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Surface-Induced Magnetic Anisotropy of Impurities
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We present theoretical and numerical studies of the magnetic anisotropy energy of an atomic-like impurity near the surface of a metallic
host (Au). The valence band of the host metal is described in terms of a realistic tight-binding surface Green’s function technique. We
compare two models: (i) when spin-orbit coupling is taken into account in the d-band of the host and (ii) when the impurity’s d-level
experiences strong spin-orbit splitting. The level splitting of the impurity’s spin-states is calculated in leading (first or second) order of
the exchange interaction between the impurity and the host atoms. It is shown that the magnetic anisotropy constant is an oscillating
function of the distance of the impurity from the surface. For large distances, an asymptotic analysis implies that the period of these
oscillations is determined by the extremal vectors of the host’s Fermi Surface and the amplitude decays as � �. Our numerical results
clearly suggest that the host-induced magnetic anisotropy energy is by several orders smaller in magnitude than the one originating from
a strong local spin-orbit coupling.

Index Terms—Anisotropy impurity surface.

I. INTRODUCTION

I N order to explain the thickness dependence of the ampli-
tude of the Kondo resistivity in thin films of dilute magnetic

alloys [1] the role of the spin-orbit (SO) interaction has been out-
lined which in the presence of a surface gives rise to a level split-
ting of an impurity [2], [20]. By using a suitable fit to the mea-
sured amplitude of the Kondo resistance, in case of a thin film of
dilute Au(Fe) alloy, Újsághy et al. concluded that for impurities
closer to the surface than about 180 Å the level splitting should
be higher than or at least comparable to the energy-scale fixed
by the Kondo temperature, meV [2], [20].

In the original model of Újsághy et al. [2], [20], [3], an im-
purity interacts with the conduction electrons of the host metal
that experience SO scattering through hybridizing with the low-
lying valence -orbitals (HSO model). This model leads to an
effective spin-Hamiltonian

(1)

where is the normal vector of the surface and is the spin-op-
erator. For large distances, , from the surface the magnetic
anisotropy (MA) constant, , behaves as ,
where is the Fermi wavenumber. It should be noted that
this result refers to randomly distributed host atoms, while for
the case of an ordered crystal a decay of has been
predicted [3].

Recently a new mechanism of the magnetic anisotropy has
been proposed [4] that relies on a strong local SO coupling at the
impurity (LSO model). The corresponding anisotropy appears
already to first order of the exchange coupling between the
magnetic impurity and the conduction electrons. In the asymp-
totic regime this anisotropy depends on as , with
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being the length of an extremal vector of the Fermi Surface
(FS).

The aim of the present work is to provide a quantitative com-
parison of the above mechanisms. For this purpose, for both
cases we employ the tight-binding Green’s function method
in treating the conduction and valence electrons of the host.
Using Au as host metal we perform numerical calculations of
the anisotropy constants as based on the asymptotic formulas.
The oscillation periods are directly identified from the calcu-
lated FS. In the case of the LSO model we also numerically
confirm the validity of the asymptotic expression of .

II. THEORY AND COMPUTATIONAL DETAILS

The tight-binding Hamiltonian of a two-dimensional (2-D)
translational invariant non-magnetic host can be written as

(2)

where and label atomic layers parallel to the surface and sites
within the layers, respectively, denotes canonical orbitals
centered at the lattice positions and is the spin-index.
In (2) all the parameters are replaced by their bulk counterparts,
i.e., we neglect the dependence of the on-site energies, and
of the SO parameter, , with respect to the layers and so for
the hopping matrixelements, that are confined to the
first and second nearest neighbors. This approach is suitable for
our present study related to the asymptotic regime. For the same
reason, in the vacuum region the on-site energies are taken to be
infinity.

The Green’s function (GF) matrix of the host has been cal-
culated via a surface GF technique [5], [21] that allows for a
perfect treatment of the semi-infinite geometry induced by the
surface and for incorporating SO coupling non-perturbatively.
In the presence of an impurity the hopping of the conduction
electrons to the -orbitals of the impurity has to be excluded. To
this end, we choose the -like on-site energies of the impurity
far below the valence band and we solved the Dyson equation
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for the corresponding GF matrix by using the previously calcu-
lated GF matrix of the host. In terms of an asymptotic analysis
it can be shown that for large the local spectral density, ,
defined as the imaginary part of GF, is subject to Friedel-type
oscillations [6], [22], [23] of the following form:

(3)

where is the spectral function in the bulk, is
the length of an extremal vector of a constant-energy surface
pointing normal to the geometrical surface, whereas
and are the amplitude and the phase of the oscillations,
respectively.

In our numerical calculations we used on-site energies as
well as first and second nearest neighbor hopping parameters
as given for Au in [7] and the experimental fcc lattice constant,

Å. We choose a spin-orbit parameter, eV,
obtained from the difference of the SO-split -resonance ener-
gies, , derived from self-consistent
relativistic first-principles calculations [8] in terms of the ap-
proach, . In order to reduce the computational ef-
forts in performing necessary surface Brillouin zone (SBZ) in-
tegrals we made use of the point-group symmetry of the
fcc(001) surface and an adaptive uniform mesh refinement for
sampling -points in the irreducible (1/8) segment of the SBZ
(ISBZ). In general, about -points in the ISBZ were suffi-
cient to calculate all the spectral function matrixelements with
a relative accuracy of 1%. We performed calculations for the
spectral functions up to 50 monolayers (ML) below the surface
which corresponds to a maximum of Å.

Within the HSO model [2], [20], [3] we considered an impu-
rity with a half-filled -shell treated as an spin within
Abrikosov’s pseudo-fermion representation [9]. The interaction
between the impurity’s -electrons and the host’s conduction
electrons is approached by [10]

(4)

where denotes the Pauli matrices, stands for the spin op-
erator of the impurity, create (annihilate) conduction
electrons in state and is an effective exchange coupling.
As a feasible approach we allowed for hoppings only between
the impurity’s -orbitals and the -orbitals at the first neighbor
sites of the impurity. For an fcc lattice this defines 12 valence or-
bitals from which only five -like combinations have non-zero
contributions to the sum in (4).

It can easily be shown that the first order contribution to the
static self-energy of the impurity vanishes, while under
tetragonal symmetry the anisotropic part of the second order
contribution is of the form, (1), with an asymptotic expression
for that follows from (3)

(5)

where is the Fermi energy, and, as justi-
fied by our numerical results, merely the most significant con-

tribution of the off-diagonal spectral densities, , is con-
sidered. Since for free electrons the result, (5),
agrees qualitatively well with that derived by Újsághy et al. [3].

In our numerical investigations of the HSO model we used
the asymptotic form, (5), of the MA constant after having fitted
the spectral function matrixelements to the function in (3). As
our results clearly indicate, even beyond about 10 atomic layers
( Å) the calculated matrixelements followed the asymp-
totic form, thus, the parameters, and could be
fitted with a high accuracy.

As the simplest realization of the LSO model [4] an impurity
with a configuration, such as a or ion, is con-
sidered. According to Hund’s third rule, a strong local spin-
orbit coupling leads to a multiplet that is separated
from the multiplet typically by about 1 eV. Under a
cubic crystal field the multiplet remains degenerate
( double representation). The impurity’s multi-
plet strongly hybridizes with those -type linear combinations
of -orbitals centered at the nearest neighbor atoms (see above)
which transform according to the representation,

. In lowest order of the hybridization, a Coqblin-
Schrieffer transformation leads to the following effective ex-
change interaction, [11]

(6)

where stand for the four states of the im-
purity multiplet, are creation (annihilation) operators
acting on the host states, , while is again an effective
strength of the exchange coupling. Due to the different orbital
structure of the and
states, in the presence of a surface the first order contribution to
the self-energy gives rise to a magnetic anisotropy

(7)

with . Employing (3) for
in the asymptotic regime and noting that
we obtain

(8)

Interestingly, the asymptotic -dependence of the MA constants
is described by very similar functions, (5) and (8), within the two
models.

In case of the LSO model we followed a similar procedure as
for the HSO model to calculate the MA constant in the asymp-
totic regime, see (8). Making use, however, that the spectral
functions are analytic in the complex plane, it is quite feasible to
calculate the MA constant from (7) in terms of a contour integra-
tion. Indeed, only 12 energy points along a semicircular contour
in the upper complex semiplane was sufficient for a very accu-
rate evaluation of the corresponding integral.
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Fig. 1. Calculated plane cut of the FS of Au perpendicular to the �� � � ��
direction. The arrows denote the extremal vectors of the lengths,� � �����
Å and � � ����� Å .

Fig. 2. Asymptotic fit, (3) (solid line), as function of the distance � from
a Au(001) surface of the calculated off-diagonal spectral function, ��� �
(squares), giving rise to the most significant contribution to ���� within the
HSO model. The dashed line denotes the bulk value of ��� �.

III. NUMERICAL RESULTS

Since the asymptotic analysis of the MA constants high-
lighted the role of the extremal vectors of the FS, we investigated
the plane cut of the FS perpendicular to the direction.
This cut is depicted in Fig. 1 from which the length of the (001)
extremal vectors can easily be read off: the absolute minimum
of the width of the FS, , can be found at , whilst
the maximum width of the corresponding cut, , is related
to saddle-points of the FS. The calculated values
Å and Å correspond to periods of 21.07
Å and 5.11 Å (10.34 ML and 2.51 ML) that agree fairly well
with the periods calculated by Bruno and Chappert, 8.6 ML
and 2.6 ML [12], [24] respectively.

In Fig. 2 the calculated values of that off-diagonal spectral
function that gives rise to the largest contribution to is
displayed together with a function fitted to the asymptotic form,
(3). As can be observed in this figure, the asymptotic function
quite surprisingly applies in the range of Å, therefore,
in practical terms there is no need to perform a “preasymptotic”
analysis as suggested in [3]. The fitted parameters of (3) are as
follows: eV ,

Å eV , Å , and rad.
In particular, agrees within a relative accuracy of 0.5%
with the length of the extremal vector, , of the Au Fermi
Surface.

Fig. 3. MA constant within the HSO model as calculated from the asymptotic
expression, (5).

Fig. 4. Calculated difference of spectral functions, 	��� �, (squares) with a
corresponding asymptotic fit (solid line) as a function of the distance from the
(001) surface of Au.

By using the asymptotic fit of the corresponding spectral
function we calculated the MA constant in terms of (5). For
that reason we numerically determined the energy derivative
of the magnitude of the extremal vector, , by repeating
the fit of the spectral functions at two additional energy points
close below and above . We thus calculated a value of

(Å eV) . Using a typical value of eV
for the effective exchange the obtained function

(9)

where is measured in Å, is displayed in Fig. 3. The main com-
ment we should make is the surprisingly small, eV, range
of even for small distances ( Å) from the surface. As
we checked the spectral function scaled linearly with the SO pa-
rameter, , thus, the MA constant scaled with . Since in our
tight-binding approach we treated the SO interaction non-per-
turbatively, this result fairly justifies the first-order perturba-
tion treatment of the Green’s function with respect to used
by Újsághy et al. [2], [20], [3].

Next we turn to numerical studies of the magnetic anisotropy
within the LSO model. In Fig. 4 we plotted the difference of the
spectral functions, , as a function of . Remarkably, the
amplitude of the oscillations is about by one order larger than
for the off-diagonal spectral function relevant to the HSO model,
see Fig. 2. This can be attributed to the fact that the origin of the
oscillations of is a tetragonal crystal field splitting which is
present even without SO interaction in the host. In addition, the
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Fig. 5. MA constant within the LSO model calculated by using the asymptotic
formula, (8), as a function of the distance � from the Au(001) surface (solid
line). Squares stand for the MA constants calculated directly from (7).

oscillations exhibit a much larger period as compared to those
in Fig. 2. A fit to the asymptotic function, (3), shown also in
Fig. 4 resulted to the values Å eV
and Å . The latter one is in a very good agreement
with the small extremal vector, , of the Fermi Surface.

In Fig. 5 the MA constants are displayed as calculated by
using (8) with the parameters from the fit of . Here
we calculated the parameter, , in a similar way as for
the off-diagonal spectral function relevant to the HSO model
and obtained a value of 0.245 (Å eV) . By choosing again

eV we got an amplitude of the oscillations of
decaying as eV, is being measured in Å. In Fig. 5
we also show the MA constants as derived from (7) in terms of
a contour integration. Apparently, for Å these values lie
almost perfectly on the asymptotic curve. This nice agreement
fairly proves both the validity of the asymptotic formula, (8),
and the accuracy of our numerical procedure in calculating the
MA constant.

IV. SUMMARY AND CONCLUSION

We performed comparative studies of two mechanisms for
surface induced magnetic anisotropy of impurities based on
spin-orbit interaction either in the host’s -band (HSO model)
or on the impurity itself (LSO model). For the description of the
host’s valence and conduction electrons we used a tight-binding
Green’s function technique that allowed for a perfect treatment
of the semi-infinite geometry of a surface. In addition, for the
case of the HSO model a non-perturbative treatment of the SO
interaction was possible. By using an asymptotic analysis we
derived explicit expressions for the MA constants, , showing
in both models a very similar oscillatory dependence on the
distance from the surface: the periods of the oscillations are
identified as the lengths of the extremal vectors of the Fermi
Surface, while the amplitude of the oscillations decay as 1/ .

By using realistic tight-binding parameters we performed nu-
merical studies for impurities near a Au(001) surface. Our calcu-
lations revealed that, by using the same theoretical and compu-
tational background, the MA constants are by about three orders
larger in case of the LSO model. In terms of direct calculations,
in this case we also confirmed the validity of our asymptotic
analysis of the MA constant. Our numerical studies, therefore,
strongly indicate that a strong local SO coupling can be regarded
as the primary mechanism for the magnetic anisotropy of an
impurity near a surface and this anisotropy seems to be large
enough to explain the experimentally observed size dependence
of the Kondo resistance in thin films.
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