denominators. This clearly explains
a difference of at least 2 orders in magnitude concerning
the third-order RB effect of Au(111) and Bi/Ag(111). Most
probably, the actual values of the matrix elements of px and
∂x,zV even further strengthen this difference. Contrasting the
k = 0 cut of Fig. 1 with the lower panel of Fig. 3, it is
remarkable that the spin-degenerate spz states are shifted down
by about 1 eV due to SOI, while the fourfold degenerate pxpy

states are split into two parts according to the two-dimensional
double-group representations: one of them is located at 0.6 eV,
the other one is moved up to 1.21 eV (not shown in Fig. 1).

V. CONCLUSIONS

Based on k · p perturbation theory including spin-orbit
interaction, we gave a suitable definition to an effective
Hamiltonian [Eqs. (13) and (14)] describing the Rashba-
Bychkov splitting on metallic surfaces. Due to time reversal
and point-group symmetry, we showed how to obtain the most
general forms for the effective Hamiltonian and derived them
up to third order in k for point groups compatible with surfaces
of real crystals. Since the effective Hamiltonian (13) applies to
a couple of noninteracting two-band models, the expressions
listed in Table I can be used in quite a general sense.

Using the relativistic screened Korringa-Kohn-Rostoker
method, we demonstrated that the Rashba splitting of the Bi spz

surface band of the ordered surface alloy Bi/Ag(111) cannot
be satisfactorily described in terms of a first-order isotropic
Rashba Hamiltonian. Moreover, we showed that the strong

FIG. 3. (Color online) Calculated scalar-relativistic orbital pro-
jected spectral densities of states at the � point of Au(111) (upper
panel) and Bi/Ag(111) (lower panel). The surface state (SS) of
Au(111) is explicitly labeled. For Bi/Ag(111) only the two localized
Bi states are shown that take place in the L-gap of Ag(111).

third-order contribution is subject to an anisotropy consistent
with the dispersion relation deduced from our symmetry
analysis.

We also derived explicit formulas for the third-order
anisotropy parameters and established that the isotropic and
anisotropic contributions are related to the normal-to-plane
and the in-plane gradients of the crystal potential, respectively.
Comparing the energy separation of relevant orbital projected
bands for Au(111) and Bi/Ag(111), the derived expressions
were useful to give a qualitative understanding of the different
nature of Rashba-Bychkov splitting in these two systems.
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APPENDIX: RASHBA HAMILTONIANS
FOR POINT GROUP C2v

By using the direct products of irreducible representations,
in this Appendix we give an example for the polynomial forms
of a 2 × 2 effective Hamiltonian for the point group C2v . Let us
denote the elements of the group by E : {x,y,z}, C2 : {−x, −
y,z}, Sx : {−x,y,z}, and Sy : {x, − y,z}. The group has four
one-dimensional irreducible representations, A1, A2, B1, and
B2, with the character table33

E C2 Sx Sy

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

.

Since k and σ are transformed as polar and axial vectors,
respectively, a comparison with the character table lets us sort
out the components of these vectors according to irreducible
representations: B1 : kx,σy , B2 : ky,σx , and A2 : σz.

From the table of direct products,

A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A1 B2 B1

B1 A1 A2

B2 A1

,

it is easy to find that the only combinations that are first
order in kx and ky and correspond to the A1 irreducible
representations are kxσy and kyσx ; therefore the first-order
Rashba Hamiltonian can be written in the form of Eq. (2).

The second-order polynomials of kx and ky can be sorted
according to irreducible representations as follows: A1 : k2

x,k
2
y

and A2 : kxky . It should be noted that this implies the form of
h̄2

2m∗
x
k2
x + h̄2

2m∗
y
k2
y for the effective mass term. The third-order

polynomials of kx and ky can then be classified as B1 :
k3
x,kxk

2
y and B2 : k3

y,kyk
2
x . Taking direct products with σi of

A1 symmetry leads to the possible third-order contributions to
the Rashba Hamiltonian: k3

xσy , k2
xkyσx , kxk

2
yσy , and k3

yσx , i.e.,

HR,3(k) = α1
3 k3

xσy + α2
3 k2

xkyσx + α3
3 kxk

2
yσy + α4

3 k3
yσx.

(A1)
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