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We perform an ab initio study of the ordered phases of IrMn and IrMn3, the most widely used industrial
antiferromagnets. Calculation of the form and the strength of the magnetic anisotropy allows the construction
of an effective spin model, which is tested against experimental measurements regarding the magnetic ground
state and the Néel temperature. Our most challenging result is the extremely strong second-order anisotropy for
IrMn3 appearing in its frustrated triangular magnetic ground state, which is surprising since the ordered L12

phase has a cubic symmetry. We explain this large anisotropy by the fact that cubic symmetry is locally broken
for each of the three Mn sublattices.
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Interest in the magnetic anisotropy �MA� of antiferromag-
nets comes from the fact that these compounds are important
components of giant magnetoresistance �GMR� sensors used,
e.g., in hard disk read heads. Antiferromagnetic �AF� mate-
rials are employed in these devices to form antiferromagnet/
ferromagnet bilayers exhibiting exchange bias,1 a shift of the
hysteresis loop of the ferromagnet, providing a pinned layer
which fixes the magnetization of the reference layer of a
GMR sensor. The stability of the antiferromagnet is most
crucial for the stability of exchange bias and hence the func-
tioning of the device.2,3 Industrially the antiferromagnet
IrMn is widely used because of the large exchange bias and
thermal stability that can be obtained with this material.

Recent estimates of the MA of IrMn have been concerned
with the mean blocking temperature TB, the temperature at
which the exchange-bias shift changes sign upon thermal
activation. From TB the intrinsic MA can be estimated if the
antiferromagnetic grain size distribution is known and if in-
dividual grains are assumed to be single domain, with the
energy barrier to sublattice reversal given by the product of
intrinsic anisotropy and grain volume, KV. Such a procedure
has recently been reported and the room-temperature MA
energy of IrMn was found to be 5.5�106 erg /cc �Ref. 4�
and even 3.3�107 erg /cc,5 depending on the seed layer
upon which the IrMn films were grown and, consequently,
the quality of the crystal ordering of the IrMn films. The
largest MA was found for the sample displaying the highest
degree of crystallographic order.

There are only a few first-principles calculations available
in the literature related to relativistic effects in Mn-based
antiferromagnets. It is shown that in the case of the frustrated
antiferromagnet Mn3Sn these effects can lead to the forma-
tion of weak ferromagnetism.6 Umetsu et al.7 calculated the
magnetic anisotropy energy �MAE� of L10-type MnTM
�TM=Ni, Pd, Pt, Rh, and Ir� compounds and revealed that
MnIr has the highest MAE with a value of −7.05 meV /unit
cell. Very recently, a MAE of 2.8 meV/unit cell was inferred
for the low-temperature D phase of the L12-type Mn3Pt
alloy.8

In the present work, we address several features of the
MA of IrMn alloys based on first principles. In terms of

simple symmetry considerations, we predict the form of the
MA energy that we fully confirm using ab initio calculations,
which provide also the strength of the MA, i.e., the relevant
MA constants.

Our most remarkable observation is the surprisingly
strong second-order MA of IrMn3 resulting from the fact that
the cubic symmetry is locally broken for each of the three
Mn sublattices. We are also able to attribute contributions of
the MAE related to on-site and two-site exchange anisotropy
terms, a very important issue for finite-temperature
magnetism.9,10 Such a separation is inevitably important for
the purpose of subsequent simulations to study exchange-
bias systems based on these compounds, for example, in de-
termining the scaling behavior of the MA energy.

Self-consistent calculations are performed in terms of the
fully relativistic screened Korringa-Kohn-Rostoker �SKKR�
method.11 Within this method, spin-polarization and relativ-
istic effects �in particular, spin-orbit coupling� are treated on
equal theoretical footing by solving the Kohn-Sham-Dirac
equation. The local spin-density approximation as param-
etrized by Vosko et al.12 was applied. The effective potentials
and fields were treated within the atomic sphere approxima-
tion with an angular momentum cutoff of �max=2. For the
L10 IrMn alloy we used the lattice constants a=3.855 Å and
c=3.644 Å,13 while for the L12 IrMn3 alloy an fcc lattice
with a=3.785 Å was considered.14,15 For the self-consistent
calculations we fixed the orientations of the magnetic mo-
ments on the Mn atoms according to the magnetic ground-
state configurations reported previously in the literature,
namely, a checkerboard collinear AF structure for L10 IrMn
�Refs. 13 and 16� and a triangular �T1� state within the fcc
�111� planes for L12 IrMn3.14,15 We obtained vanishing spin
polarization at the Ir sites, and spin magnetic moments of
2.63�B and 2.66�B at the Mn sites for IrMn and IrMn3,
respectively. These values are in satisfactory agreement with
earlier first-principles calculations.13,15

We start our study of the MA by symmetry considerations
based on the following effective spin Hamiltonian �energy
per unit cell�:
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where S�a is the spin vector of the Mn sublattice labeled by a;
n=2 for L10 IrMn and n=3 for L12 IrMn3. Note that in Eq.
�1� only terms up to second order in the spin variables are
considered, Dab are �traceless� symmetric matrices represent-
ing anisotropic two-site �exchange� coupling, and Ka are the
on-site anisotropy matrices.17 All the parameters in Eq. �1�
are defined as sums over sites in the sublattices, e.g., Jab
=� j�bJij for i�a �j= i excluded�, Jij being the isotropic in-
tersite interactions. In the case of L10 IrMn, tetragonal
symmetry implies

Dab = Dab�−
1

2
0 0

0 −
1

2
0

0 0 1
� , Ka = K�0 0 0

0 0 0

0 0 1
� , �2�

with D11=D22=D and D12=D�. Rotating an antiferromag-

netic configuration around the �100� axis, S�1

= �0,sin � , cos �� and S�2=−S�1, a simple orientation ��−� de-
pendence of the energy can be derived, E���=E�0�
+Keff sin2 �, introducing an effective uniaxial MA constant
per unit cell, Keff=2K+ 3

2 �D�−D�.
In order to calculate E��� from first principles, we

adopted the so-called magnetic force theorem18 in which the
previously determined self-consistent effective potentials and
fields are kept fixed and the change in total energy of the
system with respect to � is approached by that of the single-
particle �band� energy. The values for E��� from these cal-
culations could be very well fitted with Keff=−6.81 meV, in
very good agreement with the theoretical value reported by
Umetsu et al.7 and also with the easy-plane anisotropy ob-
served experimentally.16 Furthermore, by using the method
described in Ref. 17 we calculated an on-site anisotropy con-
stant of K=−2.94 meV. This result implies that in this sys-
tem the MA energy is dominated by the on-site anisotropy,
i.e., the third term in Eq. �1�.

In the case of L12 IrMn3, for each of the three Mn atoms
in a unit cell a tetragonal symmetry axis of the lattice applies
as indicated in Fig. 1. This local tetragonal symmetry gener-
ates again uniaxial two-site and on-site magnetic anisotro-
pies, however, with different symmetry axes that have to be
accounted for in Eq. �1� by suitable transformations of the
matrices in Eq. �2�. C3 rotational symmetry around the �111�
axes furthermore implies D11=D22=D33=D and D12=D23
=D31=D�. Clearly, for a ferromagnetic state of the system,
such a Hamiltonian would yield a vanishing MA energy.

This second-order MA becomes, however, evident if all
the spins forming the T1 ground state are rotated around the
�111� axis. Straightforward calculations show that E��� fol-
lows again a sin2 � dependence with an effective MA con-
stant Keff=2K+ 3

2 �D+D��. Our first-principles calculations
reproduced well the proposed functional form of E��� with a

value of Keff=10.42 meV; see Fig. 2. Thus we conclude that
the MA constant for L12 is almost twice as large in magni-
tude than for L10 IrMn.

We confirm the validity of spin Hamiltonian �1� for L12
IrMn3 by applying two additional rotations of the spin sys-
tem. First, we repeat the rotation around the �111� axis by
simultaneously interchanging the orientations of the spins at
Mn sites 2 and 3. It should be mentioned that this triangular
spin structure �say, T2� corresponds to a chirality vector,

�� =
2

3�3
�S�1 � S�2 + S�2 � S�3 + S�3 � S�1� , �3�

which is just the opposite of the chirality vector related to
state T1. Note also that �� is normal to the plane of the mo-
ments and the normal component of this vector �chirality
index� � for state T1 is �=1, while for state T2 �=−1. While
by considering only the first �isotropic� term in Eq. �1� the
energy of these two states is identical, the anisotropy terms
lift this degeneracy. Interestingly, rotating the spins in state
T2 around the �111� axis does not induce changes in the
energy of the system. This is confirmed by our calculations
up to an absolute error of 2 �eV. Furthermore, the energy of
state T2 should be higher by Keff /2 than the energy minimum
of state T1 ��=0�. From our calculations we found this dif-
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FIG. 1. �Color online� Sketch of the IrMn3 unit cell. Dark
spheres represent three Mn atoms corresponding to the antiferro-
magnetic sublattices. The solid arrows indicate the local easy axes
and the dotted arrows indicate the spin direction in the T1 ground
state.
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FIG. 2. �Color online� Calculated change in energy of the L12

IrMn3 system when rotating the triangular T1 spin structure around
the �111� axis �circles� and the �110� axis �squares�. The solid lines
display appropriate fits to Keff sin2��� and the function in Eq. �4�.
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ference to be 5.22 meV, fitting nearly perfectly the previ-
ously determined MA constant.

Our last test to Eq. �1� referred to rotating the spins in
state T1 around the �110� axis. As compared to all the previ-
ous cases, this rotation implies a quite complicated form of
E���,

E��� = E�0� +
Keff

8

��2 + sin2 � − 2 cos � − 2�2 sin ��1 − cos ��� .

�4�

In Fig. 2 we also plotted the results of this calculation to-
gether with the fit function as above. Reassuringly, this func-
tion describes E��� well for the whole range of � with the
MA constant as obtained before �Keff=10.42 meV�. Note
that for the rotation around the �110� axis at �=109.47° the
energy of the ground state is regained since by this rotation

we obtain a T1 state lying in a plane normal to the �11̄1̄�
direction. In this case, we calculated an on-site anisotropy
constant, K	1.06 meV, indicating that, unlike the L10 IrMn
alloy, in this system the MAE is mainly governed by two-site
anisotropy, i.e., the second term in Eq. �1�.

In order to perform finite-temperature simulations on the
magnetism of the IrMn compounds, we constructed a simpli-
fied effective spin model,

H = −
1

2�
i�j

JijS� iS� j −
Keff

2 �
i

�S� i · n� i�2, �5�

where Jij are isotropic Heisenberg exchange parameters and
the second term on the right-hand side of Eq. �5� merges also
the effect of the two-site anisotropy terms. Here, n� i are unit
vectors along the local uniaxial symmetry axes. We calcu-
lated the parameters Jij by using the relativistic torque
method.17,19

For both alloys, the calculated exchange interactions are
shown in Fig. 3 as a function of the distance between the Mn
atoms. The two sets of interactions show obvious similari-
ties: large antiferromagnetic �negative� nearest-neighbor in-
teractions, sizable oscillating interactions up to about Rij
=6 Å, and a strong damping for larger distances. Note that
double �multiple� values for some Rij’s appear due to the

different symmetry �neighborhood� of pairs with the given
separation. In the case of L10 IrMn these “degeneracies” are
mostly resolved via tetragonal distortion of the lattice. In
good comparison with other theoretical works13,15 from the
calculated Jij’s the mean-field estimates for the Néel tem-
peratures TN=1398 and 1222 K can be obtained.

Model �5� is simulated by solving the Landau-Lifshitz-
Gilbert �LLG� equation with Langevin dynamics, calculating
thermal equilibrium properties in the long-time �and high-
damping� limit. The methods we use are described in detail
in Ref. 20. The main quantity of interest is the sublattice
staggered magnetization Ms, defined as

Ms =
1

n
�
a=1

n


�Max
2 + May

2 + Maz
2 � , �6�

where M� a=�i�aS� i is proportional to the magnetization of
sublattice a, n is the number of antiferromagnetic sublattices,
and 
 � denotes a thermal average.

Figure 4 shows the order parameter Ms versus tempera-
ture T. Despite finite-size effects, TN can be estimated as
1360 K for L10 IrMn and 1005 K for L12 IrMn3. Note that
though the exchange parameters in both cases have similar
values, the critical temperature in the L12 phase is signifi-
cantly lower. Obviously, the frustration of the spin ordering
in the L12 phase leads to a reduced TN as compared to the
L10 phase. The simulated critical temperatures clearly im-
prove upon the mean-field estimates as compared with ex-
perimentally observed Néel temperatures, 1145 and 960 K,14

respectively.
A further analysis of the sublattice magnetization vectors

reveals the magnetic ground-state configurations. In the case
of L10 IrMn the Mn spins align along the �110� direction
appropriate with the easy-plane anisotropy for this material.
For the L12 system, magnetic anisotropy included according
to Eq. �5� reveals that the T1 ground-state structure is fixed
to lie in one of the �111� planes, with each of the Mn spins

directed along the corresponding �21̄1̄� directions. These
spin orientations have previously been established by neu-
tron scattering;14 our results for the Néel temperature and the
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FIG. 3. �Color online� Isotropic exchange interactions Jij be-
tween the Mn atoms in IrMn alloys calculated from the correspond-
ing ground-state magnetic configurations by using the torque
method �Ref. 17�.
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FIG. 4. �Color online� Staggered magnetizations Ms as a func-
tion of temperature obtained using Langevin dynamics over 20 ps
with system sizes of 24 000 sites �L12� and 70 000 sites �L10� and
using periodic boundary conditions.
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magnetic ground-state structures are in excellent agreement
with experiments, underpinning the validity of our spin
model derived from first principles.

In summary, we performed an ab initio study for the or-
dered phases of IrMn and IrMn3, the most important indus-
trial antiferromagnets. The calculated Heisenberg exchange
integrals and magnetic anisotropy constants are used to con-
struct an effective spin model which is simulated using the
stochastic Landau-Lifshitz-Gilbert equation. Good agree-
ment of the calculated Néel temperatures and magnetic
ground states with experimental results confirmed the valid-
ity of our approach. Our most spectacular finding is a giant
second-order magnetic anisotropy for IrMn3, leading to en-
ergy barriers on the order of Keff	3�108 erg /cc for rota-
tion of the T1 ground-state spin structure around the �111�
axis. This uniaxial magnetic anisotropy is understood due to
the fact that the cubic symmetry is locally broken for each of
the three sublattices of the antiferromagnetic T1 ground
state.

The extremely high anisotropy for the L12 phase has per-
haps not been measured experimentally because of the dis-

ordered nature of this material in thin-film devices, where
deposition by sputtering causes significant loss of long-range
crystallographic order. Since chemical disorder is known to
drastically reduce the MAE,21 it is not surprising that the
experimentally measured MAE �Ref. 5� for granular thin
films is about 1 order less in magnitude than calculated from
first principles for the bulk material. Our results, therefore,
suggest that finer control of the crystallography, i.e., applying
growth conditions that reduce the degree of disorder, will
allow the extremely large anisotropy of these materials to be
fully exploited, allowing, for example, antiferromagnet film
thicknesses to be reduced without loss of exchange-bias
stability.22
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