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We present detailed numerical studies of the magnetic anisotropy energy of a magnetic impurity near the
surface of metallic hosts �Au and Cu� that we describe in terms of the tight-binding surface Green’s-function
technique. We study the case when spin-orbit coupling originates from the d band of the host material and we
also investigate the case of a strong local spin-orbit coupling on the impurity itself. The splitting of the
impurity’s spin states is calculated to leading order in the exchange interaction between the impurity and the
host atoms using the diagrammatic Green’s-function technique. The magnetic anisotropy constant is an oscil-
lating function of the separation d from the surface. It asymptotically decays as �1 /d2 and its oscillation
period is determined by the extremal vectors of the host’s Fermi surface. Our results clearly show that the
host-induced magnetic anisotropy energy is by several orders of magnitude smaller than the anisotropy induced
by the local mechanism, which provides sufficiently large anisotropy values to explain the size dependence of
the Kondo resistance observed experimentally.
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I. INTRODUCTION

It is by now more than 15 years ago that a surprising
suppression of the Kondo effect in thin films and wires of
dilute magnetic alloys has been observed.1–4 A few years
after the first experiments, Újsághy et al.5–7 proposed that the
most likely explanation of the experimental observations is a
spin-orbit �SO�-coupling-induced magnetic anisotropy in the
vicinity of the surface of the films. In the presence of a
surface, SO coupling gives rise to a level splitting of the
impurity spin and thus blocks the spin-flip processes respon-
sible for the Kondo effect. Indeed, later experiments seemed
to be in agreement with this simple scenario and confirmed
the predictions that follow from it.8 Fitting the experimental
data for a Au�Fe� film, Újsághy et al.5 estimated the width of
the “dead layer” Lc, where the splitting is larger or compa-
rable to the Kondo temperature TK=0.3K�0.03 meV and
obtained Lc�180 Å.

To explain the unexpectedly large width of the dead layer,
Újsághy et al. also proposed a model to describe surface
anisotropy, which we shall refer to as the host spin-orbit
(HSO) coupling model. In this model an impurity with a
half-filled d shell and spin S=5 /2 is immersed in a host
metal, where conduction electrons experience SO scattering
through hybridizing with low-lying valence d orbitals of the
host material.5–7 These calculations have been revised re-
cently in Ref. 9. This HSO mechanism does not lead to the
splitting of the sixfold degenerate spin state of the impurity
when placed in a bulk host with high �cubic or continuous
rotational� symmetry. However, the presence of the surface
induces an anisotropy term

Hanis
HSO = K�d��nS�2, �1�

where n is the normal vector of the surface, S is the spin
operator, and K�d� denotes the magnetic anisotropy constant
at a distance d from the surface. The anisotropy constant
K�d� can be estimated in a simple free-electron model by

treating the spin-orbit coupling � and the exchange coupling
J perturbatively. This calculation leads to the asymptotic
form9

K�d� = A�kF�J2�2sin�2kFd�
d3 , �2�

where kF is the Fermi wave number.10 Unfortunately, the
constant A�kF� contains some cutoff parameters, which make
the above formula less predictive for the experiments. How-
ever, ab initio calculations11 indicated that this bulk mecha-
nism is too weak to explain the experimental findings.

Recently, however, a rather different mechanism has been
proposed to produce a magnetic anisotropy in the vicinity of
a surface.12 This mechanism, which we shall refer to as local
spin-orbit (LSO) coupling mechanism, assumes only a strong
local SO coupling on the impurity’s d level. The basic ob-
servation leading to this mechanism is that, for partially
filled d shells, spin states have also a large orbital content.
Therefore, spin states couple very strongly to Friedel oscil-
lations in the vicinity of a surface. Electrons on the deep d
levels can lower their energy by hybridizing with the con-
duction electrons through virtual fluctuations. The corre-
sponding anisotropy appears already to first order in the ex-
change coupling J and decays as �1 /d2. In the specific case
of an impurity with a d1 configuration, the corresponding J3/2
ground-state multiplet is split by the presence of the surface
as12

Hanis
LSO = K�d��nJ�2, �3�

where J stands for the total angular-momentum operators
and K�d��J sin�QFd� /d2, with QF being the length of an
extremal vector of the Fermi surface �FS�. As shown in Ref.
12 the anisotropy can take the desired value of about a few
tenths of millielectron volt even beyond 100 Å from the
surface.
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Although the second �local� mechanism is expected to be
dominant for impurities with partially filled �not half-filled� d
shells, in Ref. 12 only a toy model, namely, a single-band
metal on a simple-cubic lattice has been considered. For a
quantitative comparison, however, and to decide, which
mechanism is responsible for the surface-induced anisotropy,
more realistic lattice and band structures should be used. The
aim of the present work is to provide such a qualitative and
quantitative comparison of the two mechanisms described
above. For this purpose, we shall embed the impurity into an
fcc lattice and employ realistic tight-binding surface Green’s-
function methods13 to describe the conduction and valence
electrons of the host material. This method allows for a nu-
merically exact treatment of the surface and also incorporates
the SO coupling nonperturbatively.

To describe the magnetic impurity, we shall integrate out
virtual charge fluctuations on the d level of the magnetic
impurity and construct realistic spin models, which take into
account the specific magnetic- and crystal-field structures of
the impurity.14 We shall then study the surface-induced an-
isotropy within both models and derive explicit expressions
for the anisotropy constants in terms of the local density of
states �DOS� around the magnetic impurity. Analyzing the
behavior of K�d� in the asymptotic regime, we find that the
oscillations of K�d� are related to the extremal vectors of the
Fermi surface. For the case of Au and Cu host metals, we
perform numerical calculations of the anisotropy constants
based on the asymptotic formulas and the oscillation periods
are directly identified from the numerically computed Fermi
surface. In the case of the local SO model, we are also able
to confirm numerically the validity of the asymptotic expres-
sions. Our results support the priority of the local SO mecha-
nism.

II. SHORT REVIEW OF THE THEORETICAL APPROACH

Before we present our results, let us to some extent out-
line the theoretical methods we use. As mentioned in Sec. I,
in our approach we describe the host material within the
tight-binding Green’s-function formalism. The interaction
between the magnetic impurity and the host, on the other
hand, is described in terms of an effective interaction, which
we construct by combining group theoretical methods with
many-body techniques. Once this effective exchange interac-
tion Hamiltonian is at hand, we can use relatively standard
field-theoretical tools15 to do perturbation theory in the ex-
change coupling and determine the surface-induced aniso-
tropy.

A. Green’s function of the host

In this paper, we shall study surfaces of ordered nonmag-
netic hosts such as the �001� surface of Au or Cu. In this
case, the Hamiltonian of the host can be written as

Ḣ��,����
pn,p�n� = ����������� + ��� · s���,������pp��nn�

+ V�,��
pn,p�n�����, �4�

where p , p� denote atomic layers normal to the surface, n ,n�

label atomic sites within the layers, while � ,�� denote the
canonical spd orbitals centered at the lattice positions, and
� ,�� are spin indices. In Eq. �4�, we replaced all the param-
eters by their bulk values; i.e., we neglected the dependence
of the on-site energies �� and the SO parameter � on the

layer depth p. The hopping matrix elements V�,��
pn,p�n� are con-

fined to first- and next-nearest neighbors, and their layer de-
pendence is also neglected. These approximations lead cer-
tainly to some errors in the calculated electronic structure
very close to the surface; however, they are expected to have
no serious consequences in the asymptotic regime, which is
the subject of our interest. By the same token, in the vacuum
�i.e., p�0� the on-site energies are taken to be infinity. This
simplifies somewhat our calculations since only layers p
�1, forming thus a semi-infinite system, need to be consid-
ered in the evaluation of the Green’s function.

The Hamiltonian �4� can be recast into a matrix in the
spin and orbital labels as

H�̇ pn,p�n� = �Ḣ��,����
pn,p�n� � . �5�

Since our system is translational invariant within the layers,
we can also define the Fourier transform of the Hamiltonian

matrix H�̇ pp��k� and introduce the “semi-infinite” matrix

Ḣ�k� = �H�̇ pp��k��p,p��1. �6�

The resolvent or Green’s-function matrix is then given as

Ġ�z,k� = �z − Ḣ�k��−1, �7�

with z as a complex number �energy�.
To perform the matrix inversion in Eq. �7�, we used the

surface Green’s-function technique,13 which is an efficient
and, in principle, exact tool to compute the Green’s function.
Most importantly, the computational time of this method
scales linearly with the number of layers, for which the
Green’s function is evaluated. The real-space representation
of the Green’s function can then be obtained by performing
the following Brillouin-zone �BZ� integral:

G�̇ pn,p�n��z� =
1

�BZ
	 d2k G�̇ pp��z,k�e−ik�Tn�−Tn�, �8�

where �BZ is the volume of the two-dimensional �2D� Bril-
louin zone and the translation vector Tn is related to the
position of atom n in layer p as Rpn=Cp+Tn, with Cp as a
layer-dependent reference position.

The host Hamiltonian �4� must be slightly modified in the
presence of a magnetic impurity. In this case, the hopping of
the conduction electrons to the impurity’s d orbitals should
be excluded since these processes involve charge fluctuations
at the magnetic impurity site, which will be incorporated in
the effective exchange interaction �see Sec. II B�. The sim-
plest way to account for this constraint is to shift the on-site
d-state energies of the impurity ��

i far below the valence
band and add the following term to the Hamiltonian:

	H��,����
�q�pn,p�n� = ���

i − ����pq�p�q�n0�n�0��,������, �9�

where the impurity is at site n=0 and in layer q.
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To describe the spin dynamics, we do not need to evaluate
the full Green’s function. We need its value only for a small
cluster of sites C�q� consisting of nearest-neighbor atoms
around the impurity and the impurity itself. Fortunately,
since 	H is also local, the corresponding Green’s function
matrix

G��
�q��z� = �G� pn,p�n��C�q� �10�

can be evaluated as

G��
�q��z� = �I�� − G��̇

�q��z�	H��
�q��−1G��̇

�q��z� , �11�

where I�� is the unit matrix and the matrix elements of G��̇
�q��z�

and 	H��
�q� are defined in Eqs. �8� and �9�, respectively. Fi-

nally, the spectral function matrix on this cluster is defined as

���
�q���� = −

1

2
i
lim

�→+0
�G�� �q��� + i�� − G��

�q��� − i��� . �12�

As shown in Secs. II B and II D, the matrix elements of this
spectral function matrix are directly related to the magnetic
anisotropy.

B. Host spin-orbit model of the magnetic anisotropy

As in Refs. 5–7 and 9 let us first consider a spin S=5 /2
impurity with a half-filled d shell. In this case, we can ne-
glect the SO interaction on the magnetic ion and the bulk SO
interaction is the primary source of the surface-induced an-
isotropy. Note that within this model SO coupling affects
directly the low-lying �filled� d orbitals of the host. As de-
scribed in Refs. 5–7, s-like conduction electrons experience
this SO coupling in terms of virtual fluctuations mediated via
sd hybridization. In case of noble metals, the d band lies well
below the Fermi level, prognosticating that this mechanism
for the magnetic anisotropy should be rather weak.

To construct the effective interaction between the host
electrons and the magnetic impurity, one can safely assume
that the deep d levels of the magnetic impurity hybridize
only with the s orbitals of the neighboring host atoms. How-
ever, by symmetry, the deep d levels can hybridize only with
appropriate linear combinations of these s orbitals, �� �x2

−y2 ,2z2−x2−y2 ,xy ,xz ,yz�. In case of an fcc lattice, we have
12 nearest-neighbor s orbitals, which can be labeled by
sxy ,sx–y– ,sxy– ,sx–y , . . . ,syz– ,sy–z. The subscripts, xy and xy, e.g.,
refer to neighboring sites at the positions a� 1

2 , 1
2 ,0� and

a�− 1
2 ,− 1

2 ,0� relative to the impurity, respectively, and a de-
notes the cubic lattice constant. However, only 5 out of these
12 states will have a d-wave character and hybridize with the
d levels of the magnetic impurity. These five states are listed
in Table I. Using these five spin-degenerate states, we can
perform a Schrieffer-Wolff transformation16 that leads to the
following Hamiltonian:

HJ,ss� = 

i=x,y,z



�=1

5

J� 

�,��=�1

c��
† ����

i c���Sss�
i . �13�

Here s ,s�=− 5
2 , . . . , 5

2 denote the z components of the impu-
rity spins Si and �i denote the Pauli matrices. The operator

c��
† creates a conduction electron with spin � in one of the

states ��� listed in Table I. In the bulk, only two of the ex-
change constants J� are independent since by symmetry we
have Jxy =Jxz=Jyz and Jx2−y2 =J2z2−x2−y2. In the following, for
the sake of simplicity, we shall set all these coupling con-
stants equal and take J�=J. This assumption does not modify
our conclusions.

The anisotropy induced by the surface can be computed
by representing the spin in terms of Abrikosov pseudofermi-
ons and then doing second-order calculation in the exchange
coupling.5 The zero-temperature first- and second-order con-
tributions to the static �=0� self-energy of the impurity spin
can be expressed in terms of the local-density-of-states
�spectral function� matrix ��,�;���� as12

�ss�
�1� = 	

−�

�F

d� Tr�����HJ,ss�� = J

i

Sss�
i 	

−�

�F

d� Tr������i�

�14�

and

�ss�
�2� = 	

−�

�F 	
�F

� d�d��

�� − �



s̃

Tr�����HJ,ss̃�����HJ,s̃s��

= J2

i,j



s̃

Sss̃
i Ss̃s�

j 	
−�

�F 	
�F

� d�d��

�� − �
Tr������i������ j�

�15�

with Tr�. . .� denoting the trace in the ten-dimensional sub-
space of the conduction electrons and �F as the Fermi energy.
The spectral function ��,�;���� can easily be obtained from
the real-space spectral function matrix elements �12�.

Exploiting furthermore the tetragonal �C4v� symmetry of
an fcc�001� surface system and time-reversal invariance, we
find that ��,�;���� has the following structure:

� =
�1I2 i�5�z i�6�x i�7�y − i�8�y

− i�5�z �1I2 − i�6�y i�7�x i�8�x

− i�6�x i�6�y �2I2 i�9�z 0

− i�7�y − i�7�x − i�9�z �3I2 0

i�8�y − i�8�x 0 0 �4I2

� ,

�16�

where ∀�i�R and we dropped the energy argument of the
spectral functions. The above form of � is fully confirmed by

TABLE I. Combinations of s orbitals centered at the 12 neigh-
bor sites around an impurity having the symmetry of atomic d
orbitals.

�1� Dxz= 1
2 �sxz+sx–z– −sxz– −sx–z�

�2� Dyz= 1
2 �syz+sy–z– −syz– −sy–z�

�3� Dxy = 1
2 �sxy+sx–y– −sxy– −sx–y�

�4� Dx2−y2 = 1
2�2

�syz+sy–z– +syz– +sy–z−sxz−sx–z– −sxz– −sx–z�

�5�
D2z2−x2−y2 = 1

2�6
�2sxy+2sx–y– +2sxy– +2sx–y−syz−sy–z– −syz–

−sy–z−sxz−sx–z– −sxz– −sx–z�
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our numerical calculations. Inserting Eq. �16� into Eqs. �14�
and �15� yields �ss�

�1� �0, and we find

�ss� � �ss�
�2� = C + KHSO�Sz

2�ss�, �17�

where C is a constant and the anisotropy constant KHSO can
be expressed as

KHSO = KHSO
6 + KHSO

7 + KHSO
8 − KHSO

5 − KHSO
9 , �18�

with

KHSO
i = − 4J2	

−�

�F

d�	
�F

�

d��
�i����i����

�� − �
. �19�

If the impurity is placed in the bulk, then cubic symmetry
further implies that

�1��� = �2���, �3��� = �4���, �6��� = − �5��� ,

�8��� = �3�7���, �9��� = − 2�7��� , �20�

and we obtain KHSO=0. Thus the anisotropy is indeed gen-
erated by the surface, which breaks the cubic symmetry of
the crystal.

C. Local spin-orbit coupling model of the magnetic anisotropy

As in Ref. 12, let us now consider a magnetic impurity in
a d1 configuration such as a V4+ or Ti3+ ion. In this case,
according to Hund’s third rule, a strong local spin-orbit cou-
pling will lead to a J=3 /2 multiplet that is separated from
the J=5 /2 multiplet typically by an energy of the order of
�1 eV. In a cubic crystal field, this J=3 /2 ground multiplet
remains degenerate ��8 double representation�, implying that
no magnetic anisotropy appears if the magnetic impurity is in
the bulk. Anisotropy will, however, arise, once the impurity
is placed to the vicinity of a surface that breaks the cubic
symmetry.

To construct the exchange interaction between the con-
duction electrons and the magnetic impurity, we first notice
that the impurity’s J=3 /2 multiplet can hybridize only with
those linear combinations of neighboring s states, which
transform according to the same ��8� representation. Such a
four-dimensional d-type set can be constructed from the
states in Table I as

�s−3/2� = Dx2−y2�↓� , �21�

�s−1/2� = D2z2−x2−y2�↓� , �22�

�s1/2� = D2z2−x2−y2�↑� , �23�

�s3/2� = − Dx2−y2�↑� . �24�

Assuming that the impurity-host interaction is mainly
dominated by quantum fluctuations to the �nondegenerate� d0

state, in lowest order of the hybridization, a Coqblin-
Schrieffer transformation leads to the following effective ex-
change interaction:12,17

HJ = J 

m,m�

sm
† sm��3

2
m��� 3

2
m� , �25�

where � 3
2m� stand for the four states of the �8 impurity mul-

tiplet and sm
† are creation operators creating an electron in the

host states �21�–�24�.
Interestingly, due to the different orbital contents of the

impurity states � 3
2 , �

3
2 � and � 3

2 , �
1
2 �, already the first-order

contribution to the self-energy gives a nonvanishing aniso-
tropy in the vicinity of a surface,12

�mm�
�1� = J	

−�

�F

d� �mm���� . �26�

The local spectral function of the host is now a 4�4 matrix
�mm���� that has a diagonal structure and is related to the
spectral functions defined in Eq. �16� as follows:

�mm���� = �m����mm�, �27�

��3/2��� � �3���, ��1/2��� � �4��� . �28�

From Eq. �20� it is obvious that the J=3 /2 multiplet is de-
generate under cubic symmetry �in the bulk�, while under
tetragonal symmetry it is split by an effective anisotropy
term �3� with

KLSO = KLSO
3 − KLSO

4 �29�

and

KLSO
i =

J

2
	

−�

�F

d� �i��� . �30�

D. Asymptotic form of the anisotropy constants

The presence of the surface induces Friedel oscillations in
the local spectral functions.18 For large distances d from the
surface, an asymptotic analysis can be performed based on
the rapid oscillations of the electronic wave function, �eikzd.
In the simple case, when the constant energy surface in the
three-dimensional Brillouin zone of the bulk system is
formed by a single band �such as the Fermi surface of noble
metals�, this leads to the following expressions for the spec-
tral functions appearing in Eq. �16�:

�i��,d� � �i
0��� +

1

d



n

gi
n���cos�Qn���d + �i

n���� , �31�

where �i
0��� is the spectral function in the bulk and the

Qn���’s denote the lengths of extremal vectors of the con-
stant energy surface normal to the geometrical surface. The
factors gi

n��� denote the amplitudes of the oscillations and
�i

n��� are their phases. As we shall discuss later, in case of an
fcc�001� geometry there are two different extremal vectors.
Furthermore, it turns out that each of the spectral function
matrix element has a non-negligible contribution related only
to one of these vectors; therefore, as what follows, we shall
label the extremal vectors with the index of the matrix ele-
ments i. By substituting expression �31� into Eqs. �19� and
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�30� we then obtain the asymptotic form of the anisotropy
constants.

1. Host spin-orbit coupling model

In case of the host spin-orbit coupling model, the contri-
butions KHSO

i to the magnetic anisotropy constant can be ex-
pressed in leading order of 1 /d as

KHSO
i = −

4J2

d
Re	

0

� d�̃

�̃
�	

�F−�̃

�F

d� �i
0�� + �̃�gi���ei�Qi���d+�i����

+ 	
�F

�F+�̃

d� �i
0�� − �̃�gi���ei�Qi���d+�i����� . �32�

Assuming that �i
0���, Qi���, gi���, and �i��� are slowly vary-

ing functions of �, whereas eiQi���d is rapidly oscillating, the
inner integrals in Eq. �32� give sizable contributions only for
small values of �̃; and therefore we can expand Qi��� around
�F, Qi����Qi��F�+Qi���F���−�F�, and substitute all the
other functions by their values at �F. This procedure yields
the following asymptotic form:

KHSO
i = −

4J2
�i
0��F�gi��F�

�Qi���F��
cos�Qi��F�d + �i��F��

d2 .

�33�

For free electrons, Q��F�=2kF, and the above result re-
sembles that of Újsághy et al.,9 however with a �1 /d2 rather
than a �1 /d3 decay. This difference is a consequence of the
assumption made in Ref. 9 that the scatterers in the host are
distributed homogeneously.

2. Local spin-orbit coupling model

In case of the local spin-orbit coupling model the energy
integral in Eq. �30� can be easily performed yielding

KLSO
i �

Jgi��F�
2�Qi���F��

sin�Qi��F�d + �i��F��
d2 . �34�

Interestingly, the asymptotic d dependence of the magnetic
anisotropy is described by very similar functions within both
models. Only the coefficients and the prefactors are different.

III. COMPUTATIONAL DETAILS

For a realistic description of the host’s valence and con-
duction bands we used the on-site energies and the first- and
second-nearest-neighbor hopping parameters as given in Ref.
19 for Au and in Ref. 20 for Cu and set the cubic lattice
constants to their experimental values, aCu=3.615 Å and
aAu=4.078 Å.21 The spin-orbit parameter � has been deter-
mined from the difference of the SO-split d-resonance ener-
gies 	Ed=Ej=5/2−Ej=3/2 derived from self-consistent relativ-
istic first-principles calculations.22 This splitting is related to
our SO coupling as

	Ed �
5

2
� . �35�

For Au we thus obtained �=0.64 eV, while for Cu �
=0.1 eV. In order to reduce the computational efforts in per-

forming the Brillouin-zone integrals �8�, we made use of the
C4v point-group symmetry of the fcc�001� surface and ap-
plied an adaptive uniform mesh refinement for sampling the
k points in the irreducible �1/8� segment of the Brillouin
zone. In general, about 104 k points were sufficient to calcu-
late all the spectral function matrix elements in Eq. �16� with
a relative accuracy of 1%. We performed calculations for the
�i’s for up to 50 monolayers �ML� below the surface, corre-
sponding to a separation of d�90 and �100 Å for Cu and
Au, respectively.

Performing the double energy integral in Eq. �19� is a
quite demanding numerical procedure. Therefore, for the
host spin-orbit model, we first fitted the spectral function
matrix elements by the function �31� and then used the
asymptotic form �33� to compute the magnetic anisotropy
KHSO. As we shall see later, beyond about ten atomic layers
�d�20 Å� the calculated matrix elements followed the
asymptotic form and the parameters, gi���, �i���, and Qi���
could be fitted with a high accuracy.

In case of the local spin-orbit coupling model, we also
performed a similar procedure to calculate the magnetic an-
isotropy constant in the asymptotic regime �34�. However, in
this case, it was also possible to compute the anisotropy con-
stant directly from Eq. �30�. In this case, we could deform
the energy integration contour by using the analyticity of the
Green’s function on the complex plane and as few as 12
energy points along a semicircular contour in the upper com-
plex half plane were sufficient for a very accurate evaluation
of the corresponding integral.

IV. RESULTS

A. Electronic structure of the bulk host

We first performed calculations of the DOS of bulk Cu
and Au. As shown in Fig. 1, the dispersion of the 3d band of
Cu is about 4 eV, while the 5d band of Au is much broader
��7 eV�. Reassuringly, the positions and the heights of the
characteristic peaks of the DOS compare well with those
obtained from self-consistent first-principles calculations.22,23

Clearly, in copper, the small SO coupling, �=0.1 eV, causes
merely a slight modification in the DOS in the vicinity of the
d-like on-site energy ��5.07 eV�. In the case of Au the SO
coupling is much stronger, �=0.64 eV, and is large enough
to influence the whole d band. It gives rise to strong split-
tings of the dispersion peaks and it also increases slightly the
bandwidth. As indicated by the vertical lines in Fig. 1, the
Fermi energies �F

Cu=8.3 eV and �F
Au=7.4 eV lie well above

the d band for both metals.
As we learned from the asymptotic analysis presented in

Sec. II D, extremal vectors of the Fermi surface play a cru-
cial role in determining the magnetic anisotropy constants.
Therefore, we next investigated the plane cuts of the Fermi
surface perpendicular to the �1 −1 0� direction. One can
easily read off the length of the �001� extremal vectors from
the cuts depicted in Fig. 2. The absolute minimum of the
width of the Fermi surface Qmin can be found at k=0, while
the maximum width of the corresponding cut Qmax is related
to saddle points of the Fermi surface. In the case of a Cu host
the values obtained from our tight-binding analysis, Qmin

Cu
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=0.505 Å−1 and Qmax
Cu =1.208 Å−1 correspond to periods of

12.44 and 5.20 Å �6.88 and 2.88 ML� of the oscillations and
agree fairly well with the periods, 6.08 and 2.60 ML, calcu-
lated by Lathiotakis et al.24 Similar satisfactory agreement
can be found in the case of a Au host between the periods
found from our present calculations, 10.34 and 2.51 ML, and
those calculated by Bruno and Chappert,25 8.6 and 2.6 ML. It
should be noted, however, that the shape of the FS depends
very sensitively on the position of the Fermi energy. The
precise determination of which is a quite subtle task since for
noble metals such as Cu and Au the Fermi energy lies in the
very flat 4sp band �see also Fig. 1�.

B. Magnetic anisotropy constants within the host spin-orbit
coupling model

We calculated the spectral function matrices �16� at the
Fermi energy of Cu and Au using the methods described in
Secs. II B and II C for up to 50 ML below the surface. As a
convincing check of our numerical procedure we verified
that the structure of the calculated matrices agrees with that
derived analytically from symmetry principles. In the case of
a Au host, in Fig. 3 we plotted the calculated off-diagonal
matrix elements �5��F� , . . . ,�9��F� as functions of the dis-
tance d from the surface. As expected, large oscillations can
be observed for all the spectral functions near the surface
�d�20 Å�. These oscillations, however, survive for large
distances only for �6, while they are strongly damped in all
the other cases. The limiting values of �i correspond to the
bulk case and, as we checked, satisfy the conditions �20�
with less than 1% relative numerical accuracy.

In Fig. 4 we display the spectral function �6��F� on an
enlarged scale, together with a fitting function of the form
�31�. Quite surprisingly, the asymptotic function applies even
in the range of d�20 Å and, therefore, there is no need to
perform a “preasymptotic” analysis as suggested in Ref. 9.
The fitted parameters of Eq. �31� are as follows:
�6

0��F�=−3.99�0.01�10−4 eV−1, g6��F�=−1.484�0.008
�10−3 Å eV−1, Q6��F�=1.2228�0.0001 Å−1, and �6��F�
=1.324�0.006 rad. It is particularly noteworthy that the fit-
ted wave number agrees with an accuracy of 0.5% with the
length of the extremal vector Qmax computed from the Au
Fermi surface. We could fit all other off-diagonal spectral
function components entering the expression of KHSO with a
similar fit with exactly the same wave number. However, the
amplitude of these other components was by at least two
orders of magnitude smaller than g6��F�.

Our calculations thus indicate that the long-wavelength
oscillation corresponding to Qmin of the FS either enters with

FIG. 1. �Color online� Calculated valence-band densities of
states for Cu and Au bulk without SO interaction �dots� and with
SO interaction �solid line�. For the latter case the Fermi energies
�F

Cu=8.3 eV and �F
Au=7.4 eV are indicated by vertical lines.

FIG. 2. �Color online� Calculated plane cuts perpendicular to
the �1 −1 0� direction of the FS of Cu and Au. The arrows denote
the extremal vectors of lengths Qmin

Cu =0.505 Å−1 and Qmax
Cu

=1.208 Å−1 and Qmin
Au =0.298 Å−1 and Qmax

Au =1.228 Å−1.

FIG. 3. �Color online� Calculated off-diagonal spectral function
matrix elements �see Eq. �16�� at the Fermi energy as functions of
the distance d from the �001� surface of a Au host.
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a negligibly small amplitude or does not enter at all in the
asymptotic form of the off-diagonal spectral function matrix
elements. This can easily be understood by noticing that the
asymptotic contributions to the real-space spectral function

matrix elements �s�,s��
�q+p�n,�q+p��n���� �p , p�=0, �1, d=q a

2 � re-
lated to Qmin are of the following form:

�s�,s��
�q+p�n,�q+p��n���� � �s�,s��

�0�pn,p�n����

+
gs�,s��

p,p� ���

d
cos�Qmin���d + ����� ,

�36�

where �s�,s��
�0�pn,p�n���� refer to the corresponding bulk matrix

elements. Equation �36� implies that the oscillating part does
not depend on the in-plane positions n and n�, which is the
consequence that the minimal extremal vector is at the k
=0 point of the 2D Brillouin zone. As explained in Sec. II B,
the matrix elements in Eq. �16� are linear combinations of
the above real-space matrix elements according to the states
in Table I. Since the states ��� ��=1, . . . ,4� are constructed
as antisymmetric combinations of neighboring s orbitals in
the same plane q+ p or as a sum of such antisymmetric com-
binations, in their matrix elements the asymptotic oscillatory
part corresponding to Qmin necessarily cancels. As a conse-
quence, only the spectral function �4��5���5� has
asymptotic oscillations with wave number Qmin, which, how-
ever, does not give a contribution in the host SO model.

We calculated the magnetic anisotropy constant using the
asymptotic fits of the spectral functions and Eq. �33�. We
numerically determined the energy derivative of the magni-
tude of the extremal vector Q���F� by fitting the spectral
functions at two energy values close below and above �F and
obtained Q���F�=0.235 �Å eV�−1. Thus, in case of a Au host
we get the following asymptotic function for KHSO

6 �d� �dis-
played in the upper panel of Fig. 5�:

KHSO
6 �d� =

31.66

d2 cos�1.2228 · d + 1.324� �eV, �37�

where d is measured in Å. Notice the surprisingly small
magnitude of KHSO

6 . Even at a distance of about d=20 Å the

amplitude of the above oscillating function is about
0.079 �eV.

We performed similar calculations for a Cu host. In Cu,
the spectral functions show asymptotic oscillations with
Q��F�=1.205 Å−1 that agrees within 0.3% with the length of
the extremal vector Qmax of the Cu FS. In Cu, the KHSO

9

contribution shown in the lower panel of Fig. 5 dominates
the magnetic anisotropy. This is in the range of 0.01 neV
=10−11 eV, i.e., it is at least by three orders of magnitude
smaller than the one found in case of a Au host. This de-
crease is mostly due to the smaller SO interaction in Cu than
in Au. As we checked by varying � for Au, the spectral
functions in Eq. �16� scale linearly with �; therefore, by Eq.
�19� the magnetic anisotropy constant scales as ��2. This
result clearly justifies the approach of Újsághy et al.,5–7,9

who treated the SO interaction perturbatively.

C. Magnetic anisotropy constants within the local spin-orbit
coupling model

As pointed out in Ref. 12, a mechanism based on a strong
local SO interaction of the impurity �local SO model� can
give rise to a level splitting that is orders of magnitude larger
than the host-induced anisotropy. To demonstrate this idea, in
Ref. 12 we studied the simple but unrealistic case of a single-
band metal on a simple-cubic lattice. Here we extend the
calculations of Ref. 12 and perform calculations for realistic
host metals �Cu and Au�.

According to the theory presented in Sec. II C, we need to
compute the diagonal spectral function matrix elements �3
��4���4� and �4��5���5� �see Table I and Eq. �16��. Our
calculations clearly showed that the d-dependent Friedel os-
cillations of �3 are several orders smaller in magnitude than
those of �4. This can be understood by noticing that, due to
the different spatial character of these two states �Dx2−y2 and

FIG. 4. �Color online� Asymptotic fit to the function �31� �solid
line� of the calculated values of the �6��F� spectral function �tri-
angles� as a function of the distance from a Au�001� surface. The
dashed line denotes the bulk value of �6��F�.

FIG. 5. �Color online� Upper panel: KHSO
6 contribution to the

magnetic anisotropy constant within the host spin-orbit coupling
model for a Au host as calculated from the asymptotic expression
�33�. Lower panel: KHSO

9 contribution to the magnetic anisotropy
constant in the case of a Cu host. In both cases an exchange inter-
action parameter J=1 eV was used.
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D2z2−x2−y2�, �3 comprises an average of spectral weights in
layers q−1 and q+1, while �4 takes the difference of spec-
tral weights in layer q with respect to those in layers q−1
and q+1, with q denoting the layer of the impurity’s posi-
tion. Recalling that for a cubic bulk �3=�4 �see Eq. �20�� in
the asymptotic region KLSO becomes proportional with the
integral of the function, 	�4�� ,d���4�� ,d�−�4

0���. This
function is displayed in Fig. 6 for both the Au and the Cu
hosts. Remarkably, the amplitude of the Friedel oscillations
is about one order of magnitude larger than those of the
off-diagonal spectral functions �compare with Fig. 3 for the
case of Au�. Note that the off-diagonal matrix elements ap-
pear in first order of the spin-orbit coupling. The oscillations
have larger periods as compared to the off-diagonal spectral
functions. A fit to the asymptotic function �31� shown also
in Fig. 6 gave the values QAu=0.292 Å−1 and QCu

=0.505 Å−1, which are in very good agreement with the
length of the small extremal vector Qmin of the corresponding
Fermi surfaces. Interestingly, the amplitude of the oscilla-
tions is more than three times larger for Cu than for Au.
From the fits we obtained g4��F�=1.16�10−2 and 3.53
�10−2 Å eV−1 for the case of Au and Cu, respectively. It
should, however, be again emphasized that the SO coupling
in the host has a negligible influence to the local SO mecha-
nism. The origin of the oscillations of �4 is crystal-field split-
ting acting directly on the charge distribution.

Screening due to Coulomb and exchange interactions in
the host material causes damping of the above Friedel oscil-
lations. A rigorous theoretical discussion of such effects, in
particular, regarding the semi-infinite geometry of the host is
beyond the scope of the present work. In order to estimate
the importance of screening we first note that the spectral
functions �3 and �4 involve both site-diagonal and site-off-
diagonal matrix elements. Among them, the Friedel oscilla-
tions of the off-diagonal components are expected to be
slightly affected by screening. The site-diagonal matrix ele-

ments, i.e., the s-like components of the charges around an
impurity can be merged in a “charge” component of 	�
=�3−�4 as follows:

	�c =
1

12
��xz,xz + �x̄z,x̄z + �yz,yz + �ȳz,ȳz + �xz̄,xz̄ + �x̄z̄,x̄z̄

+ �yz̄,yz̄ + �ȳz̄,ȳz̄ − 2�xy,xy − 2�x̄y,x̄y − 2�xȳ,xȳ − 2�x̄ȳ,x̄ȳ� .

�38�

For the case of a Cu host, 	�c��F� is also shown in Fig. 6.
Obviously, 	�c is considerably less in magnitude as com-
pared with 	�; therefore, a screening of this component
should not qualitatively modify on the result of our calcula-
tions. A further argument to neglect screening effects can be
made by observing that Eq. �38� corresponds to a quadrupole
distribution for which Coulomb screening should be less ef-
fective than for the charge.

Figure 7 shows the magnetic anisotropy constants ob-
tained using Eq. �34� with the parameters extracted from the
fits of 	�4��F ,d�. The parameter Q���F� was computed as
for the off-diagonal spectral functions and took a value of
0.245 �Å eV�−1 for Au and 0.238 �Å eV�−1 for Cu. Choos-
ing again J=1 eV, we obtained for the amplitudes of the
oscillations of K, A�d�=0.0237 /d2 and 0.0742 /d2 eV �d
measured in Å� in Au and Cu, respectively. In particular, for
Cu this gives an amplitude of 0.03 meV at d=50 Å or 0.007
meV at d=100 Å, which is in the range of TK for typical
dilute magnetic alloys such as Cu�Mn� and Cu�Cr�.

In Fig. 7, we also compare the magnetic anisotropy con-
stants obtained from the asymptotic analysis with the values
we get by performing the contour integration in Eq. �30�.
Apparently, already for d�35 Å, these values lie almost
perfectly on the asymptotic curve. This nice agreement
proves the validity of the asymptotic formula �34�, as well as
the accuracy of our numerical procedure to compute the
magnetic anisotropy constant.

V. SUMMARY AND CONCLUSIONS

In this paper, we performed a theoretical study of two
mechanisms for surface-induced magnetic anisotropy of a

FIG. 6. �Color online� Calculated values of 	�4��F���4��F�
−�4

0��F� �squares� with corresponding asymptotic fits �31� �solid
line� as functions of the distance from the �001� surface of Au and
Cu. For the case of Cu, an additional solid line displays the charge
component of 	�c��F� defined in Eq. �38�.

FIG. 7. �Color online� Magnetic anisotropy constants within the
local spin-orbit coupling model calculated by using the asymptotic
formula �34� as functions of the distance d from the �001� surface of
a Au �dashes� and a Cu host �solid line�. In case of Au the squares
stand for the magnetic anisotropy constants calculated directly from
Eq. �30�.
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magnetic impurity: a local spin-orbit mechanism �LSO�,12

and a host spin-orbit mechanism �HSO�.5 Both mechanisms
appear as a result of Friedel-type oscillations in the local
spectral functions induced by the surface. In the local SO
mechanism, the rather large diagonal, i.e., charge oscilla-
tions couple through the local spin-orbit coupling on the d or
f level of the magnetic impurity to the impurity spin and lead
to a surface-induced splitting of the spin states. The host SO
mechanism, on the other hand, relies on oscillations in the
off-diagonal elements of the local spectral functions, i.e., os-
cillations in the “spin sector” that couple directly to the spin
through an exchange interaction. These oscillations are in-
duced by the SO coupling in the host metal and, thus, they
are much weaker than the Friedel oscillations in the “charge
sector.” Based on this simple picture, one therefore expects
that the first mechanism is dominant for impurities with a
partially filled d or f shell, while the host SO mechanism
may become important for half-filled shells, in which case
the local SO mechanism cannot be at work.

In this paper we attempted to compare these two mecha-
nisms quantitatively. For the description of the host’s valence
and conduction electrons we used the tight-binding Green’s-
function technique, which allows for a perfect treatment of
the semi-infinite surface geometry and makes also possible a
nonperturbative treatment of the host SO interaction. We
then used a field theoretical approach to compute the self-
energy of the spin up to first �local SO� and second orders in
the exchange coupling J �host SO model� and derived ex-
plicit expressions for the anisotropy constants K as functions
of the separation d between the impurity and the surface.

These expressions have been analyzed using an
asymptotic analysis, which resulted in a very similar oscilla-
tory dependence of K on d in both models. The periods of the
oscillations could be identified as the magnitudes of the ex-
tremal vectors of the Fermi surface of the bulk host and their
amplitudes decayed in both models as 1 /d2. Here we must
remark that in our calculations in Ref. 12 we predicted a
1 /d3 decay of the oscillations of K within the host spin-orbit
mechanism. This must be contrasted to the results of the
present work, where we find rather a 1 /d2 scaling of the
host-induced anisotropy. This apparent controversy is due to
a small difference in the calculations. Unlike the present
work, in Ref. 12 we neglected the potential scattering at the
impurity site; i.e., we used the local spectral functions of a
perfect semi-infinite host. In this case, however, one can
show that certain off-diagonal elements of the local spectral

function matrix must vanish due to two-dimensional transla-
tional symmetry. These off-diagonal matrix elements are
nonzero once translational invariance is broken by potential
scattering at the impurity site, and they give rise to a 1 /d2

decay of the anisotropy as shown in Sec. II D.
Using realistic tight-binding parameters, we calculated the

amplitudes of the magnetic anisotropy oscillations for the
cases of Au and Cu metal hosts. As expected from the very
different SO interactions in these metals, within the host SO
model, the magnetic anisotropy constant for Au turned out to
be about three orders larger in magnitude than for Cu. Nev-
ertheless, even for a Au host and close to the surface, the
magnetic anisotropy constants remained below the range of
0.1 �eV. Although a direct comparison with the result of
Ref. 9 is quite questionable mainly due to the different geo-
metrical distribution of the host atoms and to the different
approximations used, the above value is close to the lower
limit of the estimated range of K given in Ref. 9. We there-
fore conclude that most probably the host SO mechanism of
Ref. 9 is too weak to explain the size dependence of the
Kondo resistance.

The local SO mechanism proposed in Ref. 12, on the
other hand, gives a magnetic anisotropy constants for Cu in
the range of 0.03–0.01 meV for even at distances 50–100 Å
away from the surface. Although they are in the same range,
the magnetic anisotropy constants for Au were about three
times smaller than the ones we got for Cu. Our numerical
studies imply that the primary mechanism to produce a mag-
netic anisotropy in the vicinity of a surface is provided by the
local SO coupling, where the local Hund’s rule coupling con-
spires with Friedel oscillations to produce a large anisotropy
effect. This mechanism seems to be large enough to explain
the suppression of the Kondo resistance anomaly observed in
thin films and it also supposed to be the dominant source of
�random� magnetic anisotropy in metallic mesoscopic struc-
tures such as metallic nanograins, nanowires, or point con-
tacts.
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