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In theoretical studies of the electronic structure and magnetic properties of solids with a surface thin film
concepts as well as approaches based on semi-infinite geometries are used leading very often to quite similar
results, but also sometimes substantial disagreement can be found in the literature. Furthermore, since usually
different computational schemes are applied a direct comparison between the two basic concepts seems to be
out of reach. By discussing the boundary conditions inherent to these two concepts and by making use of a
model that combines on equal footing both aspects the main similarities but also differences can be pointed out.
This model is applied to free and magnetically coated surfaces of fcc Cu�100� and fcc Pt�111� as well as to a
free surface of bcc Fe�100�. It is shown that local quantities such as surface spin and orbital moments can be
determined equally well using either of the two concepts while the very details of the corresponding Friedel
oscillations generally are much less compatible. In particular, for the magnetic anisotropy energy of magnetic
overlayers on highly polarizable nonmagnetic substrates or of free surfaces of magnetic solids the conceptual
differences become apparent.
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I. INTRODUCTION

In the last decade the study of surface-related properties
became increasingly important. The arrival of high-
resolution STM techniques and, in particular, the problem of
perpendicular magnetism and giant magnetoresistance ef-
fects, virtually pushed also theoretical interests in the direc-
tion of solid systems with reduced dimensions. Since in the
past studies of the electronic structure and magnetic proper-
ties of solids were entirely devoted to bulk materials which
permitted one to use three-dimensional cyclic boundary con-
ditions, new schemes and computational techniques had been
developed in order to cope with less translationally periodic
systems. Basically two quite different approaches based on
two-dimensional translational invariance were introduced to
describe solid systems with a surface, namely, one making
use of the concept of thin films and the other one of semi-
infinite geometries. The first one was a consequence of the
use of wave-function methods �linearized augmented
plane-wave or pseudopotential methods1�, the second is
mostly confined to Green’s function techniques
�Korringa-Kohn-Rostoker2 �KKR� or linear muffin-tin orbital
type approaches3�. Mainly because of different computa-
tional parameters and different aspects of convergence inher-
ent to each method no rigorous comparison between the two
underlying concepts has been made up to now. It is the aim
of this communication to provide such a comparison by mak-
ing use of one and the same numerical approach.

As is probably well-known evaluations of the electronic
structure and magnetic properties of molecules or solid sys-
tems in terms of the density-functional theory �DFT� can be
viewed as an iterative approach since a quantum mechani-
cally derived differential equation is combined with an elec-
trodynamic one, namely, the Poisson equation

H�r���r,�i� = �i��r,�i� , �1�

�V�r� = − 8���r� , �2�

N =� ��r�d3r, ��r� = �
−���i�EF

���r,�i���r,�i� . �3�

In here H�r� is an appropriate Kohn-Sham Hamiltonian
�nonrelativistic or relativistic�, ��r� the �single-particle� den-
sity and EF the Fermi energy �highest-occupied state in the
case of molecules�. Equally well known is the fact that the
requirement of self-consistency of the Kohn-Sham equations
�the very character of an iterative multiscale approach� im-
plies to specify three boundary conditions: two for Eq. �1� to
quantize the system, which clearly enough have to be in
essence the same for the auxiliary classical differential Eq.
�2�, and one to fulfill the condition that the number of par-
ticles N per characteristic volume in Eq. �3�,4 has to remain
constant. Independent of the type of the exchange-correlation
functional used in an actual calculation and of the method
applied, these three boundary conditions have to be taken
into account properly in any DFT calculation.

II. SOLID SYSTEMS WITH A SURFACE

In principle, in a crystalline solid, characterized by three-
dimensional translational invariance, the total volume 	 can
be written as

	 =
N

Nat
	0, �4�

where N is the total number of atoms and 	0 is usually
referred to as the volume of the unit cell or characteristic
volume, Nat being the number of atoms per unit cell. Con-
sidering uniform two-dimensional translational invariance as
is necessary to describe crystalline solids with a surface, the
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characteristic volume 	̄ in a for matters of simplicity simple
lattice �one atom per unit cell, Nat=1� is defined by

	 = N�N�	0, �5�

	̄ =
	

N�

= N�	0, �6�

where N� is the total number of atomic planes, N� is the
order of the two-dimensional translational group, and 	0 the
unit cell in the atomic planes.

In viewing r in Eqs. �1�–�3� to consist of an in-plane
component r� and an orthogonal complement r�,

r = �r�,r�� , �7�

and similarly translational vectors as

t = �t�,t��, t� � T , �8�

T being the �two-dimensional� translational group, then the
boundary conditions for Eq. �1� can be formulated according
to Fig. 1 as

lim
r�→+�

��r,�i� = 0, �9�

lim
r�→−�

��r,�i� = �0; thin film

��r + t�,�i�; semi-infinite system
	
�10�

which in turn implies for Eq. �2�

lim
r�→+�

V�r� = V0, �11�

lim
r�→−�

V�r� = �V0; thin film

VM; semi-infinite system
	 , �12�

where V0 is a constant5,6 that characterizes the vacuum level
and VM is the so-called Madelung potential in a bulk system
of the same material.2 In Fig. 1 increasing values of r� refer
to the right-hand side of the individual figures while the cor-
responding left-hand side corresponds to decreasing values.
Strictly speaking the boundary conditions in Eqs. �9� and
�10� are only valid for a Kohn-Sham Hamiltonian with a
discrete spectrum. In using Green’s functions they easily can
be extended to continuous states, see, e.g., Ref. 2.

These boundary conditions have consequences for achiev-
ing self-consistency, i.e., for conditioning the procedure to be
performed. In the case of thin films the vacuum level V0 is
fixed. Therefore, the only parameter that can be varied is the
Fermi energy. For semi-infinite systems the Madelung poten-
tial VM and the Fermi energy EF, see Eq. �3�, have to be kept
fixed, meaning that the variational parameter can only be V0.

Because of these different boundary conditions it is very
often difficult to compare results obtained for semi-infinite
systems with those using a thin film geometry. To combine
both approaches and apply exactly the same numerical pro-
cedures, in here the model displayed in the lower part of Fig.
1 is applied. In this model a thin film is attached onto a
semi-infinite system by means of a large enough vacuum
barrier. Because in the center of this barrier ��r� is virtually
zero, the spectra of the Kohn-Sham Hamiltonians character-
izing the semi-infinite and the thin film part of the total sys-
tem overlap only marginally. Therefore, two �nearly� indi-
vidual systems are present, however, subject to the same
boundary conditions: VM and EF are fixed and V0 is varied.
Clearly, if the separating vacuum barrier to be determined
self-consistently is thick enough, its value in the center is the
same value as V0.

A. Semi-infinite systems

Once self-consistency has been reached Eq. �6� has to be
recalled in order to evaluate physical properties, in particular,
when trying to compare these with experimental data for a
magnetically coated nonmagnetic substrate such as, for ex-
ample, Cu�111�/Co. If, for example, dexp is the experimental
penetration depth �or escape length�,

dexp = d�N�, �13�

where d� is the interlayer distance and N� corresponds now
to an appropriate number of atomic planes, then, e.g., the
averaged spin �m̄s� and orbital �m̄o� magnetic moments to be
compared with experiment are given by

FIG. 1. Top: typical setup for a semi-infinite �left� and a thin
film approach. Bottom: combining both aspect by attaching
smoothly a thin film to a semi-infinite system.
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m̄s�N�� =
1

N�
�
i=1

N�

ms
i , m̄o�N�� =

1

N�
�
i=1

N�

m0
i . �14�

The anisotropy energy Ea referring in here to the energy
difference between a uniform in-plane ��; along �100�� and a
uniform perpendicular ��; along �001�� to the planes of at-
oms orientation of the magnetization is usually defined2 as
the sum of two contributions, namely, the so-called band
energy Eb �difference in corresponding grand potentials as
determined by means of the magnetic force theorem7� and
the magnetic dipole-dipole interaction Edd, Ea=Eb+Edd. In
viewing the anisotropy energy as a sum over layer-resolved
contributions,

Ea = Ea�N�� = �
i=1

N�

�Eb
i + Edd

i � , �15�

Eb
i =� �ni�� ;z� − ni�� ;z���EF − z�dz , �16�

Ea has to be independent of the number of atomic layers
considered, i.e.,


Ea�N� + k� − Ea�N��
 � 
 , �17�

and, therefore, also


Eb�N� + k� − Eb�N��
 � 
 , �18�

where k is an arbitrary positive integer and 
 an infinitesimal
small number. In Eq. �16� ni�C ;z� is the density of states
corresponding to the unit cell in the ith atomic layer and
magnetic configuration C=� or �. Equation �17� guarantees
that the anisotropy energy is indeed a physical constant.8,9

For a nonmagnetic substrate coated with a few monolay-
ers of a magnetic element, it is sufficient that N� includes a
rather small number of substrate layers in order to fulfill Eq.
�17�. Clearly, in the case of easily polarizable substrates such
as Pd or Pt usually more substrate layers have to be self-
consistently taken into account than for nonpolarizable sub-
strates.

For a magnetic substrate, however, such as, for example,
bcc Fe�100�, Eqs. �13�, �14�, and �18� do have important
consequences. If N0 denotes a large enough number �e.g.,
N0=�3NL, NL being the Avogardo number� then

lim
N�→N0

�Eb�N��
N�

 = Eb
bulk, �19�

and consequently

lim
N�→N0

m̄s�N�� = ms
bulk, lim

N�→N0

m̄o�N�� = mo
bulk. �20�

Very clearly the reasons for being very careful with the
summations in Eqs. �13�, �14�, and �18� are the famous Frie-
del oscillations, which by definition are of long-range char-
acter.

B. Thin films

Because of computational restrictions in using a film ge-
ometry to describe surface-related properties the number of

atomic planes necessarily has to remain reasonably small.
Thin films are characterized by two “surfaces” sandwiching a
not too big number of substrate or carrier layers. Since now
two Friedel oscillations in opposite directions exist, one can
expect to observe a kind of standing-wave behavior instead
of slowly dying off fluctuations. Furthermore, most of the
equations from above have to be reformulated. If therefore
because of computational restrictions N� is reasonably small
and denotes again the total number of atomic layers in a thin
film �characterized by two-dimensional symmetry�, then—
because of enhancement effects at the surface—in the case of
a thin film of a magnetic element such as, for example, bcc
Fe�100�, in principle,

m̄s
film�N�� � ms

bulk, m̄o
film�N�� � mo

bulk, �21�

and, in particular,

Ea
film�N�� �

1

2
Ea�N��, Eb

film�N�� �
1

2�
i=1

N�

Eb
i . �22�

For magnetically coated nonmagnetic metallic substrates
Eb

film�N�� obviously depends not only on the number of sub-
strate layers in the interior �in particular, if a strongly polar-
izable substrate is present�, but also, due to the superposition
of two Friedel oscillations, whether this number is even or
odd.

III. COMPUTATIONAL DETAILS

All ab initio calculations were performed at the experi-
mental lattice constant �bcc Fe�100�: 5.27, fcc Cu�100�:
6.8309, fcc Pt�111�: 7.4137 a.u.� in terms of the spin-
polarized �fully� relativistic screened KKR2 method for a
uniform direction of the magnetization pointing along the
surface normal. In using the obtained self-consistent poten-
tials and exchange fields the grand potentials, see Eqs. �15�
and �16�, were evaluated by means of a contour integration
along a semicircle using a 16 points Gaussian-quadrature and
1830 k� points per irreducible part of the surface Brillouin
zone. It is utterly important to note that the analysis pre-
sented in the following is absolutely independent of relax-
ation effects, or, whether or not a full potential approach is
applied. The only relevant requirement is that exactly the
same numerical scheme is applied for two conceptually dif-

TABLE I. Systems investigated using exactly the same numeri-
cal procedures.

System

1 fcc Cu�100� /Cu12 /Vac6

2 fcc Cu�100� /Cu12 /Co1 /Vac5

3 fcc Cu�100� /Cu12 /Co1 /Vac12 /Co1 /Cu12 /Co1 /Vac6

4 fcc Pt�111� /Pt12 /Co1 /Vac5

5 fcc Pt�111� /Pt12 /Co1 /Vac10 /Co1 /Pt12 /Co1 /Vac5

6 bcc Fe�100� /Fen /Vac6

7 bcc Fe�100� /Fen /Vac12 /Fen /Vac6
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ferent types of boundary conditions. The discussion excludes
explicitly supercell approaches, since per definition when us-
ing three-dimensional cyclic boundary conditions there is no
surface.

IV. RESULTS AND DISCUSSIONS

In Table I the systems investigated are listed. As can be
seen from this table three typical kinds of systems were con-
sidered, namely, bcc Fe�100� and fcc Cu�100� as examples
for magnetic and nonmagnetic solid systems with a surface
as well fcc-Cu�100� and fcc-Pt�111� coated with one mono-
layer �ML� of Co. In the case of semi-infinite systems with
an attached thin film, the separating vacuum barrier corre-
sponds to a distance of 16.73 a.u. for Fe, 21.67 a.u. for the
Cu-related system, and 22.65 a.u. in the case of the Pt sys-
tem, i.e., in turn to 0.885, 1.147, and 1.199 nm. It turned out
that the remaining charge in the center layers of the vacuum
barrier was less than 10−8 per unit cell. The notation used in
this table gives account of the type and orientation of the
substrate, the number of atomic layers on top and the number
of empty �vacuum� layers that were included in the self-
consistent calculations. It should be noted that in all figures
the indexing of atomic layers refers to this notation; layer
indices of less than one denote �uniform� bulk layers, see
also, in particular, the lower part of Fig. 1.

In Tables II and IV the main characteristics of these sys-
tems such as the work function �WF�, the value of the

vacuum level in the center of the separating vacuum barrier
�Vcenter� and the vacuum barrier �right boundary condition,
V0� are displayed together with the band energy contribution
to the anisotropy energy. Tables III and V deal with the ac-
tual surface layers. In there the spin and orbital moment as
well as the contribution of the surface layer to the band en-
ergy are listed. In these tables the entry “surface layer” num-
bers �from the left to right� subsequent surfaces as depicted
in the lower part of Fig. 1.

As easily can be seen from these tables, for the Cu-related
systems the differences between the results for a thin film
and the ones for the corresponding semi-infinite system seem
to be minute. Even in the case when a Co overlayer forms
the surface corresponding layer-resolved band energies are
virtually the same. In the case of the Fe-related systems the
differences are slightly bigger. In particular, a small variation
with respect to the thickness in the spin moment can be read
off, although still only on the order of less than about
0.01 �B.

In order to trace the differences between the two theoret-
ical concepts the very details of the Friedel oscillations, in
particular, well inside the film or the semi-infinite systems,
have to investigated. To show these oscillations in the case of
the Cu-related systems, in Fig. 2 the layer-resolved spin and
orbital moments and band energies are displayed for the sys-
tem fcc Cu�100� /Cu12 /Co1 /Vac12 /Co1 /Cu12 /Co1 /Vac6. In
these figures the respective top parts refer to the global views
by showing the contributions from all layers. In the lower

TABLE II. WF, vacuum level in the center of the combined
system �Vcenter�, vacuum level �V0� outside the total system, and
total band-energy contribution to the anisotropy energy for the Cu-
and Pt-related systems.

System
WF
�eV�

Vcenter

�ryd�
V0

�ryd�
Eb

�meV�
Eb/surface

�meV�

1 5.312 0.2960

2 5.619 0.31863 −0.433 −0.433

3 5.631 0.31928 0.31948 −1.309 −0.436

4 5.454 0.36241 0.091 0.091

5 5.465 0.36307 0.36321 0.532 0.177

TABLE IV. WF, vacuum level in the center of the combined
system, vacuum level outside the total system, and total band-
energy contribution to the anisotropy energy for Fe-related systems.

System n
WF
�eV�

Vcenter

�ryd�
V0

�ryd�
Eb

�meV�
Eb/surface

�meV�

6 12 5.004 0.36592 0.283 0.283

15 5.004 0.36592 0.285 0.285

18 5.004 0.36588 0.290 0.290

7 12 4.982 0.36488 0.36432 0.861 0.287

18 5.009 0.36602 0.36629 0.775 0.258

TABLE III. Spin and orbital moments and the layer-resolved
contributions of the Co layer in the Cu- and Pt-related systems.

System
Surface

layer
ms

��B�
m0

��B�
Eb

i

�meV�

2 1 1.8351 0.1426 −0.390

3 1 1.8351 0.1426 −0.390

2 1.8302 0.1427 −0.393

3 1.8302 0.1427 −0.393

4 1 2.0038 0.1504 0.184

5 1 2.0038 0.1504 0.184

2 2.0037 0.1510 0.220

3 2.0037 0.1510 0.220

TABLE V. Spin and orbital moments and the layer-resolved
contributions of the surface layer in the Fe-related systems.

System n
Surface

layer
ms

��B�
m0

��B�
Eb

i

�meV�

6 12 1 2.8679 0.0919 0.293

15 1 2.8673 0.0916 0.291

18 1 2.8670 0.0916 0.292

7 12 1 2.8679 0.0919 0.293

2 2.8655 0.0908 0.293

3 2.8655 0.0908 0.293

18 1 2.8684 0.0918 0.296

2 2.8796 0.0908 0.280

3 2.8796 0.0908 0.280

WEINBERGER et al. PHYSICAL REVIEW B 80, 075430 �2009�

075430-4



parts the contributions from the surface layer and the layer
below are excluded. In Fig. 3 the same quantities are dis-
played for the Pt-related systems. As can be seen from these
figures, globally, i.e., for the surface layer and the layer be-
neath both the semi-infinite case as well as a thin film lead to
virtually the same results. See in particular the upper halves
of Figs. 2 and 3 and Tables II and III. In the interior of the Cu
or Pt substrate, however, significant differences between a
semi-infinite and a thin film geometry are noticeable, which
of course are caused by the different boundary conditions
�see the lower parts of these figures�. In the case of the semi-
infinite systems for Cu as well as for Pt the spin and orbital
moments converge to zero in about 6–8 atomic layers below
the magnetic surface. Quite obviously the oscillations of the
orbital moments in a Cu or Pt film are significantly bigger
than in a semi-infinite substrate. In particular, interesting is to
compare the band energy entries in Fig. 2 with those in Fig.
3. First of all, contrary to the Cu system in the Pt system the
contribution from the second layer below the surface
�−0.16 meV� is in size almost as big as the contribution
from the Co layer �0.18 meV�. Since these two contributions
are of opposite sign the value of the total band energy is
rather small. Second, because of this effect the layer-resolved
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FIG. 2. �Color online� fcc Cu�100� /Cu12 /Co1 /Vac12 /Co1 /Cu12 /Co1 /Vac6. Top: layer-resolved spin moments �left�, orbital moments
�middle�, and band-energy contributions to the anisotropy energy �right� through out the whole system. Bottom: excluding the surface layer
and the first one below.
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FIG. 3. �Color online� fcc Pt�111� /Pt12 /Co1 /Vac10 /Co1 /Pt12 /
Co1 /Vac5. Left: layer-resolved spin moments �left�, orbital mo-
ments �middle�, and band-energy contributions to the anisotropy
energy �right� through out the whole system. Bottom: excluding the
surface layer and the first one below. In the case of the band ener-
gies the surface layer and the first two below are excluded.
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band energy in the interior of the film or the semi-infinite
substrate are in size considerably bigger than in the Cu sys-
tem. This comparison not only shows very clearly the differ-
ence between a polarizable and a nonpolarizable substrate
but also the significance of the different boundary conditions
discussed in Eqs. �9�–�12�. Furthermore, by inspecting the
entries Eb/surface in Table II for the Pt-related systems, it is
immediately apparent that as a consequence of the different
boundary conditions there is almost a factor of 2 between the
two corresponding values!

The top part of Fig. 4 serves as a nice example for the
long-range character of the Friedel oscillations: only about
15 layers below the surface the bulk value of Fe is reached,
which as can be seen from Table V is substantially smaller
than that in the surface layer. The lower part of Fig. 4, in
which the variation in the spin moments in the interior of Fe
films of different thickness is displayed, proves that for the
shape of the oscillations it is important whether the number
of layers in the film is even or odd. Furthermore, as can be
seen from Fig. 5, for an Fe film the surface magnetic moment
does vary with the film thickness, while in the case of a

semi-infinite geometry it is nearly constant for a thickness
beyond 12 ML.

Finally, in Fig. 6 the variation in the layer-resolved band
energy, see Eqs. �15� and �16�, is depicted for 12 and 18
MLs. In order to interpret this figure properly one has to
recall Eqs. �19� and �22�, and view again Fig. 1. Since as
stated in Eq. �19�, in the semi-infinite case Eb

i has to ap-
proach its bulk value, namely, zero, by increasing the number
of Fe layers beneath the surface layer, Eb

i will oscillate only
very slowly around this value. The contributions from
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FIG. 4. �Color online� Top: oscillation of the spin moment from
the surface to the bulk in the case of a semi-infinite bcc-Fe�100�
system. Bottom: oscillation of the spin moment in a thin bcc-Fe film
for different thicknesses. For comparison also a corresponding
curve for a semi-infinite system is shown. In both figures the entries
for the respective surface layer are excluded. Note that due to plot-
ting purposes for Fen, n�18, the corresponding data are shown
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FIG. 5. �Color online� Variation in the spin moment of the sur-
face layer with respect to the thickness of the surface-near region in
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surface-near layers �the surface layer and two layers below�,
however, seem to be independent from the number of further
substrate layers. This also applies to the thin film case, which
in turn implies there that the band-energy contribution to the
anisotropy energy is mostly determined by these layers. As
easily can be seen the oscillation in Eb

i is quite different from
that in the semi-infinite case and depends on the thickness of
the film.

V. CONCLUSIONS

The above shown tables and figures indicate that—apart
from differences in the Friedel oscillations—thin film geom-
etries can indeed be used to describe global physical quanti-
ties of nonmagnetic metallic substrates with magnetic adlay-
ers such as spin moments and orbital moments quite
accurately, provided that the films are thick enough. Quite
likely, they are not suitable to track Friedel oscillations cor-
rectly. For example, in order to reproduce the Friedel-type
oscillations in the top part of Fig. 6 in a film �at least� a
thickness of 36 layers would be necessary. In the case of free
surfaces of a magnetic metal results for the magnetic prop-
erties when using a thin film approach are at least conceptu-
ally questionable, see Eqs. �21� and �22�, while other prop-
erties such as the work function most likely will turn out to
be in excellent agreement with their semi-infinite counter-
parts.

In the present calculations the Fermi energy, because of
the special model used, was always that of the �semi-infinite�
bulk. In thin film approaches the variational parameter is the
Fermi energy and therefore at each thickness another Fermi
energy applies. In order to make this point very clear: con-

sider fcc Cu�100� as a substrate covered with an increasing
number of Co layers. The system to be investigated is then of
the type Con /Cum /Con. If EF�m ,n� denotes the Fermi energy
for a particular choice of n and m then in the extreme case
that nm not Cu coated with Co is described but a kind of
spin valve with Co leads and Cu as a spacer.

Used with care and being aware of the boundary condi-
tions inherent to the underlying scheme, �full potential� thin
film approaches can offer substantial advantages. In the last
by now almost 20 years they contributed a lot to the compu-
tational materials science of solid systems with surfaces, in
particular, in the context of surface relaxations. Regrettably,
up to now, none of the thin film approaches makes use of the
Dirac equation, a fact that per se can cause differences in
describing magnetic anisotropies. Thin film methods are per-
haps less useful when, for example, trying to evaluate optical
or magneto-optical properties, since the elements the layer-
resolved permittivity tensor necessary, e.g., to evaluate Kerr
angles including all interferences and reflections, become
constant only deep inside the bulk. On the other hand, full
potential semi-infinite approaches, although working even on
a fully relativistic level, are presently still much too expen-
sive to be used as standard methods of choice for matters of
structure optimization. Both concepts, thin films or semi-
infinite systems, offer different computational advantages,
are very suitable for particular purposes and less suitable for
others, all aspects being of course a matter of awareness of
the underlying boundary conditions.
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