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Simulation of spin-polarized scanning tunneling microscopy on complex magnetic surfaces:
Case of a Cr monolayer on Ag(111)
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We propose an atom-superposition-based method for simulating spin-polarized scanning tunneling microscopy
(SP-STM) from first principles. Our approach provides bias-dependent STM images in high spatial resolution,
with the capability of using either constant current or constant height modes of STM. In addition, topographic
and magnetic contributions can clearly be distinguished, which are directly comparable to results of SP-STM
experiments in the differential magnetic mode. Advantages of the proposed method are that it is computationally
cheap, it is easy to parallelize, and it can employ the results of any ab initio electronic structure code. Its
capabilities are illustrated for the prototype frustrated hexagonal antiferromagnetic system, Cr monolayer on
Ag(111) in a noncollinear magnetic 120◦ Néel state. We show evidence that the magnetic contrast is sensitive to
the tip electronic structure, and this contrast can be reversed depending on the bias voltage.
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I. INTRODUCTION

Research on magnetic systems has intensified in the last
decade with the ultimate aim to produce magnetic data storage
devices with ultrahigh information density.1,2 This can be
achieved by reducing the size of the information storage
units going down to the nanoscale or even to single atoms.3

Detecting and manipulating spins4 with high accuracy on
the atomic scale is, thus, essential for future technological
applications. Spin-polarized scanning tunneling microscopy
(SP-STM)5 is one of the main tools for studying magnetism
at the atomic scale. Recent experimental advances using
this technique allow the investigation of complex magnetic
structures (frustrated antiferromagnets, spin spirals, etc.).6–11

Considering such structures in reduced dimensions, their
magnetic ground state can be determined,7,11 and the nature of
magnetic interactions can be studied by theoretical means, e.g.,
from first principles,12 or applying a multiscale approach.13

However, a proper validation of the proposed ground-state
spin structures demands a method, which is capable to directly
compare them to experimental observations. This can be done
by SP-STM simulations.

Our motivation was to construct a computationally
cheap and user-friendly, yet reliable model for simulat-
ing SP-STM. Here we propose an efficient method based
on the spin-polarized Tersoff-Hamann model14 and the
atom superposition approach.15–17 Our model goes beyond
the work of Heinze15 and considers in particular the
following:

(1) Bias voltage, for simulating bias-dependent physical
properties,

(2) Energy dependence of the vacuum decay of electron
states, and

(3) Energy dependence of atomic local spin quantization
axes.

The main advance of our tunneling model is the inclusion of the
tip electronic structure, which is neglected in Refs. 14 and 15,
and it enables to study tip effects on the SP-STM images.

First, we determine energy-dependent virtual differential
conductance (dI/dU ) quantities on a three-dimensional fine
real space grid from electron local density of states (LDOS).
Integrating the differential current (dI ) contributions in an
energy window in accordance with the applied bias voltage,
we obtain a three-dimensional current map on the same
grid, from which constant current or constant height images
can be extracted. Calculating differential current first and
then tunneling current by integration over energies proved
to be numerically more stable than the opposite (numerical
differentiation of tunneling current with respect to energy).18

Furthermore, bias-dependent apparent barrier height can be
included in our approach.

The paper is organized as follows: The theoretical model
of SP-STM is presented in Sec. II, where we explicitly
point out extensions to the Heinze model15 and other atom-
superposition-based approaches.16,17 As an application, we
investigate the frustrated hexagonal antiferromagnet, one
monolayer (ML) Cr on Ag(111) in Sec. III. We study two
magnetic chiralities for its noncollinear Néel state and deter-
mine the energetically favored magnetic structure. Moreover,
we compare electronic structures of Cr obtained from collinear
and noncollinear calculations. By simulating SP-STM images
we are able to investigate magnetic contrast depending on
tip electronic structure and bias voltage. Our conclusions are
found in Sec. IV.

II. THEORETICAL MODEL OF SP-STM

In SP-STM the total tunneling current can be written as
a sum of a non-spin-polarized, I0, and a spin-polarized part,
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IP ,14,15,17,19

I = I0 + IP . (1)

This formula is generally valid for either collinear or non-
collinear surface and tip spin structures. I0 and IP can
be calculated at different levels of approximation for the
tunneling current. It could, in principle, be implemented within
the multiple scattering framework.20 While the perturbation
approach has been used by Hofer and Fisher19 for collinear
surface and tip spin structures with an arbitrary angle between
their spin quantization axes, the most commonly used method
is based on the Tersoff-Hamann model.21,22 Wortmann et al.14

introduced its spin-polarized version applicable to complex
noncollinear surface spin structures. Heinze15 combined this
with the atom superposition method.16,17 Note that in the
following we denote I0 and IP by ITOPO (topographic current)
and IMAGN (magnetic current), respectively.

Here, based on the work of Heinze,15 we propose a
hybrid model, which uses essentially the Tersoff-Hamann
formalism, but we do not restrict the tip electron density
of states (DOS) to be constant in energy. This means that
different tip models23 and their effect on tunneling properties
can be investigated. The only requirement for our present
formalism is that we assume that electrons tunnel through one
tip apex atom. Since the tip electronic structure is explicitly
included in our method via the projected DOS onto this
apex atom, Eq. (2) of Ref. 15 needs to be reconsidered. Our
strategy is to determine differential currents first and then
perform an energy integral in a window according to the
applied bias voltage (V ) in order to arrive at the tunneling
current.

Let us define the following position- and energy-dependent
density matrices in spin space for tip (T ) and sample (S),
respectively,

ρ
T,S

(r,E) = nT,S(r,E)I + mT,S(r,E)σ =
[

nT,S(r,E) + mz
T,S(r,E) mx

T,S(r,E) − im
y

T,S(r,E)

mx
T,S(r,E) + im

y

T,S(r,E) nT,S(r,E) − mz
T,S(r,E)

]
. (2)

Here I is the 2 × 2 unit matrix, σ is the Pauli matrix

vector, while nT (RTIP,E) and mT (RTIP,E) are the charge and
magnetization DOS projected to the tip apex atom. On the other
hand, nS(r,E) and mS(r,E) are the charge and magnetization
DOS of the sample surface at position r . They can be obtained
from the corresponding density matrix as

nT,S(r,E) = 1
2T r(ρ

T,S
(r,E)), (3)

mT,S(r,E) = 1
2T r(ρ

T,S
(r,E)σ ), (4)

where the trace is performed in the spin space. At the tip
position RTIP above the surface we obtain the charge and
magnetization electron local density of states (LDOS) of the
surface in vacuum, nS(RTIP,E) and mS(RTIP,E), respectively.
Combining the sample and tip density matrices at RTIP, a
modified LDOS can be defined as

LDOS(RTIP,E) = �E 1
2 Tr[ρ

S
(RTIP,E)ρ

T
(RTIP,E)]

= �E[nS(RTIP,E)nT (RTIP,E)

+mS(RTIP,E)mT (RTIP,E)],

(5)

which, in fact, combines the vacuum LDOS of the surface
and the projected DOS of the tip apex atom. This formula is
consistent with the spin-polarized Tersoff-Hamann model,14

except the fact that it explicitly includes the electronic structure
of the tip apex. Here �E ensures that the LDOS is correctly
measured in units of (eV)−1. Note that in Ref. 15 the tunneling
current was proportional to a dimensionless LDOS at the
Fermi level.

The vacuum LDOS of the surface can be approximated by
a superposition of decaying atomic electron states. Following

this, we consider the position dependence of the sample density
matrices as ρ

S
(Rα,E) with Rα the position vector of the αth

sample surface atom, in order to allow different chemical or
magnetic properties for these atoms. nα

S (E) = nS(Rα,E) and
mα

S (E) = mS(Rα,E) now denote charge and magnetization
DOS projected to the αth surface atom, respectively. It has
to be noted that chemical differences between surface atoms
were not taken into account in Ref. 15. A tunneling transition
between the tip apex and the αth surface atom at energy
E can be represented as the trace of the multiplied density
matrices, similarly to Eq. (5). This is the energetic ingredient
for the tunneling transition. Apart from this, the transmission
coefficient through a potential barrier between the αth surface
atom and the tip apex has to be included in the tunneling model,
and in general we denote it by T (E,V,dα). It has energy and
bias dependence and contains geometry information of the
three-dimensional tunnel junction via the distance between
the tip apex and the αth surface atom,

dα(x,y,z) = |RTIP(x,y,z) − Rα|. (6)

Thus, the modified LDOS at the tip apex position RTIP(x,y,z)
and at energy E can be approximated as the superposition of
individual atomic contributions from the sample surface as

LDOS(x,y,z,E,V ) = �E
∑

α

T [E,V,dα(x,y,z)]

× 1

2
Tr[ρ

S
(Rα,E)ρ

T
(RTIP,E)]. (7)

The main advantage of using the density matrix formalism
is that electronic and spin structures calculated either nonrel-
ativistically or relativistically can be treated within the same
theoretical framework.
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We calculate the above LDOS values at (x,y,z) grid points
of a three-dimensional fine grid in a finite box above the
surface. The image resolution is determined by the density
of (x,y) grid points. The motivation for using the atomic
superposition approximation is, on one hand, computational
efficiency, since calculating and storing the projected DOS
onto surface atoms in the magnetic unit cell is computationally
much cheaper compared to the vacuum LDOS of the surface
on a great number of grid points. On the other hand, such
atom-projected DOS functions are routinely obtained in all
ab initio electronic structure codes, whereas vacuum LDOS

is not always routinely accessible for the average user.
According to above, the LDOS can be decomposed,

similarly to Eq. (1), as

LDOS(x,y,z,E,V ) = LDOSTOPO(x,y,z,E,V )

+LDOSMAGN(x,y,z,E,V ), (8)

and assuming an exponential decay of the electron wave
functions, the TOPO and MAGN terms can be written as

LDOSTOPO(x,y,z,E,V )

= �E
∑

α

e−2κ(E,V )dα (x,y,z)nT (E)nα
S (E), (9)

LDOSMAGN(x,y,z,E,V )

= �E
∑

α

e−2κ(E,V )dα (x,y,z)mT (E)mα
S (E) cos ϕα(E). (10)

Here the sum over α has to be carried out, in principle, over
all the surface atoms. Convergence tests, however, showed
that including a relatively small number of atoms in the sum
provides converged LDOS values.24 Each surface atom is
characterized by a local spin quantization axis, eα

S (E), which
can be defined from the sample magnetization DOS vector
as eα

S (E) = mα
S (E)/|mα

S (E)|. In the most general case, these
local axes can be energy dependent; see Eqs. (19) and (20)
and Table I. This also holds for the spin quantization axis of
the tip apex, eT (E). The exponential factor is the transmission
probability for electrons tunneling between states of atom α

on the surface and the tip apex, where κ is the vacuum decay. κ
is treated within the independent-orbital approximation,15,21,22

which means that the same (spherical) decay is used for all type
of orbitals, but its energy dependence is explicitly considered
essentially in the same fashion as in Ref. 25. Extension of our
model to take into account orbital-dependent vacuum decay
following Chen’s work26 is planned in the future, which is

relevant for a more advanced description of tunneling to or
from directional orbitals. In the present paper we consider
two different ways of calculating κ . One is inspired by the
Tersoff-Hamann model, taking only surface properties into
account,

κ(E) = 1

h̄

√
2m

(
φS − ∣∣E − ES

F

∣∣), (11)

where the electron’s mass is m, h̄ is the reduced Planck
constant, and φS and ES

F are the average electron work function
and the Fermi energy of the sample surface, respectively.
The absolute value ensures that the transmission probability
is symmetric in the positive and negative bias range with
the minimum at zero bias.27,28 This way we circumvent
the problem of the bias-asymmetric contribution from the
sample LDOS to the differential conductance.29 We use this
energy-dependent vacuum decay for an ideal, electronically
featureless, and maximally spin-polarized tip model. Note that
this formula does not have an explicit bias dependence. Taking
into account the tip apex electronic structure obtained from
first principles, the more general expression for κ is based
on the one-dimensional Wentzel-Kramers-Brillouin (WKB)
approximation assuming an effective rectangular potential
barrier between the tip and the surface,

κ(E,V ) = 1

h̄

√
2m

(
φS + φT + eV

2
− ∣∣E − ES

F

∣∣), (12)

with φT being the local electron work function of the tip
apex, e the elementary charge, and V the applied bias voltage.
This vacuum decay formula is considered for our magnetic
Ni tip model. The quantity (φS + φT + eV )/2 − |E − ES

F | is
the energy- and bias-dependent apparent barrier height for
tunneling electrons, φa(E,V ). Empirical or model nonlinear
variations of φa(E,V ) with respect to bias voltage27,28 can
also be included in our approach. Note that in the case of
φT + eV = φS , the first expression of κ , Eq. (11) is recovered.
The average work function of the sample surface is calculated
from the local electrostatic potential on a three-dimensional
fine grid, 	(x,y,z), as

φS = max
z

[
1

NxNy

∑
x,y

	(x,y,z)

]
− ES

F , (13)

with Nx and Ny the corresponding number of grid points, and
the local work function of the tip apex is obtained as

φT = max
z

[	(x0,y0,z)] − ET
F , (14)

TABLE I. Combinations of taking into account energy dependence (Y) or independence (N) of the local spin quantization axes of surface
atoms and the tip apex, and consequence for the energy dependence of the angle ϕα between the surface local and the tip quantization axes. The
combinations in columns in boldface are considered in the present work, and the combination in the column with underlined values corresponds
to the studied system in Ref. 24.

No. of atoms per surface unit cell Surface magnetic order Energy dependence

1 N N Y Y
Surface >1 Collinear N N

>1 Noncollinear N N Y Y
Tip apex N Y N Y N Y N Y N Y
ϕα(E) N Y Y Y N Y N Y Y Y
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with x0 and y0 lateral coordinates of the tip apex atom, and ET
F

the Fermi energy of the tip material.
In the LDOS formula Eq. (10), ϕα(E) is the angle between

the spin quantization axes of the tip apex and the αth surface
atom at energy E. Previously, only the case of energy-
independent ϕα has been considered,15 which corresponds to
the angle between the directions of local magnetic moments
of surface atoms and the tip magnetic moment. However,
there are more possibilities to combine electronic structure
data of sample and tip, which may result in an energy-
dependent ϕα(E); see Table I. All listed combinations can
be investigated within our formalism. The combinations in
columns in boldface are considered in the present work, and the
combination in the column with underlined values corresponds
to the studied system in Ref. 24. In Eq. (10), mT (E) and mα

S (E)
denote electron magnetization DOS projected to the tip apex
and the αth surface atom, respectively; in the collinear case,

mT,S(E) = n
↑
T ,S(E) − n

↓
T ,S(E), (15)

↑ and ↓ relative to their local spin quantization axes. Similarly,
in Eq. (9), nT (E) and nα

S (E) are electron charge DOS projected
to the tip apex and the αth surface atom, respectively:

nT,S(E) = n
↑
T ,S(E) + n

↓
T ,S(E). (16)

The spin-resolved atom-projected DOS (PDOS) quantities,
n

↑,↓
T ,S(E), are obtained from first principles collinear magnetic

calculations. For this task any available ab initio electronic
structure code can be used. This flexibility of the present
SP-STM approach is expected to be highly advantageous.
Spin-resolved PDOS is considered by assuming a Gaussian
broadening of the peaks at the k-resolved spin-dependent
electron energy (Kohn-Sham) eigenvalues, ε

j↑,↓
T ,S (k), obtained

at zero temperature, as

n
↑,↓
T ,S(E) =

∑
k

∑
j

1

G
√

π
e−[E−ε

j↑,↓
T ,S (k)]2/G2

×
∫

atomic volume
d3rψ

jk↑,↓†
T ,S (r)ψjk↑,↓

T ,S (r), (17)

with ψ
jk↑,↓
T ,S (r) the spin-dependent electron wave functions cor-

responding to ε
j↑,↓
T ,S (k) for tip (T ) and surface (S), respectively,

and j the energy band index. The integral over the atomic
volumes can be performed either in the atomic sphere or within
the Bader volume.30 In the present study we use integral over
atomic spheres. The Gaussian parameter G could, in general,
be temperature dependent. In our calculations, we fixed it to
a relatively high value of 0.1 eV in order to provide smooth
n

↑,↓
T ,S(E) functions. Concerning smoothness of PDOS, a high

G value counteracts the effect of eventually underrepresented
bulk states due to a slab geometry, and it is useful if the
number of k-points in the Brillouin zone is restricted due to
computational reasons.

As Heinze pointed out,15 in the case of having chemically
equivalent surface atoms, the spin structure plays a much more
dominant role compared to the detailed electronic structure
in determining the main features of an SP-STM image. This
means that SP-STM simulation of a known noncollinear
spin structure can reasonably be approximated based on

the collinear electronic structure. We would like to check
this statement; therefore, in this paragraph we show how to
incorporate the fully noncollinear electronic structure into our
model. In this case the atom-projected charge DOS at energy
E is obtained in the following way:

nT,S(E) =
∑

k

∑
j

1

G
√

π
e−[E−ε

j

T ,S (k)]2/G2

×
∫

atomic volume
d3r


jk†
T ,S(r)
jk

T,S(r), (18)

where ε
j

T ,S(k) is the set of electron energy (Kohn-Sham)

eigenvalues at zero temperature, and 

jk

T,S(r) the corre-
sponding spinor electron wave functions. The atom-projected
magnetization DOS vector at energy E reads

mT,S(E) =
∑

k

∑
j

1

G
√

π
e−[E−ε

j

T ,S (k)]2/G2

×
∫

atomic volume
d3r


jk†
T ,S(r)σ


jk

T ,S(r), (19)

with σ being the Pauli spin operator vector. Unit vectors
determining the local spin quantization axis of the tip apex,
eT (E), and the αth surface atom, eα

S (E), at a given energy can
be calculated as

eT,S(E) = mT,S(E)

mT,S(E)
= mT,S(E)√

mx
T,S(E)2 + m

y

T,S(E)2 + mz
T,S(E)2

,

(20)

thus, the atom-projected magnetization DOS vector can be
rewritten as

mT,S(E) = mT,S(E)eT,S(E)

=
√

mx
T,S(E)2 + m

y

T,S(E)2 + mz
T,S(E)2eT,S(E).

(21)

Using this expression and the scalar product of the local spin
quantization axes, eT (E)eα

S (E) = cos ϕα(E), the following
holds:

mT (E)mα
S (E) = mT (E)eT (E)mα

S (E)eα
S (E)

= mT (E)mα
S (E) cos ϕα(E). (22)

The LDOS can also be written in terms of energy-dependent
spin polarizations. The spin polarization is defined as

PT,S(E) = mT,S(E)

nT,S(E)
= n

↑
T ,S(E) − n

↓
T ,S(E)

n
↑
T ,S(E) + n

↓
T ,S(E)

, (23)

assuming collinear electronic structure. From noncollinear
electronic structure the energy-dependent spin
polarization vectors are obtained by using Eq. (21)
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as

P T,S(E) = mT,S(E)

nT,S(E)
= PT,S(E)eT,S(E)

=
√

mx
T,S(E)2 + m

y

T,S(E)2 + mz
T,S(E)2

nT,S(E)
eT,S(E)

(24)

The relation between spin polarization vectors and scalars is
similar to Eq. (22):

P T (E)P
α

S (E) = PT (E)eT (E)P α
S (E)eα

S (E)

= PT (E)P α
S (E) cos ϕα(E), (25)

with the same energy-dependent unit vectors, which define the
local spin quantization axes; see Eq. (20). Thus, the LDOS
at the tip apex position and at energy E can alternatively be
written using the above-defined spin polarizations as

LDOS(x,y,z,E,V ) = �E
∑

α

e−2κ(E,V )dα (x,y,z)nT (E)nα
S (E)

× [
1 + PT (E)P α

S (E) cos ϕα(E)
]
.

(26)

Using Eq. (11) of Ref. 14 and our LDOS expression, a
virtual differential conductance at the tip apex position and at
energy E can be defined as

dI

dU
(x,y,z,E,V )

= e2

h

∑
α

e−2κ(E,V )dα (x,y,z)nT (E)�Enα
S (E)�E

× [
1 + PT (E)P α

S (E) cos ϕα(E)
]
. (27)

This means that by multiplying the LDOS with �E results
in a dimensionless quantity, which is multiplied by the
conductance quantum e2/h in order to arrive at our dI/dU

expression. Note that nT (E)�E electron states from tip and
nα

S (E)�E states from each surface atom contribute to the
differential current at energy E, and in our model, dI/dU

is proportional to the LDOS, which contains both surface
and tip electronic information. If the two subsystems are
calculated separately, it is possible to combine different levels
of electronic structure for tip and surface (see also Table I)
or include simplified model tip electronic structures into
our approach. For example, assuming an electronically flat
maximally spin-polarized (PT (E) = 1) ideal magnetic tip
with, e.g., nT (E)�E = 1, the differential conductance reads

dI

dU
(x,y,z,E) = e2

h

∑
α

e−2κ(E)dα (x,y,z)nα
S (E)�E

× [
1 + P α

S (E) cos ϕα(E)
]
. (28)

Here Eq. (11) has been assumed for the vacuum decay, and
there is no V dependence.

By measuring the energy with respect to the sam-
ple Fermi level as E = ES

F + eU , the energy de-
pendence can be transformed to bias dependence U ,

as

dI

dU
(x,y,z,U )= e2

h

∑
α

e−2κ(ES
F +eU )dα (x,y,z)nα

S

(
ES

F + eU
)
�E

× [
1 + P α

S

(
ES

F + eU
)

cos ϕα

(
ES

F + eU
)]

.

(29)

Similarly, the more general differential conductance, Eq. (27),
can be recast as

dI

dU
(x,y,z,U,V ) = e2

h
(�E)2

∑
α

e−2κ(ES
F +eU,V )dα (x,y,z)

× nT

(
ET

F + eU − eV
)
nα

S

(
ES

F + eU
)

× [
1 + PT

(
ET

F + eU − eV
)

×P α
S

(
ES

F + eU
)

cos ϕα

(
ES

F + eU
)]

,

(30)

where we used the fact that the tip Fermi level is shifted by eV

with respect to the sample Fermi level, i.e., ET
F = ES

F + eV ,
and therefore E = ET

F + eU − eV .
Virtual differential conductances have to be determined at

Ei points in a fine energy grid with �E resolution within
an energy window [E1(V,T ),E2(V,T )] corresponding to the
applied bias voltage (V ) and temperature (T ). A value of
10−3 eV has been used for �E in our calculations, while
we tested a finer grid (�E = 10−4 eV) as well, with no
improvement of our results. Finally, the tunneling current can
be determined by the following energy integral:

I (x,y,z,V ,T ) =
∫ E2(V,T )

E1(V,T )

dE

e

dI

dU
(x,y,z,E,V )

= �E

e

∑
E1<Ei<E2

dI

dU
(x,y,z,Ei,V )

= e

h
(�E)3

∑
E1<Ei<E2

∑
α

e−2κ(Ei,V )dα (x,y,z)nT (Ei)n
α
S (Ei)

× [
1 + PT (Ei)P

α
S (Ei) cos ϕα(Ei)

]
, (31)

where the energy window is defined as

E1(V,T ) = min
(
ES

F ,ES
F + eV

) − ln(3 +
√

8)kBT , (32)

E2(V,T ) = max
(
ES

F ,ES
F + eV

) + ln(3 +
√

8)kBT . (33)

Here ES
F is the Fermi energy of the sample surface, and V is

the applied bias voltage. Broadening of electron states at finite
temperatures is considered according to Eqs. (17), (18), (19),
and the temperature-dependent terms in the integral limits are
the full width at half maximum of the energy derivative of
the Fermi distribution function divided by 2, and kB is the
Boltzmann constant. Another, more precise way to include
thermal effects in calculating the tunneling current is given in
the Appendix of Ref. 31 based on the Sommerfeld expansion,
which can also be incorporated into our approach. Lattice
vibrations at nonzero temperatures are not taken into account.

From the obtained three-dimensional tunneling current
maps, data can be extracted that are directly comparable to
experiments. In particular, current values can be shown in
arbitrary z = ZC = const planes, or constant-value surface
contours can be defined. The first option corresponds to the
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constant height mode, I (x,y,ZC = const,V ,T ), while the sec-
ond to the constant current mode of SP-STM, I (x,y,z,V ,T ) =
IC = const. From the latter, a two-dimensional tip position

map, called the height profile, z(x,y,V,T ,IC) can be extracted
using logarithmic interpolation between grid points z1 < z2, if
I (x,y,z1,V ,T ) > IC > I (x,y,z2,V ,T ), in the following way:

z(x,y,V,T ,IC) = z1 + �z
ln(IC) − ln[I (x,y,z1,V ,T )]

ln[I (x,y,z2,V ,T )] − ln[I (x,y,z1,V ,T )]
, (34)

where �z = z2 − z1 = zi+1 − zi = 0.0529177 Å (0.1 a.u.) has been used in all calculations. Alternatively, if IC has such a value
that is not contained in the considered finite box above the surface, i.e., if IC < I (zmax), then

z(x,y,V,T ,IC) = zmax + �z
ln(IC) − ln[I (x,y,zmax,V ,T )]

ln[I (x,y,zmax,V ,T )] − ln[I (x,y,zmax−1,V ,T )]
. (35)

Surface corrugation can be determined from this z(x,y) map.
Note that the total current contains both topographic and
magnetic contributions; therefore z(x,y) will be the simulated
SP-STM image.15 In our model we consider its bias and
temperature dependence as well. In periodic magnetic systems
the magnetic unit cell can be identified in the simulated
image.14 Moreover, two different types of magnetic contrast
can be defined. The first one is the apparent height difference
of a particular atom at (xi,yi) lateral position imaged with a
magnetic tip with parallel (P) and antiparallel (AP) relative
magnetic orientation, on the same constant current contour:

�zi(V,T ,IC)

=z(xi,yi,V ,T ,IP =IC) − z(xi,yi,V ,T ,IAP = IC). (36)

The other magnetic contrast is the apparent height difference
of two magnetic atoms at different lateral positions (xi,yi) and
(xj ,yj ) imaged with a fixed tip magnetization direction:

�zij (V,T ,IC)

= z(xj ,yj ,V ,T ,I = IC) − z(xi,yi,V ,T ,I = IC). (37)

This means apparent height differences of different surface
atoms on the same SP-STM image, similarly as considered,
e.g., for oppositely magnetized islands in Ref. 32. Note
that both magnetic contrasts depend on the bias voltage,
temperature, and the constant current value. This latter means,
in effect, dependence on the tip-sample distance.

The obtained tunneling current can also be decomposed into
a non-spin-polarized (TOPO) and a spin-polarized (MAGN)
part:

ITOTAL(x,y,z,V ,T ) = ITOPO(x,y,z,V ,T )

+ IMAGN(x,y,z,V ,T ), (38)

with

ITOPO(x,y,z,V ,T )

= e

h
(�E)3

∑
E1<Ei<E2

∑
α

e−2κ(Ei,V )dα (x,y,z)nT (Ei)n
α
S (Ei),

(39)

IMAGN(x,y,z,V ,T ) = e

h
(�E)3

∑
E1<Ei<E2

∑
α

e−2κ(Ei,V )dα(x,y,z)

×mT (Ei)m
α
S (Ei) cos ϕα(Ei). (40)

ITOPO and IMAGN can be analyzed separately using the same
way as described for the total current, and they can be related to
SP-STM experiments using the differential magnetic mode.9

From the nonmagnetic height profile, z(x,y,V,T ,ITOPO =
const), the surface topography can be calculated, and in
periodic systems the chemical unit cell is revealed in the
simulated image.

It has to be noted that the presented method can also be
applied to study nonmagnetic systems, where all magnetic
contributions are equal to zero and the corresponding topo-
graphic STM images can be simulated.

Finally, it is important to note that following Ref. 31, the real
physical differential conductance measured in experiments can
be obtained as the derivative of the tunneling current, Eq. (31),
with respect to the bias voltage. It can be related to our virtual
differential conductance dI/dU defined in Eq. (30) in the
following way:

dI

dV
(x,y,z,V ′,T = 0) = dI

dU
(x,y,z,V ′,V ′)

+
∫ V ′

0
dU

∂

∂V

dI

dU
(x,y,z,U,V )

∣∣∣∣
V =V ′

. (41)

Here T = 0 K temperature is considered for the reason of
simplicity in the integral limits. In the case of assuming an
ideal magnetic tip, i.e. if nT (E) = const, mT (E) = const,
and κ(E) has no V dependence as defined in Eq. (11),
then dI/dU has no V dependence as in Eq. (29), and
consequently, the integral term is zero. In that highly idealized
setup, dI/dV (V ′) = dI/dU (V ′), such that Eq. (29) is the real
differential conductance with U = V = V ′. Moreover, dI/dU

can also be written as a sum of TOPO and MAGN parts:

dITOTAL

dU
(x,y,z,U )

= dITOPO

dU
(x,y,z,U ) + dIMAGN

dU
(x,y,z,U ), (42)

with

dITOPO

dU
(x,y,z,U )

= e2

h
�E

∑
α

e−2κ(ES
F +eU )dα (x,y,z)nα

S

(
ES

F + eU
)
, (43)
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dIMAGN

dU
(x,y,z,U ) = e2

h
�E

∑
α

e−2κ(ES
F +eU )dα (x,y,z)

×mα
S

(
ES

F + eU
)

cos ϕα

(
ES

F + eU
)
,

(44)

and they can be analyzed separately. We return to the
simulation of spin-polarized scanning tunneling spectroscopy
(SP-STS) based on the atom superposition method in the
future.

III. RESULTS AND DISCUSSION

In order to demonstrate the capabilities of our model
for simulating SP-STM on complex magnetic surfaces, we
consider a sample surface with noncollinear magnetic order.
One ML Cr on Ag(111) is a prototype of frustrated hexagonal
antiferromagnets.15 Due to the geometrical frustration of
the antiferromagnetic exchange interactions between Cr spin
moments, its magnetic ground state has been determined to
be a noncollinear 120◦ Néel state.14 We consider two possible
Néel states with opposite chiralities, which are energetically
equivalent only in the absence of spin-orbit coupling.

We performed geometry relaxation and electronic structure
calculations based on Density Functional Theory (DFT) within
the Generalized Gradient Approximation (GGA) implemented
in the Vienna Ab-initio Simulation Package (VASP).33–35 A
plane-wave basis set for electronic wave-function expansion
together with the projector augmented wave (PAW) method36

has been applied, and the exchange-correlation functional
is parametrized according to Perdew and Wang (PW91).37

For calculating the fully noncollinear electronic structure we
used the VASP code as well,38,39 with spin-orbit coupling
considered. This allows us to determine the Néel state with
the energetically favored chirality.

We model the Cr/Ag(111) system by a slab of a five-layer
Ag substrate and one-one monolayer Cr films on each side,
where the surface Cr layers and the first Ag layers underneath
have been fully relaxed. After relaxation the Cr-Ag interlayer
distance is reduced by 9.5%, while the underneath Ag-Ag
increased by 0.5% compared to bulk Ag. A separating vacuum
region of 14.6 Å width in the surface normal (z) direction has
been set up between neighboring supercell slabs. The average
electron work function above the Cr is calculated to be φS =
4.47 eV using Eq. (13). We used an 11 × 11 × 1 Monkhorst-
Pack (MP)40 k-point grid for calculating the projected electron
DOS onto the surface Cr atoms in our (

√
3 × √

3) magnetic
surface unit cell.

Performing fully noncollinear electronic structure calcu-
lations we obtained convergence to two different magnetic
Néel states. The magnetic surface unit cell with the converged
magnetic moment directions are shown in the left part of Fig. 1.
Each of the two Néel states can be characterized by a chirality
vector, defined as12

K = 2

3
√

3

(
e1
S × e2

S + e2
S × e3

S + e3
S × e1

S

)
. (45)

Here eα
S denotes the local spin quantization unit vector of the

αth Cr atom. It is defined from the local magnetic moment,

M
α

S = ∫ ES
F

−∞ dEmα
S (E), similarly as in Eq. (20), i.e., eα

S =
M

α

S/|Mα

S |. The magnitude of the magnetic moments of the
Cr surface atoms are 3.73 μB , with a very small out-of-plane
component, which is neglected when defining the chirality
vectors. Thus, in the first row of Fig. 1, e1

S = (1/2,
√

3/2,0),
e2
S = (1/2, − √

3/2,0), and e3
S = (−1,0,0). This corresponds

to the chirality vector K = (0,0, − 1) or simply Kz = −1.
Similarly, in the second row of Fig. 1, e1

S = (1/2, − √
3/2,0),

e2
S = (1/2,

√
3/2,0), and e3

S = (−1,0,0) correspond to Kz =
+1. Comparing total energies of the two states we find that

FIG. 1. (Color online) Surface geometry of 1 ML Cr on Ag(111) and simulated SP-STM images at 0 V bias voltage depending on the tip
magnetization direction (MTIP) assuming an ideal electronically flat maximally spin-polarized tip. The Cr and Ag atoms are denoted by spheres
colored by green (medium gray) and purple (dark gray), respectively, and the magnetic moments of individual Cr atoms are indicated by (red)
arrows in the left part of the figure. The Cr atoms are explicitly labeled corresponding to the calculated chirality vector in Eq. (45). In addition,
the (

√
3 × √

3) magnetic unit cell is drawn by yellow (light gray) color. In the two rows noncollinear Néel states with opposite chiralities and
corresponding SP-STM images are shown. In the last column, the decreasing levels of Cr apparent heights are indicated by circular arrows.
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Kz = −1 is energetically favored by 1.1 meV compared to
Kz = +1. This finding is consistent with the magnetic ground
state found for a Cr trimer island on the Au(111) substrate
in Ref. 12, where it was also shown that the Dzyaloshinskii-
Moriya interaction is responsible for determining the ground-
state magnetic chirality. Performing a collinear calculation
with spin-orbit coupling considered, we obtain a ferromagnetic
(FM) state with in-plane Cr atomic magnetic moments of
3.76 μB . It turns out that this FM state is 1.04 eV higher
in energy than the Kz = −1 Néel state. The energy difference
of 346 meV/(magnetic atom) in favor of the Néel state is in
good agreement with results of Ref. 14. The out-of-plane FM
state is 1 meV higher in energy than the in-plane FM state with
the same magnitude of magnetic moments.

Simulation of SP-STM images can be performed using
Eqs. (27) and (31) in two ways:

(1) According to Heinze,15 having chemically equivalent
surface atoms the spin structure plays a more dominant role
compared to the detailed electronic structure in determining
the main features of an SP-STM image. Following this, we
can take the collinear electronic structure (COLL) obtained
from the in-plane ferromagnetic calculation, and set the spin
structure to the corresponding Néel state. (2) As a more
precise way, we can take the noncollinear electronic structure
(NONCOLL), and there is no need to prescribe the spin
structure as it is naturally included in the electronic structure
data.

The first approach is computationally cheaper and can
be applied to simulate larger-scale images.15 On the other
hand, calculation of the noncollinear electronic structure is
computationally more demanding but more realistic.

In our Cr/Ag(111) system we calculated the tunneling
current in a box above the magnetic unit cell containing
153 000 (34 × 30 × 150) grid points with a 0.15 Å lateral and
0.0529177 Å horizontal resolution. Figure 1 shows simulated
constant current SP-STM images for the two Néel states
at zero bias voltage, assuming an ideal electronically flat
maximally spin-polarized tip based on Eq. (28) with various
magnetization directions following the first method. These are
in qualitatively good agreement with previous simulations.14,15

Using a nonmagnetic tip, all surface Cr atoms appear to be of
equal height (one height level); i.e., the surface topography
is seen. As the spin polarization of the Cr atoms at the Fermi
energy is positive (see Fig. 2), and the tip spin polarization is set
to +1, the Cr atom with parallel or antiparallel magnetization
direction relative to the tip appears to be higher or lower
than the other two Cr atoms, which have the same apparent
height due to symmetry (two height levels). Comparing the
images, it is clear that a contrast reversal occurs when turning
the tip magnetization to opposite direction. This magnetic
contrast can be quantified according to Eq. (36). By setting
the tip magnetization direction perpendicular to a Cr magnetic
moment, a structure with three height levels occurs. This
means that all Cr atoms in the magnetic unit cell have
different apparent heights. This is due to the variation of
the angles between the local Cr magnetic moments and the
tip magnetization, e.g., for Kz = −1, ϕ1 = 90◦,ϕ2 = 30◦, and
ϕ3 = 150◦. Determining the chirality of the magnetic structure
from experimental SP-STM images is possible in such a
scenario only if the tip magnetization direction is not parallel
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FIG. 2. (Color online) Comparison of energy-dependent spin

polarization vectors, P
1
S(E) = P 1

S (E)[e1x
S (E),e1y

S (E),e1z
S (E)], of the

surface Cr atom labeled “1” in Fig. 1 in the Néel state with Kz = −1
chirality, calculated from noncollinear (NONCOLL) and collinear
(COLL) electronic structure. In the collinear case the local spin
quantization axis is e1

S = (1/2,
√

3/2,0) in the basis of (ex,ey,ez)
and is independent of energy. Reversal of the spin polarization vector
occurs at P 1

S (E) values of opposite sign. In the noncollinear case
P 1

S (E) is always positive due to Eq. (24), and the spin polarization
vector reversal is observed as the sign change of e1x

S (E) and e
1y

S (E)
at 0.54 V. Here the rotation direction of the spin polarization vector
is through negative e1z

S (E) components.

with the magnetic moment of any of the surface atoms. In
our example of the Cr/Ag(111) system the three apparent
height levels follow a different order in the magnetic unit cell
corresponding to the different chiralities. The decreasing levels
of Cr apparent heights are indicated by circular arrows in the
last column of Fig. 1. Apparent height differences of individual
atoms on the same image define another kind of magnetic
contrast; see Eq. (37). Generally, the determining factor for
the apparent height of magnetic atoms in zero bias (V = 0 V)
measurements is the effective spin polarization (ESP) at the
common Fermi level, PT (ES

F )P α
S (ES

F ) cos ϕα(ES
F ), similarly

as it was identified as the governing factor for the height
of differential tunneling spectra at particular energies.24 A
positive ESP results in higher tunneling current at a fixed
distance above a magnetic surface atom, while the opposite
holds for negative ESP. Considering a constant current contour,
thus, results in a higher apparent height for the atom with
positive, while a lower height with negative ESP, compared to
the topographic heights.

Let us analyze the consequences of the choice of the
collinear (COLL) or noncollinear (NONCOLL) electronic
structure for the SP-STM images in more detail. Taking the
noncollinear electronic structure we obtained qualitatively
similar images at zero bias as shown in Fig. 1; thus, Heinze
is right15 with the quality of the SP-STM images calculated
at the sample Fermi energy using either COLL or NONCOLL
electronic structure. The different spin polarization value of
the Cr atoms at the Fermi level, however, results in different
magnetic contrasts. According to Fig. 2, the spin polarization
of the Cr atoms is 0.20 and 0.51 considering the COLL and
NONCOLL electronic structure, respectively. Consequently,
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we expect that the magnetic contrast is higher in the
NONCOLL SP-STM image. Indeed, e.g., taking a constant
current contour of 10−4 nA at parallel tip magnetization
direction to the surface Cr atom labeled “1” (Cr1), we
find �zCOLL

12 (V = 0 V,T = 4.2 K,IC = 10−4 nA) = 0.07
Å and �zNONCOLL

12 (V = 0 V,T = 4.2 K,IC = 10−4 nA) =
0.21 Å magnetic contrasts for COLL and NONCOLL images,
respectively. Moreover, the 10−4 nA contour is closer to the
sample surface in the NONCOLL case. It is worth comparing
magnetic contrasts of COLL and NONCOLL images on
constant current contours having the same apparent height
for Cr1. For example, the Cr1 apparent height of 3.35 Å
is obtained at 10−4 nA in the COLL and 5 × 10−5 nA in
the NONCOLL image. The magnetic contrast in the new
contour of the NONCOLL image is �zNONCOLL

12 (V = 0 V,T =
4.2 K,IC = 5 × 10−5 nA) = 0.18 Å. Thus, we find that the
magnetic contrast ratio of NONCOLL and COLL images at the
same Cr1 apparent height of 3.35 Å, 0.18Å/0.07Å equals the
spin polarization ratio of Cr1 NONCOLL and COLL electronic
structures at the Fermi level, i.e., 0.51/0.20.

In the following we consider the magnetic Néel state with
Kz = −1 chirality since it has been identified as the ground
state. Figure 2 compares the energy-dependent spin polariza-
tion vectors of Cr1 in Fig. 1, calculated from NONCOLL and
COLL electronic structures. The spin polarization vector is

defined as P
1
S(E) = P 1

S (E)e1
S(E), where P 1

S (E) is calculated
using Eq. (23) and Eq. (24) in the COLL and NONCOLL
case, respectively. Taking the collinear electronic structure,
the local spin quantization axis of Cr1 is set to the local
magnetic moment direction neglecting the small out-of-plane
component, e1

S = (1/2,
√

3/2,0), and it is independent of
energy. Reversal of the spin polarization vector occurs at
P 1

S (E) values of opposite sign. Note that three sign changes
occur in the [0.0 eV,0.3 eV] energy interval with respect to the
Fermi level, using an 11 × 11 × 1 MP k-point grid. We tested
a denser 15 × 15 × 3 MP k-point grid as well, resulting in a
qualitatively similar spin polarization. For computational and
comparison reasons, we chose the 11 × 11 × 1 MP k-point set
for calculating the NONCOLL electronic structure. While,
in the noncollinear case, P 1

S (E) is always positive due to
Eq. (24), one spin polarization vector reversal is observed at
0.54 eV above the Fermi level. The indication for this reversal
is the sign change of e1x

S (E) and e
1y

S (E), i.e., going away from
the Fermi energy, the local spin quantization axis changes
from e1

S ≈ (1/2,
√

3/2,0) to e1
S ≈ (−1/2, − √

3/2,0) at
0.54 eV. Here, however, the e1z

S (E) components are not exactly
zero, but they are in the order of 10−6 to 10−2 in the whole
energy range with the exception of e1z

S (0.54eV) = −0.21.
This latter value indicates that the rotation direction of the
spin polarization vector at 0.54 eV is through negative e1z

S

components. Since e1
S(E) is a unit vector at all energies, the

presence of small e1z
S (E) components also means that the other

vector components are |e1x
S (E)| ≈ 1/2 and |e1y

S (E)| ≈ √
3/2.

By comparing the P 1
S (E) spin polarization function of COLL

and NONCOLL electronic structures, we can state qualitative
agreement.

Let us compare simulated single-point differential con-
ductance spectra based on NONCOLL and COLL electronic
structures. Figure 3 shows such simulated spectra z = 3.5 Å
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FIG. 3. (Color online) Simulated single-point differential tun-
neling spectra dIP /dU and dIAP /dU 3.5 Å above the surface
Cr atom labeled “1” in Fig. 1 in the Néel state with Kz = −1
chirality, assuming parallel (P) and antiparallel (AP) tip magnetization
direction with respect to that of Cr1, applying an ideal electronically
flat maximally spin-polarized tip according to Eq. (29). Left and right
parts correspond to spectra obtained from noncollinear (NONCOLL)
and collinear (COLL) electronic structures of the sample, respec-
tively. Topographic (dITOPO/dU ) and magnetic (dIP

MAGN/dU =
−dIAP

MAGN/dU ) contributions are given according to Eqs. (43) and
(44), respectively.

above the Cr1 atom in Figure 1 with assumed parallel (P )
and antiparallel (AP ) tip magnetization direction using an
ideal magnetic tip. We showed at the end of Sec. II that
for the considered ideal magnetic tip dI/dU [Eq. (29)] is
the real differential conductance. According to Eq. (42), the
topographic and magnetic contributions can be calculated
separately. Determining dITOPO/dU (z,U ) (red dashed line
with symbol “X”) and dIP

MAGN/dU (z,U ) (blue dashed line
with symbol “ + ”) is sufficient to draw dIP /dU (z,U ) (black
solid line) and dIAP /dU (z,U ) [brown (gray) solid line] since

dIP /dU (z,U ) = dITOPO/dU (z,U ) + dIP
MAGN

/
dU (z,U )

dIAP /dU (z,U ) = dITOPO/dU (z,U ) − dIP
MAGN

/
dU (z,U ).

(46)

Here we took into account that the magnetic contribution
for the AP tip magnetization direction dIAP

MAGN/dU equals
−dIP

MAGN/dU , since cos ϕ changes sign. The COLL and
NONCOLL spectra have slightly different peak positions
due to the details of the electronic structure. We find
that dIP /dU > dITOPO/dU > dIAP /dU below U = 0.54 V,
while dIP /dU < dITOPO/dU < dIAP /dU above U = 0.54
V, calculated by using NONCOLL electronic structure. The
relation of these quantities is determined be the sign of the
magnetic contribution at the given bias, i.e., dIP

MAGN/dU (U <

0.54V) > 0, and dIP
MAGN/dU (U > 0.54V) < 0. On the other

hand, for the COLL case, there are three sign changes of
dIP

MAGN/dU at 85, 160, and 300 mV, resulting in dIP /dU >

dITOPO/dU > dIAP /dU below U = 85 mV and dIP /dU <

dITOPO/dU < dIAP /dU above U = 300 mV. The magnetic
contribution is small between 85 and 300 mV, and the
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FIG. 4. (Color online) Simulated SP-STM images depending on
the bias voltage and the tip magnetization direction assuming an ideal
electronically flat maximally spin-polarized tip. The magnetic con-
trast is reversed between 0.0 and 1.0 V. In the last row, the decreasing
levels of Cr apparent heights are indicated by circular arrows. The
surface geometry of 1 ML Cr on Ag(111), its magnetic structure with
Kz = −1 chirality, and the considered tip magnetization directions
are explicitly shown, similarly as in Fig. 1.

difference between spectra is less than 0.02 nA/V in this bias
range.

In the following we use the NONCOLL electronic structure
for the Cr/Ag(111) sample surface. By including energy-
dependent electronic structure of sample and tip into our
model, we can study the bias-dependent magnetic contrast
and its tip dependence as well. Figure 4 shows simulated
SP-STM images for various tip magnetization directions at
−1, 0, and + 1 V bias voltages assuming an ideal magnetic
tip. We find qualitatively similar images for −1 and 0 V for
the corresponding tip magnetization direction. This means
that the �z12 magnetic contrast between Cr1 and Cr2 has
the same sign at −1 and 0 V. However, �z12 at the same
Cr1 apparent height increases at −1 V compared to 0 V for
all tip magnetization directions. This can be explained by the
integrated dIP

MAGN contribution, which does not change sign
in this bias range (see blue dashed line with symbol “ + ” in
the left part of Fig. 3). On the other hand, the results show
that the magnetic contrast is reversed at + 1 V compared to
the other two studied bias voltages. This contrast reversal is
observed for all tip magnetization directions. It is interesting
to find that on the image with three height levels the apparent
heights change order in such a way that the image at + 1 V
looks like that the Néel state would have an opposite chirality
compared to 0 or −1 V (see the indicated circular arrows in the
last row of Fig. 4). This finding highlights the importance of
the applied bias voltage and suggests that one has to be careful
when interpreting the magnetic structure from experimentally
observed SP-STM images. Based on our theoretical study we
can also conclude that the magnetic contrast reversal occurs
between 0 and + 1 V bias voltages. This contrast reversal is
solely due to the sample electronic structure since the ideal
magnetic tip is electronically featureless.

Dependence of the magnetic contrast on the tip electronic
structure can be studied by considering different tip models.
As an example we chose a ferromagnetic Ni tip. Such tips are
routinely used in SP-STM and STS experiments.41,42 The Ni
tip has been modeled by a seven-layer Ni film slab with (110)
orientation, having one-one Ni apex atoms on both surfaces,

FIG. 5. (Color online) Simulated SP-STM images depending on
the bias voltage and the tip magnetization direction assuming a
model Ni tip. The magnetic contrast is reversed compared to images
obtained by using the ideal magnetic tip (cf. Fig. 4), and there is a
bias-dependent contrast reversal between 0.0 and 1.0 V. In the last
row, the decreasing levels of Cr apparent heights are indicated by
circular arrows. The surface geometry of 1 ML Cr on Ag(111), its
magnetic structure with Kz = −1 chirality, and the considered tip
magnetization directions are explicitly shown, similarly as in Fig. 1.

i.e., with a double vacuum boundary. Here the apex atom and
the topmost surface layers have been relaxed on both sides.
The interaction between apex atoms in neighboring supercells
is minimized by choosing a 3 × 3 surface cell, and a 15.4 Å
wide separating vacuum region in the z direction. Moreover, an
11 × 11 × 1 MP k-point grid has been chosen for obtaining the
projected DOS onto the apex atom. The electronic structure
of the apex is given in the top part of Fig. 1 of Ref. 24.
We obtain a spin polarization of PT = −0.91 at the Fermi
level, ET

F , and |PT (E)| > 0.8 between ET
F − 0.3 eV and ET

F +
0.3 eV. Employing Eq. (14), the local electron work function
above the tip apex is φT = 4.52 eV, and Eq. (12) has been used
to determine the vacuum decay.

Figure 5 shows simulated SP-STM images for various tip
magnetization directions at −1, 0, and + 1 V bias voltages
including the electronic structure of the Ni tip into our model.
By comparing images to those shown in Fig. 4 obtained by
using an ideal magnetic tip, we find that the magnetic contrast
is the opposite for each picture. This is due to the negative spin
polarization (−0.91) of the Ni tip apex at its Fermi level.24

Note that the spin polarization of the ideal magnetic tip was
assumed to be + 1 in the whole energy range. Similarly as
in Fig. 4, we find qualitatively similar images for −1 and
0 V for the corresponding tip magnetization directions with
higher magnetic contrast at −1 V compared to 0 V. Again, the
magnetic contrast is reversed at + 1 V compared to the other
two studied bias voltages. This effect is highlighted in the last
row of Fig. 5 showing the decreasing levels of Cr apparent
heights by circular arrows, thus indicating a bias-dependent
apparent magnetic chirality. The results suggest that different
tips can completely reverse the magnetic contrast. This effect
has to be taken into account when determining the magnetic
structure from experimentally observed SP-STM images.

IV. CONCLUSIONS

We extended the atom-superposition-based method of
Heinze15 for simulating spin-polarized scanning tunneling
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microscopy by including the tip electronic structure, bias volt-
age, and the capability of incorporating the fully noncollinear
electronic structure. Taking the tip electronic structure into
account, the effect of a richer variety of electronic structure
properties can be investigated on the tunneling transport within
the indicated approximations (atom superposition, spherical
vacuum decay). The method is computationally cheap, and it
can be applied based on results of any ab initio electronic
structure code. Taking the prototype frustrated hexagonal
antiferromagnetic system, Cr monolayer on Ag(111) in a
noncollinear magnetic 120◦ Néel state, we determined its
ground-state magnetic chirality and simulated SP-STM images
at different bias voltages to illustrate the applicability of
our method. We related the magnetic contrast of the zero
bias images to the effective spin polarization at the sample

Fermi level. Moreover, we illustrated the importance of the
energy-dependent local spin quantization axes by comparing
collinear and noncollinear electronic structure of a particular
surface Cr atom and its effect on single point tunneling spectra.
Finally, we showed evidence that the magnetic contrast is
sensitive to the tip electronic structure, and this contrast can
be reversed depending on the bias voltage.
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4.2.1/B-09/1/KMR-2010-0002) is gratefully acknowledged.

*palotas@phy.bme.hu
1E. M. L. Plumer, J. van Ek, and D. Weller, The Physics of Ultra-High
Density Magnetic Recording, Springer Series in Surface Science
Vol. 41 (Springer, Berlin, 2001).

2N. Weiss et al., Phys. Rev. Lett. 95, 157204 (2005).
3D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel,
K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger,
Nature Nanotechnol. 5, 350 (2010).

4K. Tao, V. S. Stepanyuk, W. Hergert, I. Rungger, S. Sanvito, and
P. Bruno, Phys. Rev. Lett. 103, 057202 (2009).

5M. Bode, Rep. Prog. Phys. 66, 523 (2003).
6M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze,
G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and
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