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It is shown that under certain conditions an instantaneous resolvent G�z ; t� of a time-dependent Kohn-Sham
or Kohn-Sham-Dirac operator H�t� can be defined from which the particle and the magnetization density can
be evaluated directly using contour integrations. The corresponding Green’s function can be evaluated within
a multiple-scattering scheme by solving at each given time t coupled radial differential equations for the
single-site problem. This scheme is in particular intriguing since within the adiabatic time-dependent density
functional the configurational part of a time-dependent perturbation can be viewed as a contribution to an
effective �full� potential. First applications are shown for an Fe atom excited by a femtosecond laser pulse.
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I. INTRODUCTION

Although the concept of time-dependent density func-
tional �TDDFT� was introduced already about 20 years ago
�see, e.g., the review article by Marques and Gross1� no prac-
ticable schemes for magnetic solid systems that can be gen-
eralized fully relativistically—not even in the so-called adia-
batic local density approximation �ALDA�—was designed
up to now. The reason for this regrettable fact, however, is
very easy to see: most formulations up to now were based on
either derivations from �nonrelativistic� exact many-body
wave functions for a limited number of particles permitting
one, e.g., the use of Slater determinants2 in order to arrive
eventually at time-dependent Kohn-Sham-type �TDKS�
equations, or such formulations made use in other ways of
discrete spectral properties of the initial �ground� state
Hamiltonian �evolution operator techniques�. It is of course
prohibitive to even think about the use of Slater determinants
for solid systems. Even for an initial state Hamiltonian with
a three-dimensional Bloch periodic spectrum such an attempt
would be extremely clumsy when trying to follow spin-
polarized Kohn-Sham orbitals for quite a few k� vectors and a
limited number of bands. Of course there had been attempts
to apply TDDFT to three-dimensional periodic solids in par-
ticular by making use of the GW scheme. Botti et al.3 for
example calculated the real and the imaginary parts of the
dielectric function for a few semiconducting systems such as
Si or Ge for which the use of pseudopotential schemes is
most suited. Other attempts were mainly concerned about
analytically solvable models by comparing TDDFT to ap-
proaches based on the Bethe-Salpeter equation4 or discussing
particular aspects of the GW approach in terms of simple
models.5 However, once it comes to consider semi-infinite
systems with only two-dimensional Bloch periodicity, i.e.,
solids with surfaces or interfaces, most up-to-now-introduced
techniques6 are no longer useful or well defined.

In the present paper an approach is introduced that facili-
tates not only the description of solid systems with surfaces,
but that also can be generalized �fully� relativistically. This
approach is in particular designed to evaluate directly spin
currents and spin transfer torques defined in relativistic quan-
tum mechanics when considering the time-dependent Dirac
equation in the presence of an external electromagnetic
field.7 Although this sounds a bit academic, it is not: having
in mind current-induced magnetization switching or domain
wall motions, a field of enormous technological interest is
addressed in which only phenomenological methods or ad
hoc approaches are presently customary. Considering that
relevant switching times are of the order of picoseconds to
nanoseconds and that already very short �nearly rectangular�
electric-field pulses can move domain walls with macro-
scopic speeds at least attempts have to be made to cope with
all these new experimental findings.

Clearly enough the formal basis of TDDFT �still� relies on
the so-called Runge-Gross theorem,8 which makes use of the
stationary properties of the action integral

A�t1� = �
t0

t1

��t�dt, ��t� = ���t��i�
�

�t
− H�t����t�� , �1�

with t0 referring to the initial state and ��t� being a func-
tional of ��t�. This theorem states that “the exact time-
dependent density of a system” can be obtained as

n�r,t� = �
i=1

N

�i
��r,t��i�r,t� , �2�

where the “single-particle orbitals” fulfill �in the nonmag-
netic case� a time-dependent Schrödinger equation of the
type
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�i�
�

�t
− Heff�r,t�	�i�r,t� = 0, �3�

Heff�r,t� = T + Veff
r,t;�n�r,t�� �4�

for an effective potential Veff
r , t ; �n�r , t��=Vext�r , t�
+VH
r , t ; �n�r , t��+Vxc
r , t ; �n�r , t�� and with T being the
�single-particle� kinetic-energy operator. Later on the action
integral in Eq. �1� was generalized by van Leeuwen9 by in-
troducing a Keldysh10 pseudotime and making use of contour
integrations over the time variable. Both descriptions require
solving a time-dependent Schrödinger equation repeatedly
for each orbital in turn and, furthermore, require the number
of orbitals N in Eq. �2� to be finite.

Since the aim of this paper is to partially use the concepts
of TDDFT to solid systems and in particular to consider
relativistic initial state Hamiltonians with a discrete and a
continuous spectrum rather than indulging in the subtleties of
Green’s functions in space and time, in the following the
simplest possible approximation for the exchange-correlation
potential Vxc
r , t ; �n�r , t� ,m�r ; t�� and effective exchange
field B
r , t ; �n�r , t� ,m�r ; t��, m�r ; t� being the magnetiza-
tion density, of an in-general magnetic system, namely,
ALDA,

Vxc
r,t;�n�r,t�,m�r;t�� =
�Exc�n�r;t�,m�r;t��

�n�r;t�
, �5�

B
r,t;�n�r,t�,m�r;t�� =
e�

2mc

�Exc�n�r;t�,m�r;t��
�m�r;t�

, �6�

will be assumed, which is local both in space and time.6

Furthermore, we will require that the system returns to the
ground state after a certain period of time. Such a require-
ment has to be taken into account for a time-dependent pro-
cess such as current-induced switching or current-driven do-
main wall motions in order to be turned eventually into
technologically useful phenomena.

In the following sections first the concepts of time-
dependent resolvents and Dyson equations and correspond-
ing expressions for the particle and magnetization density are
given. Only after these more formal sections a numerical
concept, namely, instantaneous multiple-scattering theory, is
presented in order to evaluate directly n�r , t� and m�r ; t� for
a given time-dependent process starting from a well-defined
ground state. Finally, in order to test and illustrate the pro-
posed scheme for the evaluation of instantaneous single-site
t matrices occurring in the expression for the Green’s func-
tion, the simplest possible case, namely, a magnetic atom, is
considered for which a direct comparison with Schrödinger’s
first-order time-dependent perturbation theory can readily be
made. As will be shown even this simple example carries
somewhat new features, not only because the description is
based on a Kohn-Sham-Dirac Hamiltonian, but also since
almost textbook-like illustrations can be generated.

II. TIME-DEPENDENT RESOLVENT

Suppose that in Eqs. �3� and �4� H�t��Heff�r , t� is de-
fined as

H�t� = �H0 + W�t� , t � t0

H0, t � t0
� , �7�

and that the following �time-independent� initial eigenvalue
equation applies

H�t0���t0� = H0��t0� = E�t0���t0� . �8�

By introducing the resolvent of H�t� with t as a parameter,

G�z;t� = �z − H�t��−1, �9�

into the expression for the evolution operator corresponding
to infinitesimal time steps �for details, see Appendix�,

U�t,t0� =
1

2	i
��

C−�C+

dz exp�−
i

�
z�t − t0��G�z;t0� ,

�10�

from Cauchy’s residue theorem immediately follows that

U�t,t0� = exp�−
i

�
H�t0��t − t0�� , �11�

which in turn is identical to

U�t,t0� = exp�−
i

�
�

t0

t

dt�H�t��� , �12�

if and only if

�
t0

t

dt�W�t�� � W�t0��t − t0� . �13�

In particular from Eq. �11� follows that U�t0 , t0�=1 and that
for an infinitesimal time step dt the evolution operator is of
the form

U�t,t0� � U�t0 + dt,t0� = 1 −
i

�
H�t0�dt . �14�

Clearly enough for practical use of Eq. �13� the infinitesimal
time step dt has to be replaced by a finite difference �t, i.e.,
in the following time derivatives will be defined over a set of
sufficiently dense points.

III. TIME-EVOLUTION OF DENSITIES

The use of resolvents �see Eq. �9�� is in particular useful
since they are analytic in the complex plane and, therefore,
so-called contour integrations can be applied instead of cum-
bersome summations over states as used in Eq. �2�. Usually
only about 12–16 complex energy points are sufficient along
a suitable contour to ensure sufficient accuracy.

As is well known in terms of Green’s functions the
valence-band particle density of a solid system, at t= t0, is
simply given for the initial state by11

n�r;t0� = − 	−1 Im Tr�
Eb

EF�t0�

�r�G�z;t0��r�dz , �15�

where Eb denotes the band bottom12 and EF�t0� is the Fermi
energy of the equilibrium system. Similarly, assuming that
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the time evolution of the system can be described by the
instantaneous eigenvalue problem,

H�t���t� = E�t���t� , �16�

by using G�z ; t� �see Eq. �9�� the density n�r ; t� at a given
time t can be defined in terms of the following �contour�
integration:

n�r;t� = − 	−1 Im Tr�
Eb

EF�t�

�r�G�z;t��r�dz , �17�

where EF�t� is now a “fictitious” Fermi energy at t deter-
mined such that the below condition for a constant number
of particles applies.

Suppose that at t0 �well-defined initial state� the number
of particles is N0. The condition for a constant number of
particles �one of the requirements of density-functional
theory� then implies that

N�t� = N0, ∀ t , �18�

with N�t� being defined in terms of n�r ; t� �see Eq. �17�� as

N�t� = �



n�r;t�dr . �19�

Suppose further that at a particular t this condition was al-
ready fulfilled by closing the contour at a properly adjusted
upper integral boundary EF�t�, then correspondingly at t�= t
+�t the contour has to be closed at EF�t��,

N�t�� = − 	−1�



Im Tr�
Eb

EF�t��
�r�G�z;t���r�dzdr , �20�

such that Eq. �18� is met, i.e., N�t��−N�t�=0. From fulfilling
the condition in Eq. �18� it follows immediately that the time
evolution of the particle density maintaining a constant num-
ber of particles is given by

�n�r;t�
�t

� − 	−1�Im Tr�
Eb

EF�t�

�r�
�G�z;t�

�t
�r�dz

+
�EF�t�

�t
Im Tr�r�G�EF�t�;t��r�� . �21�

The time evolution of the magnetization density can eas-
ily be obtained from the below definition,

m�r;t� = − 	−1 Im Tr�
Eb

EF�t�

�r�SG�z;t��r�dz , �22�

where S=� in the nonrelativistic case and �� in the case of
a relativistic description,

� = �x,y,z�, � = �I2 0

0 − I2
	, � = �� 0

0 �
	 ,

�23�

with In being a n-dimensional unit matrix and Tr denoting
the trace in spin space. Imposing particle conservation, this
implies

�m�r;t�
�t

� − 	−1�Im Tr�
Eb

EF�t�

�r�S
�G�z;t�

�t
�r�dz

+
�EF�t�

�t
Im Tr�r�SG�EF�t�;t��r�� . �24�

From Eqs. �21� and �24� it is obvious that the time evolution
of any other density such as of the polarization and the spin
density7 can be evaluated in the same manner. It should be
noted that by making use of Eqs. �17� and �22� directly the
particle and magnetization density is available.

As easily can be shown from Eq. �13� also a time-
dependent �instantaneous� multiple-scattering theory can be
formulated starting from a time-independent resolvent
G�0��z� that corresponds to a given �time-independent� refer-
ence Hamiltonian H0,

H�t� = H0 + V + W�t�, G0�z� = �z − H0�−1. �25�

The realization of such an approach in terms of the Korringa-
Kohn-Rostoker �KKR� method shall be sketched in the fol-
lowing section.

IV. TIME-DEPENDENT KORRINGA-KOHN-ROSTOKER
SCHEME

Let a time-dependent Kohn-Sham-Hamiltonian be defined
as

H�r;t� = H�0��r� + W�r;t� , �26�

where for matters of generality H�0��r� is of Dirac-type,

H�0��r� = c� · p + �mc2 + V�r�I4 + �� · B�r� , �27�

and W�r ; t� is of the form

W�r;t� = �
��0

W��r;t�Y��r̂�, � = �l,m� , �28�

such as, e.g., for an interaction with a laser pulse in the
dipole approximation, see also Appendix and in there in par-
ticular Eq. �64�,

W�r;t� = eE0E�t�cos��0t��r · e� = eE�t��r��Y11�r̂�ex

+ Y1−1�r̂�ey + Y10�r̂�ez� , �29�

with e being the elementary charge, E0 being a real ampli-
tude, E�t� being a real envelope function, �0 being the carrier
frequency, and e being the polarization unit vector. In view-
ing the last equation it is obvious that at a given time t the
term E�t�=E0E�t�cos��t� is a real scalar quantity that multi-
plies �r ·e�. Assuming now that integrations in configura-
tional space can be split up into integrations over nonover-
lapping cells 
n


 = �
n


n, �



dr = �
n
�


n

drn, �30�

then the previously introduced concept of multiple scattering
can be straightforwardly applied. It should be noted in par-
ticular that the Hamiltonian in Eq. �26� is structurally of the
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same form as the one treated in the so-called full potential
KKR method, however, with the time t appearing now as a
parameter: technically W�r ; t� can be absorbed into the l=1
terms of the potential V�r� in Eq. �27�. In effect all that is
needed therefore is to reconsider the construction of the so-
called single-site t matrices appearing in multiple scattering.

A. Multiple scattering

At a particular time t the instantaneous single-particle
Green’s function G�r ,r� ,z ; t�,

G�r,r�,z;t� = G�rn + Rn,rm� + Rm,z;t�

= Zn�rn,z;t��nm�z;t�Z�;rm� ,z;t��

− �nm
Jn�rn,z;t�Zn�rn�,z;t�����rn − rn���

+ Zn�rn,z;t�Jn�rn�,z;t�����rn� − rn�� , �31�

where the Rn denote sites, is defined in terms of the so-called
scattering path operator ��z ; t�= 
�nm�z ; t�,13 which essen-
tially consists of two parts, namely, of time-dependent
single-site t matrices and time-independent structure
constants,14

��z;t� = �t−1�z;t� − G0�z��−1. �32�

Note that the structure constants G0�z� refer to the Green’s
function for a constant �zero� reference potential, i.e., remain
constant in time. In Eq. �31� the Zn�rn ,z ; t� and Jn�rn ,z ; t�
refer to the so-called regular and irregular scattering solu-
tions to be obtained from solving the single-site problem.

B. Single-site scattering

According to Eq. �26� the Kohn-Sham-Dirac Hamiltonian
corresponding to a particular cell �site� of an ensemble of
atoms can in principle be rewritten as

H�r;t� = c� · p + �mc2 + U�r;t� , �33�

with

U�r;t� = �U+�r;t� 0

0 U−�r;t� 	 , �34�

U+�r;t� = V�r;t� + zB�r;t� , �35�

U−�r;t� = V�r;t� − zB�r;t� �36�

since initially — because of the properties of the local spin-
density functional — only the z component of the spin op-
erator � appears.15 The potential V�r ; t� can now be ex-
panded as follows:

V�r;t� = V�r;t��s��r� =

�
�����,���1

C����
� V���r;t���

�s��r�Y��r̂� , �37�

with

V�r;t� = V�r� + W�r;t� = �
�

V��r;t�Y��r̂� , �38�

where

V��r;t� = ��4	V�r� , � = �0,0�
W��r;t� , � � �0,0� � . �39�

The functions �s��r� are so-called shape functions16 that en-
sure that according to the conditions of multiple scattering
the individual potentials V�r ; t� are restricted to nonoverlap-
ping cells. Adopting for matters of simplicity the so-called
atomic sphere approximation �ASA� and assuming the polar-
ization e to point along the z axis, Eq. �38�, Eq. �29� simply
reduces to

V00�r;t� = �4	V�r� ,

V10�r;t� = E0E�t�cos��t��r�Y10�r̂� . �40�

Making the ansatz for the wave functions

�Q�r;t� = �
Q�
� gQ�Q�r;t��Q��r̂�

ifQ�Q�r;t��Q��r̂�
	 , �41�

where Q= �� ,�� and Q= �−� ,��, � and � being the relativ-
istic angular momentum quantum numbers, one arrives at a
system of coupled radial equations, which as described in
Ref. 17 can be used to obtain the single-site t matrices t�z ; t�
and the regular and irregular scattering solutions ZQ�r ,z ; t�,
JQ�r ,z ; t�, and z=�+ i�. Clearly enough instead of Eqs. �27�
and �33� also a nonrelativistic description can be given. In
this case simply the methods described in Ref. 18 have to be
applied. However, having in mind for example current-
induced magnetization switching and domain wall motions, a
relativistic approach definitely is required.

C. Particle and magnetization densities

From the Green’s function in Eq. �31� the time-dependent
particle and magnetization densities can now easily be
evaluated,19 according to the requirements of the full poten-
tial KKR method, see Eqs. �37�–�39�

n�r;t� = �
n

n�rn;t�, m�r;t� = �
n

m�rn;t� , �42�

n�rn;t� = − 	−1 Im Tr�
Eb

EF�t�


Zn�rn,z;t��nn�z;t�

� Z�;rn,z;t�� − Jn�rn,z;t�Zn�rn,z;t��dz ,

�43�

m�r;t� = − 	−1 Im Tr�
Eb

EF�t�

��
Zn�rn,z;t��nn�z;t�

� Z�;rn,z;t�� − Jn�rn,z;t�Zn�rn,z;t��dz ,

�44�

where EF�t� refers to that energy on the real axis at which the
contour must be closed such that the number of particles
remains constant.

From Eq. �32� it is obvious that the first main task to
apply the above proposed scheme to generate time-
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dependent densities is to prove that the system of coupled
differential equations mentioned in connection with Eq. �41�
can be solved accurately enough.

V. APPLICATION TO AN ATOM

Because of the lack of any available comparisons, in this
section the numerical procedure for solving the instantaneous
problem for a magnetic atom �see in particular Eq. �41�� is
illustrated. For illustrative purposes calculations neglecting
the time evolution of the charge and magnetization densities
were performed for an Fe atom, corresponding to a spheri-
cally symmetric effective potential and effective exchange
field pointing also along the z axis. In order to determine the
bound states of this system when for matters of simplicity
the polarization of the laser pulse e is parallel to the z axis
�see Eq. �29�� the Newton-Raphson scheme of Ref. 20 was
generalized. Note that the very same numerical procedures
for solving the corresponding differential equation have to be
applied for the single-site t matrices and scattering solutions
for different boundary conditions �at a sphere circumscribing
the Wigner-Seitz cells�, which, however, does not pose any
further formal or numerical difficulties. Furthermore, the
present procedures already take care of evaluating the so-
called core charge densities needed in a self-consistent
treatment.11

Figure 1 clearly shows that the difference in orbital ener-
gies, �EB=E�W0�−E�W0=0�, varies quadratically with the
magnitude of the electric field, W0=ea0E0, a0 being the Bohr
radius. Such a behavior is well known as the second-order
Stark effect. Apparently the 4p states of an Fe atom are
stronger affected by the external electric field than the more
localized 3d states.

In Fig. 2 the time dependence of the electric field is de-
picted for a laser pulse similar to that one used in experi-
ments to study magnetization dynamics.21 In the following
the instantaneous time evolution of bound states is studied
for an interaction of the electrons in an Fe atom with a
double-exponential laser pulse,

E�t� = exp�−
�t�
Te
	 , �45�

where Te is a time constant characterizing the decay of the
laser pulse. The width of the laser pulse is usually defined in
experiments by �t=Te ln 2, while the intensity �power den-
sity� is given by I=�0cTeE0

2 with �0 being the vacuum per-
mittivity and c the light velocity.

In order to demonstrate the accuracy of the solutions in
Eq. �41� in the following a comparison between the results of
�first-order� time-dependent perturbation theory and the
present approach is shown. As is well known from time-
dependent perturbation theory, the first-order transition prob-
abilities �TP� are given by

Pif�t� =
1

�2��
t0

t

dt���i
0�W�t���� f

0�exp�i�ift���2

, �46�

where W�t� starts at t= t0, �i
0 and � f

0 are the initial and the
final state wave functions of the unperturbed system corre-
sponding to the eigenvalues Ei

0 and Ef
0, respectively, and

�if = �Ei
0−Ef

0� /�. Clearly first-order TPs can also be defined
�beyond the adiabatic approximation� as22

Pif�t� = ��
t0

t

dt���i�t���
d

dt�
� f�t���exp�i�

t0

t�
dt��if�t����2

,

�47�

where �i�t� and � f�t� are the solutions of the instantaneous
equation,23

H�t�� j�t� = Ej�t�� j�t�, �j = i, f� , �48�

and �if�t�= �Ei�t�−Ef�t�� /�. Note that in terms of Eq. �48�
the expression in Eq. �47� can be reformulated as

Pif�t� =
1

�2��
t0

t

dt�
��i�t����dW�t��/dt���� f�t���

�if�t��

� exp�i�
t0

t�
dt��if�t����2

. �49�
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FIG. 1. �Color online� Variation in �EB with respect to W0 for
selected 3d and 4p states of an Fe atom. The labeling is according
to the angular momentum component of the given state that mostly
contributes.
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FIG. 2. �Color online� Electric field in units of the interaction
strength W0 for a double-exponential laser pulse of intensity I
=6 mJ /cm2.
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The results shown in Figs. 3 and 4 refer to a double-
exponential laser pulse �see Eq. �45�� with I=6 mJ /cm2 and
Te=15 fs. As a carrier frequency the transition frequency
corresponding to the transition 3d5/2−4p3/2 ��=−1 /2�,
namely, �0=6.66 fs−1, has been selected. The initial time, t0,
was taken to be at −6Te, i.e., when the amplitude of the
electric field is about 400 times smaller than at the center of
the laser pulse. It turned out that a time step of 0.1 fs was
sufficient to accurately perform the integrations in Eq. �49�.

In Fig. 3 TPs as calculated by using Eqs. �46� and �49� are
shown for three different transitions. Note that, as in Fig. 2,
the zero of the time scale refers to the center of the laser
pulse.

As can be seen in particular from the resonant transition
�middle panel Fig. 3�, the two applied schemes to evaluate
TPs compare fairly well with each other over the entire range
of times, indicating in turn that the numerical procedure to
calculate the instantaneous eigenstates of H�t� works very
accurately.

Finally, Fig. 4 illustrates the sensitivity of TPs with re-
spect to the characteristics of double-exponential laser pulse.
In this figure only the 3d5/2−4p3/2 ��=−1 /2� transition in
the vicinity of the resonance was considered, keeping the
intensity of the pulse at I=6 mJ /cm2. Since in this particular
case it easily can be shown that in the limit of t→�, �
→�0, and �0Te�1 the TP is proportional to Te, it is not
surprising at all that the calculated TPs monotonously de-
crease with decreasing duration time of the pulse �upper
panel of Fig. 4�. As to be expected the TPs are extremely
sensitive to the carrier frequency: a relative change in �0
of only about 0.1% can decrease the magnitude of the cor-
responding TP by about 20%–40% �see the lower panel of
Fig. 4�.

It should be noted that because the polarization was cho-
sen to point along the z axis, the well-known atomic selec-
tion rules ��= �1 and �m=0 apply, which in a relativistic
description allow transitions for �j= �2, since ��=2, j
=5 /2�→ ���=1, j�=1 /2� �see lowest panel of Fig. 4�. Fur-
thermore, since the external potential is spin-independent,
the selection rule �m=0 immediately implies ��=0.

VI. DISCUSSION AND SUMMARY

Clearly enough the proposed time-dependent scheme can
also be applied in any other “band structure” approach than
KKR that can deal with “full potentials” such as the aug-
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FIG. 3. �Color online� Calculated first-order transition probabili-
ties �solid line: Eq. �49�, dotted line: Eq. �46�� for selected transi-
tions in an Fe atom due to a double-exponential laser pulse with I
=6 mJ /cm2, �0=6.66 fs−1, and Te=15 fs.
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mented plane waves FLAPW or the muffin-tin orbitals FP-
LMTO method, at least as long as the obtained instantaneous
wave functions are only used to evaluate the particle and the
magnetization density, i.e., as long as only quadratic forms
are considered. The proposed scheme is not necessarily re-
stricted to a Green’s function approach, although such an
approach is desirable in order to evaluate time-dependent
transport properties.

It is very important to note that Eq. �2�, which looks so
familiar from time-independent density-functional theory,
does use a finite upper index N. In the present description N
is replaced by a fictitious “time-dependent Fermi energy” as
upper boundary in the contour integrals.

In comparing with other schemes dealing with time-
dependent phenomena such as the use of evolution operator
techniques in order to solve the time-dependent Schrödinger
equation directly, it should be recalled that to follow the time
evolution of all occupied orbitals corresponding to a given
initial state in the case of semi-infinite solids is almost im-
possible for solid systems with a surface. Like in the case of
time-independent �“traditional”� local density approximation
�LDA� calculations a suitable parametrization has to be ap-
plied, which of course in principle is only valid for the initial
�ground� state. It might turn out that perhaps in certain cases
one can assume time independence of the local exchange-
correlation potential and exchange field in order to describe
the main features of time-dependent phenomena. As already
said the main emphasis of the proposed scheme is not di-
rected toward many-body theory as such, but to descriptions
of excitations in realistic solid systems, namely, to those with
a surface as for example by applying picosecond to nanosec-
ond electric-field pulses as used currently for current-driven
switching or domain wall motions.24 Since very often in
modern magnetic devices anisotropy effects are crucial, but
also since frequently noncollinearly aligned, disordered sub-
stitutional magnetic alloys such as permalloy are in use ex-
perimentally, there is a definite need for a scheme that is
suitable to describe most of these aspects sufficiently well.

APPENDIX: GREEN’S FUNCTIONS
AND EVOLUTION OPERATORS

By assuming that the time-dependent Hamiltonian can be
written as

H�t� = H�0��t� + W�t� , �50�

and that for H�0��t� the corresponding evolution operator
U�0��t , t0� is known, the evolution operator U�t , t0� of a sys-
tem described by H�t� is given by

U�t,t0���t − t0� = U�0��t,t0���t − t0�
i

�
�

t0

t

dt�U�0��t,t��

�W�t��U�t�,t0���t − t0� , �51�

where ��x� is the Heaviside function. By replacing on the
right-hand side of Eq. �51� ��t− t0� by ��t− t����t�− t0� and
extending the integration limits to ��, one obtains

K+�t,t0� = K+
�0��t,t0� −

i

�
�

−�

+�

dt�K+
�0��t,t��W�t��K+�t�,t0� , �52�

where for t� t0 the retarded Green’s functions

K+�t,t0� = U�t,t0���t − t0� , �53�

K+
�0��t,t0� = U�0��t,t0���t − t0� �54�

obey the below equation of motion,

�i�
�

�t
− H�t��K+�t,t0� = �i�

�

�t
− H0�t��K+

�0��t,t0�

= i���t − t0� , �55�

and vanish for t� t0, i.e., K+�t , t0�=K+
�0��t , t0�=0. In analogy

to Eq. �52�, the advanced Green’s functions are defined as

K−�t,t0� = − U�t,t0���t0 − t� , �56�

K−
�0��t,t0� = − U�0��t,t0���t0 − t� , �57�

and for t� t0 satisfy a similar equation of motion as in Eq.
�55�, however, for different boundary conditions.25

Taking the partial Fourier transform with respect to t of
both the retarded and advanced Green’s functions, one in fact
considers the following propagators:

� G���;t0� = −
i

�
�

−�

+�

dt exp�+
i

�
�t	K��t,t0�

G�
�0���;t0� = −

i

�
�

−�

+�

dt exp�+
i

�
�t	K�

�0��t,t0� � , �58�

��R, in terms of which, i.e., by using the inverse Fourier
transform, then

� K��t,t0� = −
1

2	i
�

−�

+�

d� exp�−
i

�
�t	G���;t0�

K�
�0��t,t0� = −

1

2	i
�

−�

+�

d� exp�−
i

�
�t	G�

�0���;t0� � , �59�

where

G���;t0� = �
i

�
�

−�

+�

dt exp�+
i

�
�t	

� �exp�−
i

�
�

t0

t

dt�H�t����
+

����t − t0�� ,

�60�

G�
�0���;t0� = �

i

�
�

−�

+�

dt exp�+
i

�
�t	

� �exp�−
i

�
�

t0

t

dt�H�0��t����
+

����t − t0�� ,

�61�

with �. . .�+ denoting the time ordering. Having determined
G��� ; t0� in Eq. �60� in terms of Eqs. �53� and �56�, the

TIME-RESOLVED DYSON EQUATIONS IN THE CONTEXT… PHYSICAL REVIEW B 78, 155129 �2008�

155129-7



evolution operator U�t , t0� is immediately obtained as

U�t,t0� = K+�t,t0� − K−�t,t0�

= −
1

2	i
�

−�

+�

d� exp�−
i

�
�t	�G+��;t0� − G−��;t0��

�62�
since

���� + ��− �� � 1, for ∀ � � R .

In the following it will be assumed that in Eq. �50�

H�0��t� = H�0� = H0 + V, for ∀ t � t0, �63�

i.e., only W�t� is time dependent. If interaction Hamiltonians
at different times commute with each other, which in fact is
always the case whenever one uses the semiclassical ap-
proximation, namely,

�W�t��,W�t��� = 0, t0 � t�,t� � t , �64�

then the retarded �advanced� propagator can be approximated
to order O��t− t0�2� by

G���;t0� � �
i

�
�

−�

+�

dt exp�+
i

�
�t	exp�−

i

�
H�0��t − t0��

� exp�−
i

�
�

t0

t

dt�W�t�������t − t0�� �65�

because in this case the ordered exponential in Eqs. �60� and
�61� turns into an ordinary one.26

Finally, by making use of Eq. �62� the evolution operator
for an infinitesimal small time step can be written as

U�t,t0� = −
1

2	i
�

−�

+�

d� exp�−
i

�
��t − t0��

� �G+��;t0� − G−��;t0��

=
1

2	i
��

C−�C+

dz exp�−
i

�
z�t − t0��G�z;t0� , �66�

with the resolvent G�z ; t� of the Hamiltonian H�t�,

G�z;t� =
1

z − H�t�
, �67�

when t= t0 and z=�� i� tends to � on the real axis. In Eq.
�66� C+ �C−� is a contour immediately above �below� the real
axis followed from right �left� to left �right� such that for t
− t0�0 the contour C− and for t− t0�0 the contour C+ yields
vanishing contributions.
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