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Anisotropic spin-spin correlations in Mn,; /X (111) (X = Pd, Pt, Ag, and Au)
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We present a finite-temperature theory of the anisotropic spin-spin correlations in magnetic metallic monolayers
deposited on a suitable substrate. The spins are the local moments set up by the itinerant electrons, and the key
concept is the relativistic disordered local moment state, which represents the paramagnetic state of a set of local
moments. The spin-spin correlations between these local moments are then extracted using the linear-response
formalism. The anisotropy is included in a fully relativistic treatment, based on the Dirac equation, and has a
qualitative impact on noncollinear magnetic states by lifting their chiral degeneracy. The theory is applied to
Mn monolayers on the hexagonal (111) surfaces of Pd, Pt, Ag, and Au. The presence of competing exchange
interactions is highlighted by choosing different substrates, which favor either the row-wise antiferromagnetic
state or the chiral triangular Néel state. We correlate the electronic structure with the magnetic properties by
comparing filled with partially filled substrate d bands, and low versus high atomic number. The disagreement
between theory and experiment for Mn;/Ag(111) is addressed, and the nature of the magnetic domains found

experimentally is suggested to be chiral.
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I. INTRODUCTION

A thorough theoretical description of the magnetic prop-
erties of nanostructures remains to be achieved despite the
intense effort dedicated to this task. This is of intrinsic
interest not only for fundamental theoretical and experimental
physics,? but also for the practical advances that make use
of these discoveries to improve our current technology. In this
paper, we aim to present a contribution to this goal by outlining
our finite-temperature theory of the anisotropic spin-spin
correlations in magnetic metallic monolayers (MLs), deposited
on a suitable substrate, and demonstrating its application to Mn
MLs on the hexagonal fcc (111) surfaces of Pd, Pt, Ag, and Au.
In these systems, competing interactions delicately balance
to favor either row-wise antiferromagnetic (AF) or triangular
AF ground states. Very complex unidirectional anisotropies
of Dzyaloshinskii-Moriya (DM) type then conspire to lift the
chiral degeneracy of the noncollinear state. We extract all this
information from the analysis of the high-temperature para-
magnetic susceptibility, which has the spin-spin correlation
function as its main ingredient.

In itinerant systems, there is a mutual feedback between
the electronic and the magnetic properties. The nature of the
magnetic state affects the electronic motions, which, in turn,
determine the magnetic properties. At T = 0 K, first-principles
theories such as density functional theory (DFT) provide a
quantitative account of the ground-state properties.® At finite
temperature, however, the link between electronic structure
and magnetism is usually broken by mapping the 7 = 0 K
information to some effective magnetic model, the properties
of which are then computed either by analytical or numerical
techniques.*

The theory we present in this paper restores this link by
making use of the disordered local moment (DLM) picture.>~’
In the DLM state, the relevant degrees of freedom are the
local spin quantization axes associated with each lattice site,
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which can have associated local spin moments under favorable
conditions. Their orientations are assigned according to a
specified probability distribution, and the electrons move
through this lattice of disordered moments in a mean-field
fashion, in keeping with the spirit of DFT. The formulation is
completely general, and can be applied either to bulk or thin
films, for which the multisublattice or multilayer descriptions
app1y_7—10

We focus on the high-temperature paramagnetic (PM) state
for which a classical description of the local moments is
expected to be adequate. Using linear-response theory, we
derive the pair correlation function between local moments,
which yields spin-spin correlations similar to those obtained
in the random phase approximation® (RPA). Previous work
along these lines focused on the interlayer couplings,” and we
expand on it by also treating intralayer couplings, both in real
and reciprocal space. The fundamental extension of the theory
presented here is the relativistic formulation, going beyond the
isotropic correlations by naturally incorporating anisotropic
effects, which determine the real-space magnetic structure and
lift degeneracies such as chirality. In low-dimensional systems,
it is the magnetic anisotropy that stabilizes the ordered state
against spin fluctuations, and so it is a crucial ingredient of any
theory aimed at describing nanostructures.

The theory is then applied to Mn MLs on the hexagonal
(111) surfaces of Pd, Pt, Ag, and Au. Our motivation stems
from recent experiments performed for Mn; /Ag(111), which
were interpreted as evidence of a triangular AF state'! in
contrast to the predictions from previous electronic structure
calculations, which pointed to a row-by-row AF state'>!?
and even ruled out a more exotic three-dimensional (3D)
structure,'? such as the one predicted for Mn;/Cu(111)."
By investigating the properties of Mn MLs on these four
closely related substrates, we uncovered a consistent picture
of competing magnetic interactions leading to frustration and
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different magnetic ground states very close in energy coupled
to very complex DM-type anisotropies, which favor chiral
triangular AF states. Our findings are consistent with other
published calculations and suggest that further theoretical
and experimental work is required to shed light on these
deceptively simple systems.

We begin by presenting our theory of the anisotropic spin-
spin correlations in magnetic metallic MLs. The following
section contains the details of our numerical calculations,
which are presented afterward. We finish by summarizing our
results and presenting an outlook on further work.

II. THEORETICAL FOUNDATION

A. Local moments in metals

Local magnetic moments in metals are an emergent
property.>%!> Due to electron-electron interactions, an electron
in an itinerant system will have an energetic preference to move
between lattice sites that have an overall spin polarization more
or less aligned with its own spin. If the orientations of the local
spin polarization on the lattice sites vary more slowly than
the time scale of the electronic motions, collective degrees of
freedom can be meaningfully assigned to those lattice sites,
which we label local moments. The magnitude of these local
moments will vary in time as fast as the electrons hopping to
and from each site, but, on the time scale of the precessional
motions, a well-defined time-averaged magnitude is apparent.

Good local moment systems are those for which the
magnitude of the magnetic moments is fairly insensitive to
the local and global magnetic state.'®!” For these systems, one
can make use of the rigid spin approximation (RSA). In DFT
language, it means that the exchange-correlation magnetic
field entering the Kohn-Sham equations is the same for any
orientation of the local moment. It is an approximation because
there will always be feedback between the electronic and the
magnetic properties in an itinerant system; however, it has
been shown in the past that, for many systems, it holds very
well, for example, by performing spin-spiral calculations.'?
We shall make use of the RSA in our construction of the DLM
state. It should be clear, however, that the electronic structure
in the RSA is still different for different magnetic states, and
even more so for the DLM state, due to the ensemble averages
over the local moment orientations.

B. Statistical mechanics of localized moments

Let us now develop the meaning of our theory of the
anisotropic spin-spin correlation function by considering
the statistical mechanics of a local moment system. The
Hamiltonian for the system is written as

¢ - Hi. (1)

M=

H= Hint + Hext = Hml({é}) -

i=1

The relevant degrees of freedom are the orientations of the
local spin quantization axes, written as unit vectors é;. The first
term is the interaction Hamiltonian, describing the coupling
between the local moments, and is left unspecified. The second
term is the Zeeman energy due to coupling to the external
applied fields I:I,-.
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The free energy is given by

N
et =z =] fane? = [aprer, @
k=1

which also defines the partition function Z. Here 1/8 = kg T,
with kg Boltzmann’s constant and 7 the temperature. Then,
the local order parameter 71; = (&;) is obtained from

—BH
nﬁi=—§g - /d{é}e o= /d{é}P({é})éi, 3)

which also introduces the probability distribution P({é}), and
the magnitude of the local moments is omitted. It can be
reintroduced in the final expression for the susceptibility, if
desired.

The magnetic susceptibility then follows as

on;

Xij = o, = B((éié;) — (éi)(é))). )
The boldface signifies a3 x 3 tensor in Cartesian components.
This expression defines a spin-spin pair correlation function
and connects it to the magnetic susceptibility—it is a special
case of the fluctuation-dissipation theorem.'®

To proceed with the analysis, some approximations are
required. It is already apparent that, for the two quantities
of interest (the local order parameter and the magnetic
susceptibility), full knowledge of the complete probability
distribution is not necessary, and that only reduced probability
distributions are required:

(&) = /déipl(éi)éi’ )
(@iej) = /dét/déﬂ’z(én@f)éféf’ ©

where, for instance, P»(é;,é;) = ]_[k#[,jfdék P({e}). Thus, a
useful approximation may focus on obtaining these restricted
averages.

The other obstacle is the need to handle an arbitrary, pos-
sibly highly complicated, interaction Hamiltonian furnished
by the first-principles electronic structure. A very successful
scheme to address this matter is that of variational statistical
mechanics, in which a trial Hamiltonian Hy({€}) is chosen
and its parameters determined from a variational bound on the
free energy. This can be obtained from the Feynman-Peierls-
Bogoliubov inequality'®

e PHo

F<Fo+(H—-Ho), (X)= /d{é} X ()

2

so that the ensemble averages are calculated using the
probability distribution generated by the trial Hamiltonian.
The variational parameters are then determined by ensuring
the equality of the respective restricted averages’

= (Ho)e;, — (Ho), 3
8 T (H0)9 (9)

/\
X

<

o>
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where all orientations are averaged over except those singled
out, i.e., the orientations on sites i and j are kept fixed where
stated.

For simplicity, we choose a site-diagonal trial Hamiltonian

Ho = — Zi I;i - é;. Then, the so-called Weiss fields are given
by
- - 3 - - 0
h,' = H,' - — /dé,él (H)@ or h[ = Hl‘ — <Z_{> . (10)
4 ' 8m,~

The first definition follows directly from Eq. (8) and is
computationally tractable. The second one arises from the
direct minimization of the trial free energy and is conceptually
more useful.

The local order parameter is then given by the Langevin
function

i = [coth(ﬁh,-)— i ]h = L(Bhp)h;, hi = e (D

By taking its derivative with respect to external applied fields
{H}, and making use of

am;  omy; oh dh; .
T and =y, (12)
0H; oh; 0H; ah;
the magnetic susceptibility quickly follows:

om;

Xij = —= = X08ij + Xoi - )_ S Xr  (13)
aH/ k#i

where we introduce our spin-spin direct correlation function>®

af ah? _

ij —

9*(H)
ol omam’

o,f=x,y.2 (14)

which measures the interactions between the local moments.
This is the key quantity for our first-principles calculations.
The statistical-mechanics approach we just outlined is com-
pletely general and has been applied in other order-disorder
contexts.>*-22

The local susceptibility tensor is given by

oap LBhi)\rorp | L(Bh)
'B|:(L (Ph) Bhi )hihi * Bhi Saﬁ]

— gaaﬁ (PM state) (15)

af
Xoi =

and can be recognized as the Langevin susceptibility of
noninteracting local moments.

By performing a Legendre transform on the free energy,
and replacing the external applied fields by the local order
parameters as independent variables, we obtain in the vicinity
of a transition from the PM state into some ordered state

- 1 0] eo
FAmpT—T,) ~ Ez(mi-xﬁ' S A
i,j
1 R .
=3 > o - GksT8;L — 8,)) - 81
ij
+ ... (16)

At sufficiently high temperature, this quadratic form is
positive definite, and so the minimum of the free energy is
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attained for {§m} = {6} (the PM state). The highest tempera-
ture at which this quadratic form is no longer positive definite
will then be the transition temperature 7, into a magnetically
ordered state. It is the presence of interactions between the
local moments, encoded in &;;, that drives this transition.

We proceed by diagonalizing this quadratic form in a
Fourier basis, using 8nt; = Qgl, [dg exp(—ig - R)Sm(§):

ZSrﬁi .
i

S, s = / L sin-3)- S@) - si@. (1)
BZ

where Qgy is the Brillouin zone (BZ) volume/area, solving the
3 x 3 Hermitian eigenvalue problem for each g:

S(q) - up(g) = 0p(@ip(g), p=1273 (18)
with eigenvalues o,(g) and eigenvectors i ,(g), which can be
chosen orthonormal, and define the basis in which S(g) is

diagonal. Then, T, is given by

3kgT. = max 0,(q) = ém(q) x ii,(q) (19)

and the associated eigenvector determines the magnetization
profile associated with the instability. All symmetry-related g
vectors will have the same eigenvalues and so, in this single-g
picture, they are energetically degenerate.

The standard decomposition of a3 x 3 Cartesian tensor will
be used and will be found to provide a natural interpretation
of the information contained in §;;. It can be written as

S.._81+85+83, S =% i
(20)
s _ 1 T 1 _ 1 T
Sij - E(Sij-'—sij) Slj’ E( _S )

The isotropic part is the dominant contribution. From
Sl(g) = Z cos(q - R,j )S”, it can be seen that it will
determine the modulation vector ¢, with corrections from the
anisotropic terms, if they are strong enough.

The antisymmetric part of the tensor can be cast into the

form of an unidirectional, or DM-type, anisotropy

> s -
i,j

S5 sy =y Dy S x diy). (21

iJj

From SA(g) = 12 sin(q - R,j )S”, it is apparent that, in
general, this term w111 give rise to complex eigenvectors and
to the notion of chirality. This is demonstrated with a simple
example in the next section, and with calculations for real
systems later.

The remaining uniaxial anisotropy S ,S determines the real-
space orientation of the local moments being of pseudodipolar
form. The familiar magnetostatic dipole-dipole interaction is
of this form and, if it is added to the free energy, it will be
incorporated in this term.

To flesh out this statistical-mechanics approach, we will
now illustrate this for a generalized anisotropic Heisenberg
model, and compare it with more familiar treatments.
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C. Spin-spin correlations in the Heisenberg model

Suppose that the hitherto unspecified interaction Hamilto-
nian is of the form of a generalized anisotropic Heisenberg
model

1 . . 1 N .
M= =3 28 Tyl = =5 2 D HTE ()
i,j i,j ap
with o, = x,y,z. Choosing the same trial Hamiltonian, we
obtain, for the Weiss fields,

hi:Hi'f‘ZJij'n-ij’ 23)
J#
which reproduces the well-known mean-field result. This
particular choice of trial Hamiltonian will only capture the
bilinear part of a generalized interaction Hamiltonian, as can
be seen from its definition. In this model, we can identify
S;; < J,; and make immediate use of the discussion from
the previous section.
The magnetic susceptibility tensor is then

Xij = Xo,i%ij +ZXO,i Tk K- (24
s

Taking the lattice Fourier transform and inverting to solve for
the susceptibility,

X@ =[x =T @I — BT -T@I" (25

and the paramagnetic limit is shown. Thus, the mean-field the-
ory in an external applied field yields nonlocal correlations for
the Heisenberg model, which are governed by the Heisenberg
exchange interactions.

To finish this section, we show an example of what the
Fourier-transformed Cartesian tensor might look like for a
particular modulation vector ¢. Using Eq. (19) to interpret the
tensor, along with ii; = Re[exp(—ig - R;)ii(§)],

T @) - iip(q)

Ji iD 0
ZGp(a)ﬁ11(a), J(‘;)Z —iD J|| 0

0 A
=o01(q)=Jy+D, o(q)=Jy—D, o3(9)=J1L

i; = cos(d - R)E — sin(q - R;)9
— 0i2(§) =% +i9, i; =cos(G-R)E +sin(G - R)
— ui3(q) =2, u; =cos(q - R)Z. (26)

— (g =% —iy,

This depicts the case of a uniaxial exchange with a DM-type
contribution equivalent to a DM vector along z. The two
in-plane eigenvalues have complex eigenvectors, representing
two possible chiralities, and their degeneracy is removed by
the DM anisotropy.

We now proceed to derive the magnetic interactions from
first-principles electronic structure theory. First, we must
construct a description of the high-temperature paramagnetic
state using the DLM state. Then, by carrying out the same
type of analysis, the spin-spin correlations in the paramagnetic
DLM state are derived. These take the place of the Heisenberg
exchange parameters, but can be more general, as will be seen.
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D. Disordered local moment state

Our theory of the DLM state is based on DFT, in the
Kohn-Sham picture, which is a single-particle mean-field
theory. Each electron moves in the self-consistent field (SCF)
generated by all other electrons. A local spin quantization
axis can then be naturally associated with each lattice site,
according to the average orientation of the spin-only magnetic
Kohn-Sham potential. The electronic properties are obtained
from multiple scattering theory,>* and the detailed derivation
of the DLM equations has been presented before for the
relativistic’ and nonrelativistic’ cases. In what follows, only
the essential definitions and equations will be collected, and
we refer to the appropriate references for more information.

The Kohn-Sham potentials for a lattice site i with the local
spin-quantization axis oriented along é; define the single-site
t matrix t;(é;; €) for given energy e through the Lippmann-
Schwinger equation. Making use of the RSA for spherical
potentials, the # matrix for an arbitrary orientation é; is simply
related to that of a given reference one, for example, along the
7 axis by an appropriate rotation:’

t(éi5e) = R(@)t;(2:6)R(&). 27

Without spin-orbit coupling (SOC), the spin components
factorize, and the ¢ matrix takes on the form?

t,ise) =1 () +1; (£)0 - & (28)

with & the vector of Pauli spin 1/2 matrices and Z the identity
matrix. It can then be shown that the only possible couplings
between the orientations of the local moments at two different
sites are some power of &; - &;, which is isotropic in real space.
Only by incorporating relativistic effects can this limitation be
overcome,?* and this is the essential feature of our extension
of the theory of spin-spin correlations in local moment
systems.

Relativistic effects arise by solving the single-site problem
using the Dirac instead of the Schrodinger equation.?>2°
The spin-only magnetic Kohn-Sham potential, which gives
rise to the local spin moment, will then also generate a
local orbital moment through the SOC effect. The orbital
moment is an induced property, resulting from the relativistic
description, and is not an independent order parameter in our
theory.

Propagation between lattice sites is described by making
use of a suitably chosen reference system for which the Green’s
function is known, Q?j (&). The scattering path operator is then

given by?’

7,(8) =t,(e) +1,(6) Y _ GO (e (e) (29)
ki

and the integrated density of states (DOS) is given by Lloyd’s
formula®®

N(e) = %Im Tr log;(e), (30)

where the double underlines stand for matrices in site and
angular-momentum labels, and the local moment orientations
were omitted.

The resulting Hamiltonian H({é}) for an arbitrary set
of local moment orientations {€} is intractable. The theory
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progresses by invoking a simpler reference Hamiltonian
Ho=->_; hi - & and making use of the Feynman-Peierls-
Bogoliubov inequality to determine the best Weiss fields, as
described in the previous sections.

To carry out the restricted averages, the coherent potential
approximation?® (CPA) is invoked. In this scheme, we replace
the true disordered medium by an effective translationally
invariant one, such that the average properties of an electron
are reproduced. In the single-site approximation, one requires
the effective single-site + matrix 7,(¢), which is chosen to
satisfy’

/ dé, P(e)X,(@r1e) = 0, 31)

and the impurity and excess scattering matrices are given,
respectively, by

Do) =[1- (') — ' @)t (G2

and

X, @:e)=[([["e) — ;' @se) " —2,0)] . (33

This leads to the desired expression for the Weiss fields,
making use of the effective medium quantities

h = lImTr/def(g v)( 3 /de ¢; log Di(é,-;g)), (34)

where f(e;v) is the Fermi-Dirac distribution for energy ¢
and chemical potential v. This expression has the form of an
impurity-integrated DOS and, in fact, is derived from Lloyd’s
formula’ [Eq. (30)].

Now that we presented our construction of the DLM, we
can proceed and perform a linear-response analysis of how
the DLM state responds to an inhomogeneous infinitesimal
external magnetic field applied in each site. This procedure
will generate our desired spin-spin correlation functions,
which contain information about the coupling between mag-
netic moments, determined by the self-consistent effective
medium.

E. Linear response and magnetic susceptibility

We begin by formally introducing an infinitesimal external
magnetic field on each site 81—7,-. The Weiss field on site i,
ﬁi will then be modified as ﬁi — f_ii + Sﬁi + (szi. The small
correction &h; is due to the adjustment of the self-consistent
effective medium in the presence of the infinitesimal external
fields. In the absence of this feedback, the magnetic response
would be that of a system of noninteracting Langevin spins, as
we will now show.

The response of the local magnetization to the external
field is by definition the magnetic susceptibility. In our linear-
response approach, it is given by

Sm; 8h;

8_131; =Xij = Xo,i - <3uI+ 8Hj> = Xo.i 'Wij (35
with the magnetic susceptibility of noninteracting moments
defined as before. All probability distributions and effective
medium quantities are those of the reference state, due to the
linear-response approach being used.
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The coupling between the local moments is then contained
in the response of the local Weiss fields to the infinitesimal
external fields. Using the definition, we obtain, after some
algebra,

3 (15 s 5,
wi? = 8ij8up — Tr— | dé:?, X(e,)grlkaﬁf_kl, (36)

where the energy integration, taking the imaginary part and
dividing by m, is being implied along with the trace.

A second equation can be obtained from the equation that
defines the DLM effective medium [Eq. (31)] by obtaining
the first-order correction to the effective medium ¢ matrix.
Introducing the expansion

8t‘1

5 —ﬂZ&,k Wi, 37)

which defines a full vertex &ij, the following equation of

motion can be written:

-0 N N
Ly =Lty + 6 Poxe0 Y Bl tuXi@) G9)
k#i
by defining the bare vertex

20— / dé, P(e)@ — )X, (2. (39)

This gives, for the magnetic susceptibility, the expected
expression

B
Xij:XO,i+§ZSik'ijv (40)
k
where the spin-spin correlation function is given by

SU = 3 Im Tr/def(s v)A (5)ZL/<(€)&1<,(8)£/<,(8)
k#i

with A(e) = — [déie; X (@ e). (1)
If relativistic effects are not included in the theory, then this
expression becomes independent of the Cartesian indices, and
thus is isotropic in real space. This is a consequence of the
previous discussion on the form of the single-site # matrices
with and without SOC effects.

From the corresponding expressions (38) and (39), it can
be seen that the bare vertex is the direct response to the
external applied fields, while the full vertex also incorporates
fluctuation terms defined by the angular averages in Eq. (38).
For the systems being studied in this paper, these are small
corrections, and so we can approximate the full vertex by
its first iteration by replacing it by the bare vertex on the
right-hand side of Eq. (38).

By focusing on the high-temperature PM state, we make
use of its high symmetry to take the lattice Fourier transform
of Eq. (40) and inverting to solve for the susceptibility

X(@) = 1’ BksTT — S@1", 42)
where the magnitude of the local moments in the PM state
w was reintroduced. This shows that the spin-spin correlation
function plays a similar role to that of the Fourier transform
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of the exchange constants in the familiar Heisenberg model.
The analysis that was carried out for that case can then be
mapped to the present description and can be used to interpret
our results. It should be noted, however, that the spin-spin
correlation function is derived from the electronic structure in
the DLM state and incorporates fluctuation effects.

The core of Eq. (41) is the convolution

. dk _ - - -
Y Tukty — / Q—Bzi(ka)&(q)z(k), (43)
k

which shows that Fermi surface nesting effects are
accounted for through the product of the scattering path
operators. Thus, Ruderman-Kittel-Kasuya-Yosida (RKKY)
behavior may occur.*

We will now present the results of our calculations for
Mn,;/X(111), with X = Pd, Pt, Ag, and Au. This choice of
closely related substrates will highlight the role of hybridiza-
tion with the substrate in determining the predicted magnetic
instability, as well as the role of varying SOC on the anisotropic
effects.

III. COMPUTATIONAL DETAILS

Our calculations are carried out in the framework of
the screened Korringa-Kohn—Rostoker3 I (SKKR) method for
layered systems. The relativistic formalism was adopted
in the local spin density approximation (LSDA) using the
atomic sphere approximation. The energy integrations were
performed on an asymmetric semicircular contour in the upper
half of the complex plane using 24 points.

The self-consistent paramagnetic DLM potentials were
generated in the scalar-relativistic approximation using
200 k points in the irreducible wedge of the 2D Brillouin zone,
which has C3, symmetry. These potentials were then used in
the fully relativistic linear-response calculations, with 3721 k
points in the full 2D Brillouin zone, ensuring that all results
for the spin-spin correlation function are converged within
0.1 meV. This is possible as only complex energies with finite
imaginary part are used in the energy integration.

The geometry used in our calculations was as follows.
The interface region was composed of eight layers of the
transition-metal substrate, the Mn ML, and three layers of
empty spheres. This was then matched to the semi-infinite
bulk substrate and to the semi—infinite vacuum region, so that
no slab approximation was used.

No attempt was made at determining the equilibrium
geometries for the four systems studied. However, the influ-
ence of different interlayer spacings between the magnetic
monolayer and the substrate was investigated for the cases
of Mn/Ag and Mn/Au, and it was found that there was
no qualitative change in the magnetic properties, up to 15%
inward relaxation. The dependence of the magnetic properties
on the in-plane lattice constant was addressed in a previous
study®?; for the range relevant to our systems, the same
conclusion can be made. On the other hand, the relaxed
geometrical parameters depend on the magnetic state and other
approximations such as the exchange-correlation functional
and the handling of the charge density, so a definite statement
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is precluded. We thus progress with a simple model of the
geometric structure, which we now describe.

To aid comparison, the average of the experimental lattice
constants for Pd and Pt was used for both Pd and Pt (¢ =
3.905 A) and likewise for Ag and Au (¢ = 4.085 A). This
means that the in-plane lattice constant for the Mn ML is
the same for the Pd and Pt substrates, and also for the Ag
and Au substrates. To estimate the inward relaxation, it was
assumed that Mn grows on Cu(111) without any significant
relaxation, thus defining the Mn ML hard-sphere radius. By
considering how these hard spheres stack on top of the larger
ones corresponding to the substrate, the following relation
was obtained for the ratio between the estimated and the ideal
distance between planes: d/dy = \/3/8(1 + acy/ax)? —1/2.
We then round the results and use 5% inward relaxation for
the Pd and Pt substrates, and 10% for Ag and Au.

IV. ANISOTROPIC SPIN-SPIN CORRELATIONS
IN Mn MONOLAYERS

We begin by presenting our results for the anisotropic spin-
spin correlations in Mn; /X (111), with X =Pd, Pt, Ag, and Au,
and then proceed to a discussion and comparison with other
theoretical and experimental works. The same decomposition
that was used in Eq. (20) will be used to extract the information
from the spin-spin correlation function.

A. Instabilities of the paramagnetic state

First, we discuss the isotropic part of the tensor S'(g). This
can be conveniently plotted along high-symmetry lines in the
2D Brillouin zone, see Fig. 1, and can be used as a guide to the
favored magnetic instability given by the modulation vector
associated with its maximum value [see discussion following
Eq. (16)]. For the Pd and Pt substrates, the favored magnetic
instability is associated with the K and K’ points, which
correspond to triangular Néel states, while for the Ag substrate
the favored instability is associated with the M point, which
corresponds to the row-wise AF state. The case with the Au

200

1/3 Tr S(g) (meV)

FIG. 1. (Color online) The isotropic part of the S(g) tensor along
high-symmetry lines of the 2D BZ. The maxima signal the favored
magnetic instability, which correspond to the row-wise AF (Ag, Au)
or triangular Néel states (Pd, Pt) (see also Fig. 2).
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the positions of the magnetic atoms. Crosses mark the positions of
the nearest substrate atoms. Up and down triangles are shown, with
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substrate appears to show an approximate degeneracy between
the K- and M -point-type of AF.

The high-symmetry magnetic states are illustrated in Fig. 2.
Considering only the information in S'(g), as K is mapped into
K’ by a mirror symmetry, they are equivalent and degenerate
in energy. Nothing can be said about the real-space orientation
of the local moments, only about the relative angles between
them, as the tensor is isotropic in real space.

Looking at the real-space values of the tensor (see
Table I, where a negative sign means an AF coupling), it can
be seen that the contribution from the nearest neighbors (NNs)
is dominant for Pd and Pt and, although smaller in magnitude,
also for Ag and Au. These interactions lead to the competition

TABLE I. Calculated real-space isotropic interactions S}j and

magnitude of DM vectors |5,- ;| for first and second NNs.

Mn/Pd Mn/Pt  Mn/Ag Mn/Au

S}_, First shell —53.33 5549 —18.5l1 -22.92
Second shell —2.50 -2.72 -5.91 -3.22

|D;;|  First shell 1.19 4.41 0.29 0.34
Second shell 0.34 0.27 0.00 0.28
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between magnetic states shown in Fig. 1 for the Au substrate.
This competition effect is similar to the behavior of the J,/J,
isotropic Heisenberg model in a triangular lattice.'”

B. Real-space magnetic structure

The anisotropic part of S(g) is small compared to the
isotropic part, but it sets the real-space orientation of the spins.
The largest eigenvalue of S(g) has local extrema at the same
positions as S'(g) (see Fig 1), so the magnetic instabilities
remain unchanged. For the systems studied, the symmetric
anisotropy S%(g) favors an in-plane spin configuration.

The antisymmetric part of the tensor S*(g) can be cast in
the form of a DM vector [see Eq. (21)]. The size of this DM
vector is the same for all atoms in the same lattice shell, and
is plotted as a function of the distance between the atoms in
Fig. 3. As expected, it is largest for the first shell, and also
greatly enhanced in the Pd and Pt substrates. The case of the
Au substrate is most interesting, as there are several lattice
shells with comparable DM vectors (see Fig. 4) leading to a
complex unidirectional anisotropy field. In the S(g) picture,
this anisotropy leads to a splitting of the eigenvalues, as
exemplified in Eq. (26).

If the triangular Néel state is the favored magnetic insta-
bility, the presence of the DM anisotropy will select one of
the two possible chiralities. This is the case for the Pd and Pt
substrates. We define a chirality vector in the following way:*3

E = 8imy x Sy + 8y x 813 + Sy x Sy, (44)

Here the numbers label the magnetic atoms going anticlock-
wise around each triangle of NN in the lattice. There are two
types of triangles in the magnetic layer: those that do encircle
an atom of the nearest substrate layer, which will be called
up, and those which do not, called down. These two types of
triangles are marked in Fig. 2. For collinear magnetic states,
the chirality vector is obviously zero (see top panel of Fig. 2).
_ Referring to the middle panel of Fig. 2, for all up triangles,
§ o« —Z (the spins rotate in a clockwise fashion), and for
all down ones, £  Z (the spins rotate in an anticlockwise

0.5

0.4

y

D.| (meV)

0.1

T2 3 4 5 6 7
Distance (units of 2D lattice constant)

FIG. 3. (Color online) The absolute value of the DM vector
against distance. In the Pd and Pt substrates, the DM vector for the

first shell of neighboring atoms is greatly enhanced (see Table I). The
existence of sizable DM vectors over several shells is remarkable.
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FIG. 4. (Color online) The DM anisotropy field for Mn/Au.
Vectors of the same color have the same magnitude and belong to the
same lattice shell, representing the interaction with the central site.
Note that the z component is small for most DM vectors, and so is
not very apparent in this 3D plot.

fashion). This pattern is reversed for the magnetic structure
depicted in the bottom panel. The net chirality is thus
zero for both magnetic states. However, these two chirality
patterns are clearly distinguishable, as the up and down
triangles are inequivalent. This is encoded in the C3, sym-
metry of the system and allows for the lifting of the chiral
degeneracy.

It can be shown straightforwardly that the high symmetry
of the triangular Néel state dictates that the energy difference
between the two chiral states is set by the z component of the
DM interaction.>* For the systems studied, the DM vectors
are mostly in plane, thus their z component is small, as can
be seen, for example, in Fig. 4. This means the lifting of the
chiral degeneracy is smaller than would be anticipated from
considerations based on the length of the DM vectors. The
energy difference between the two magnetic patterns depicted
in the lower panels of Fig. 2 is of the order of 1 meV in all
cases studied. It is not large enough to favor the triangular Néel
state when the isotropic part of the tensor favors the row-wise
AF state, as in the Mn/Ag and Mn/Au cases. If the dominant
isotropic interactions were to favor another noncollinear state
with less symmetry, as was demonstrated for Mn; /W(001),
then this splitting would be more significant.?

C. Connecting magnetism and electronic structure

We now proceed to establish a link between the electronic
structure and the just described magnetic properties. The
influence of the substrate on the electronic structure of the
Mn ML can be readily understood from the layer-resolved
DOS in the DLM state, as shown in Fig. 5. The Mn minority
states are just slightly affected by changing the substrate,
as can be seen by comparing all four cases. The majority
states, however, show a marked difference. For the Ag and Au
substrates, these states are fairly narrow, while for the Pd and
Pt substrates, they are much wider in energy and show strong

PHYSICAL REVIEW B 83, 054435 (2011)
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FIG. 5. (Color online) The layer-resolved DOS for Mn1/X(111),

with X =Pd, Pt, Ag, and Au. Only the DOS for the Mn and the nearest
substrate layer is shown.

signs of hybridization. This can be explained by the position
of the substrate d states. Ag and Au have filled d bands, lower
in energy than the Mn majority states, and so there is little
hybridization. On the other hand, Pd and Pt have partially
filled d bands, which extend up to the Fermi energy, so there is
much stronger hybridization with the Mn majority states. The
strength of the hybridization with the substrate also affects the
size of the DLM spin moments: for Mn/Ag and Mn/Au it is
about 3.9 ug, in agreement with previous calculations, while
for Mn/Pd and Mn/Pt, it drops to about 3.6 ug.

A simple picture can be invoked to synthesize these argu-
ments: On the Ag and Au substrates, the magnetic properties
of the Mn ML are quite similar to those of a conceptual
free-standing ML, as found before in other electronic structure
calculations. This explains the similarity between the S'.
tensors for the Ag and Au substrates (see Table I). The Pd
and Pt substrates then represent a strong enhancement of the
NN interactions due to hybridization with the substrate.

Referring also to Fig. 3 , it can be seen that the anisotropic
effects scale with the atomic number of the substrate due to
the SOC effect, as expected. The DM vectors on the first shell,
however, show a marked difference; they are much larger in
the Pd and Pt substrates than in the Ag and Au substrates,
regardless of the similarity between atomic numbers. This
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reveals another ingredient to a large anisotropic effect: strong
hybridization with the substrate. This is why the first shell
DM vector in Mn/Pd is three times larger than the one in
Mn/Au, despite the differences in atomic number and so in
SOC strength.

D. Mn;/Ag(111): comparison and discussion of previous
theoretical and experimental work

Now that we presented our results for the four systems
studied, we wish to focus on a more detailed comparison
for the most studied case, that of Mn;/Ag(111). It was
found experimentally that the magnetic ground state was the
triangular Néel state,!’ in contrast with the row-wise AF
state predicted by our theory and also by previous electronic
structure calculations.!>!> We suggest two explanations for
the disagreement between theory and experiment. Both are
based on the delicate balance found between the two types
of AF:

(1) There may be some buried Mn atoms underneath
the studied Mn triangular islands. This would enhance the
hybridization to the substrate, which has a very strong
influence on the strength of the NN couplings, as found
for the Pd and Pt substrates, and thus favors the triangular
AF state.

(2) There may be an inadequate treatment of the exchange-
correlation effects in the Mn ML. Although this might be
a small correction, the Mn; /Ag(111) system, as described by
the LSDA, has a small energy difference between the two types
of AF states just discussed. The electronic structure changes
that may be brought about by an improved treatment might be
enough to tilt the preference from the row-wise to the triangular
AF state.

The experimental data on Mn;/Ag(111) also suggest
that similarly oriented magnetic islands with respect to the
substrate have different magnetic domains, and so different
magnetic anisotropies. We propose that this might be due to
two different chirality patterns of the triangular AF state. As
explained by the experimentalists, similarly oriented islands
may grow on the substrate in an fcc or hep-like stacking. Going
back to our discussion on chirality, the difference between the
two cases is whether the nearest substrate atoms are in the
center of the up or down triangles. Assuming that the spins
around the substrate atoms always have the same chirality
vector, the two different ways in which the Mn atoms can
stack on the substrate lead naturally to two distinct chirality
patterns, and so two different magnetic domains.

PHYSICAL REVIEW B 83, 054435 (2011)

V. CONCLUSIONS

We presented a theory of the anisotropic spin-spin corre-
lations in good local moment systems and demonstrated its
application to Mn;/X(111), with X = Pd, Pt, Ag, and Au.
The kind of magnetic structure for which the PM state of each
system is unstable was identified. Mn/Pd and Mn/Pt should
order in the triangular Néel state, while Mn/Ag and Mn/Au
order in the row-wise AF state. For the last two systems, it was
found that the energy difference between the two types of AF
is quite small. The symmetric part of the anisotropy dictates
that these should be in-plane magnetic configurations, while
the antisymmetric, or DM-type, anisotropy lifts the chiral
degeneracy of the triangular Néel state.

For Mn; /Ag(111), which is the most studied system in the
literature, we found agreement with the findings of previous
theoretical work, while experimental results point to a different
magnetic state, namely, the triangular Néel state. We suggested
two resolutions for this inconsistency. Moreover, we proposed
that the two types of magnetic domains found experimentally
are manifestations of the chirality of the triangular AF state.

We also wish to highlight our observation that the
anisotropic effects induced by the substrate do not simply
scale with its atomic number. The strength of the hybridization
with the substrate may play a dominant role, and so a careful
choice of substrate might yield similar anisotropic properties
using lighter elements, thus dispensing the use of their heavier
counterparts, which may be rarer and more expensive.

The theory presented here is more general than the
applications chosen to illustrate it. In the interest of sim-
plicity, the formalism was presented for a single magnetic
lattice or layer, but can be straightforwardly extended to
multisublattice or multilayered systems. Our investigations
are now progressing in this direction, with the Co/IrMn
exchange-bias system, a spin valve element, as its driving
application.
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