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The inter- and intralayer contributions to the layer-resolved complex optical conductivity tensor for semi-
infinite layered systems are calculated in terms of the Luttinger formula within the spin-polarized relativistic
screened Korringa-Kohn-Rostoker method. Ab initio Kerr angles are then obtained for arbitrary geometry and
incidence via a 2�2 matrix technique including all multiple reflections and all optical interferences. Applied
to in-plane single-domain magnetized bcc Ni /Ni�100�, it is proven that the assumed appropriate formula of
Kerr angles widely used to explain magneto-optical Kerr effect with rotating magnetic field measurements
fully agrees with our ab initio Kerr data. From the experimental Kerr data of Tian et al. �Phys. Rev. Lett. 94,
137210 �2005��, however, it cannot be concluded that the deduced magnetic properties apply for bulk Ni, since
about 75% of the contributions to the Kerr rotation angle arise from the surface.
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I. INTRODUCTION

The magnetic-optical Kerr effect with rotating magnetic
field �ROTMOKE� technique as suggested by Mattheis and
Quednau is a powerful experimental tool to determine the
anisotropy field strength.2 This experimental method is based
on the longitudinal magneto-optical Kerr effect �MOKE�
which occurs in a sufficiently large rotating magnetic field
ensuring a single domain behavior of the ferromagnetic
probe. Recently, ROTMOKE has been used to obtain the
magnetocrystalline anisotropy of a bcc Ni thick film depos-
ited on GaAs�001�.1 Because of this reference to the ROT-
MOKE deduced magnetocrystalline anisotropy constant as-
cribed to the bcc Ni bulk, the main challenge of the present
paper is to clarify the role played by surface layers in
ROTMOKE and to present a layer-resolved magnetocrystal-
line anisotropy �MCA� for bcc Ni /Ni�100�. Since the inter-
play between MOKE and MCA was already discussed
elsewhere,3 the present comparison also serves as an indirect
proof of the experimental expression in Ref. 2, which relates
MCA to ROTMOKE.

Strictly speaking, the longitudinal MOKE configuration is
valid within a ROTMOKE experiment only, when at least the
average in-plane magnetization of the probe is in the plane of
incidence. If this magnetization is perpendicular to the plane
of incidence, a transverse geometry within the ROTMOKE
applies. Thus, with the exception of these two particular
cases, in a ROTMOKE measurement, in fact, one typically
has an intermediate setup in between the longitudinal and
transverse geometries. Exactly, this situation is addressed by
our ab initio calculations, within which the direction of all
layer-resolved in-plane magnetizations has been simulta-
neously varied from the transverse to the longitudinal con-
figuration by keeping fixed the position of the incidence
plane. Although a given arbitrary orientation of all in-plane
layer-resolved magnetizations not necessarily corresponds to
an overall equilibrium magnetic configuration of bcc
Ni /Ni�100�, this magnetic phase represents always a stable
one in terms of density functional theory �DFT�.4

The paper is organized as follows. The basic theoretical
concepts used to calculate the inter- and intralayer contribu-
tions to the complex optical conductivity within the spin-
polarized relativistic screened Korringa-Kohn-Rostoker
method are briefly described in Sec. II A. Section II B con-
tains a modus operandi to determine the Kerr angles by in-
cluding all multiple reflections and optical interferences
within a layered system via the so-called 2�2 matrix tech-
nique. Section III gives some details concerning the applied
numerical schemes. For bcc Ni /Ni�100�, the layer-resolved
permittivities �Sec. IV A� together with the ab initio Kerr
angles for oblique incidence �Secs. IV B and IV C� and the
calculated magnetocrystalline anisotropy �Sec. IV D� are dis-
cussed at length in Sec. IV. Finally, Sec. V summarizes the
main results.

II. THEORETICAL FRAMEWORK

A. Optical conductivity tensor

In 1957, Kubo developed a realistic response theory,5

which provides a purely quantum statistical description of
near-equilibrium irreversible processes. Since within Kubo’s
response theory one only needs to describe the initial quan-
tum equilibrium state of the system, this kind of transport
theory is well suited to be implemented within a first-
principles method based on the DFT. In particular, this ap-
plies to the wave vector q� and frequency � dependent com-
plex optical conductivity tensor as given by the well-known
Kubo formula:6

�̃���q� ,�� = �L���Jq�
��t�;J−q�

� �eq��−i� ��,� = x,y,z� , �1�

where

L��g�y���x = �
0

�

dyg�y�exp�− xy�, x � C �2�

is the Laplace transform of a function g�y� satisfying the
Dirichlet conditions, and �= �kBT�−1 is the so-called inverse
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temperature, since only the canonical correlation �. . .�eq of

the electronic current density operator J� components in the
equilibrium state is required.

Here, Luttinger’s formula will be applied7

�̃���q� ,�� =
�̃���q� ,�� − �̃���q� ,0�

	� + i

, �3�

which is equivalent to Eq. �1� in a vector potential descrip-
tion of the electric field8 and introduces a positive infinitesi-
mal 
 to get the Laplace transform �2� for a purely imaginary
argument −i� converged. In the current-current correlation
function in Eq. �3�,

�̃���q� ,�� =
i	

V
	
m,n

f��m� − f��n�
�m − �n + 	� + i


Jq� ,mn
� J−q� ,nm

� , �4�

the factor 
 can be viewed as a finite lifetime broadening,
which accounts for all scattering processes at T�0 that are
commonly not incorporated in a standard DFT approach.
Furthermore, because Eq. �1� leads to Eq. �3� if and only if
the external electromagnetic field is never turned off,8 
�0
describes also the interaction of the system with its surround-

ings. Note that Eq. �4� yields �̃���q� ,�� in a representation,
which diagonalizes the one-electron unperturbed Hamil-
tonian H0, with f��� being the Fermi-Dirac distribution func-
tion, �m and �n a pair of eigenvalues of H0, Jq� ,mn

� denoting the
matrix elements of the current density operator Jq�

�, and V
corresponds to the reference �crystalline� volume.

In order to calculate �̃���q� ,�� within the Korringa-Kohn-
Rostoker method,9 a contour integration technique in the
complex energy plane at finite temperature can be used.8,10

This technique exploits the properties of the Fermi-Dirac dis-
tribution function f�z� of complex argument z�C to select a
contour  such that by using the residue theorem

�̃���q� ,�� =
-



dzf�z��̃���q� ;z + 	� + i
,z�

− 
-


dzf�z��̃���− q� ;z − 	� + i
,z��*

− 2i
T 	
k=−N2+1

N1

��̃���q� ;zk + 	� + i
,zk�

+ �̃
��
* �− q� ;zk − 	� + i
,zk�� �5�

and

�̃���q� ,0� =
-



dzf�z��̃���q� ;z,z� − 2i
T 	
k=−N2+1

N1

�̃���q� ;zk,zk� ,

�6�

where the kernel �̃���q� ;z1 ,z2� can be written in terms of the
resolvent G�z� as

�̃���q� ;z1,z2� = −
	

2�V
Tr�Jq�

�G�z1�J−q�
� G�z2�� . �7�

In Eqs. �5� and �6�, N1 �N2� is the number of Matsubara poles
zk=�F+ i�2k−1�
T, with �F being the Fermi level, k
=0, �1, �2, . . ., and 
T=�kBT, in the upper �lower� semi-
plane included in  with the only constraint that 
�
2.

Here, �̃���q� ;z1 ,z2� as given by Eq. �7� is calculated11 by
using the relativistic current density operator and the Green’s
function as directly obtained from the spin-polarized relativ-
istic screened Korringa-Kohn-Rostoker �SKKR� method.4

Being interested in magneto-optics in the visible regime,
where the leading interaction is the electric dipole one, the
wave-vector dependence of the optical conductivity tensor is
in the following neglected by simply setting q� =0.

B. 2Ã2 matrix technique

Since the pioneering work of Abelés in 1950,12 there have
been several methods known in the literature13 which prop-
erly describe multiple reflections and interferences in layered
system using, for example, a 4�4 matrix formalism.14 In the
present paper, the theoretical framework accounting for all
possible reflections and optical interferences within a layered
system consists of a 2�2 matrix technique previously devel-
oped in Ref. 15 based on Mansuripur’s strategy.16

From an optical point of view, each layer p is assumed to
be a homogeneous, linear, and anisotropic conducting me-
dium �see Fig. 1� characterized by the complex permittivity
tensor �̃p���, which within the Gaussian system of units
reads

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

substrate

z

y0
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layer 2

layer p
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z
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z
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z
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z
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z
p+1

z
N

z
N+1

=0

ε~0

ε~1
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ε~p
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FIG. 1. The macroscopic model of a layered system used within
the 2�2 matrix technique. Not shown here is the 0x axis perpen-
dicular to the plane of the figure.
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�̃p��� = I +
4�i

�̃
�̃p��� , �8�

where I is the 3�3 identity matrix and �̃=�− i
 is the com-
plex frequency, with 
 explained in Sec. II A. The layer-
resolved optical conductivity �̃p���, on the other hand, is
directly obtained17 from the inter- and intralayer contribu-
tions �̃pq���,

�̃p��� = 	
q=1

N

�̃pq��� �p = 1, . . . ,N� . �9�

Here and in the following, layers are numbered starting with
the first �p=1� on top of a semi-infinite substrate, such that if
N layers are considered, the index of the most upper �sur-
face� layer is given by p=N. It is also convenient to label the
substrate and the vacuum by 0 and N+1, respectively.

The normal modes of the electric and magnetic transverse
plane waves propagating in a layer p are calculated by solv-
ing the Fresnel �characteristic� equation,18

�ñp
2
�� − ñp�ñp� − �̃��

p � = 0 ��,� = x,y,z� , �10�

which is of fourth order in the z-Cartesian component ñpz of
the complex refraction vector. The other two Cartesian com-
ponents,

ñpx = − sin � cos � = nx,

ñpy = − sin � sin � = ny �11�

are all known in terms of the spherical colatitude � �0��
�90° � and longitude � �0���360° � of the incident light
coming in from the vacuum side. For each normal mode ñpz

�k�

�k=1, . . . ,4�, the Helmholtz equation19

	
�=x,y,z

�ñp
2
�� − ñp�ñp� − �̃��

p �Ep� = 0 �� = x,y,z� �12�

then immediately provides the electric field E�p
�k�, which, in

turn, when substituted into the curl Maxwell equation �Fara-
day’s law�,20

H� p = n�p � E� p,

finally yields the magnetic field H� p
�k�.

In practice, however, the determination of E�p
�k� is compli-

cated by the fact that the Helmholtz equation �12� for a given
ñpz

�k� has to be solved by keeping at least one Cartesian com-
ponent of the electric field arbitrary. Among all possible pa-
rametrization of the electric fields, a physically very trans-
parent scheme results by following Mansuripur’s strategy:16

�Epx
�k� = arbitrary

Epy
�k� = �̃p

�k�Epx
�k�

Epz
�k� = �̃p

�k�Epx
�k�  for k = 1 and 3 �13�

and

�Epx
�k� = �̃p

�k�Epy
�k�

Epy
�k� = arbitrary

Epz
�k� = �̃p

�k�Epy
�k�  for k = 2 and 4. �14�

Explicit expressions of the coefficients �̃p
�k� and �̃p

�k� �k
=1, . . . ,4� in Eqs. �13� and �14� can be found elsewhere. In
the case of a polar geometry and normal incidence, for ex-
ample, the corresponding coefficients are tabulated in Ref.
21, whereas for a longitudinal geometry and oblique inci-
dence, they are given in Ref. 22.

By exploiting in each layer the continuity of the tangential
components of the total electric and magnetic field at the
lower boundary zp �p=1, . . . ,N+1� �see also Fig. 1�, the
layer-resolved reflectivity matrix Rp, which relates all arbi-
trary electric field components to each other,

Rp = �Dp−1Ap
34 − Bp

34�−1�Bp
12 − Dp−1Ap

12� ,

can be determined recursively by starting from the vanishing
reflectivity matrix R0=0 of the substrate by means of the
following 2�2 matrices:

Ap
k,k+1 = � 1 �̃p

�k+1�

�̃p
�k� 1

�, k = 1,3 and p = 0, . . . ,N + 1

�15�

and

Bp
k,k+1 = �ny�̃p

�k� − ñpz
�k��̃p

�k� ny�̃p
�k+1� − ñpz

�k+1�

ñpz
�k� − nx�̃p

�k� ñpz
�k+1��̃p

�k+1� − nx�̃p
�k+1� �,

k = 1,3 and p = 0, . . . ,N + 1. �16�

Furthermore, also the propagation matrices,

Cp
k,k+1 = �exp�+ iq0ñpz

�k�dp� 0

0 exp�+ iq0ñpz
�k+1�dp�

�,

k = 1,3 and p = 0, . . . ,N ,

with dp=zp+1−zp�0 being the thickness of layer p, are
needed to construct the auxiliary matrices:

Dp = �Bp
12Cp

12 + Bp
34Cp

34Rp��Ap
12Cp

12 + Ap
34Cp

34Rp�−1,

p = 0, . . . ,N . �17�

In vacuum, there are only two normal modes: an incident
�i� and a reflected �r� one and, hence, the surface reflectivity
matrix can be written as

Rsurf = RN+1 = �DN − BN+1
34 �−1�BN+1

12 − DN� = �r̃xx r̃xy

r̃yx r̃yy
� ,

�18�

where according to Eqs. �15� and �16�,

BN+1
12 = − BN+1

34 =
1

�1 − �nx
2 + ny

2�
� nxny 1 − nx

2

− 1 + ny
2 − nxny

�
�19�

and
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AN+1
k,k+1 = �1 0

0 1
� = I2�2, k = 1 and 3. �20�

In the case of transverse plane waves, the surface reflectivity
matrix with respect to the local Cartesian coordinate system
attached either to the incident or reflected wave is given by23

Rsurf = PN+1
−1 RsurfPN+1 = �r̃pp r̃ps

r̃sp r̃ss
� , �21�

where the transformation matrix is defined as

PN+1 = �cos � cos � − sin �

cos � sin � cos �
� .

Because MOKE is fully described by the Kerr rotation �K
and ellipticity angle �K, the amplitude and the absolute phase
of the incident and the reflected light are of secondary inter-
est. Therefore, the complex polarization variable,24

�̃�p,s�
�r� =

EN+1,s
�r�

EN+1,p
�r� =

r̃sp + r̃ss�̃�p,s�
�i�

r̃pp + r̃ps�̃�p,s�
�i� , �22�

�see also Eq. �21�� completely characterizes the polarization
state of the reflected wave, provided that the corresponding
polarization variable on incidence,

�̃�p,s�
�i� =

EN+1,s
�i�

EN+1,p
�i� =

tan �i + i tan �i

1 − i tan �i tan �i
, �23�

is known in terms of the azimuth �i and ellipticity angle �i of
the incident wave. Having determined by means of Eq. �22�
the azimuth �r and ellipticity angle �r of the reflected light,

tan 2�r =
2 Re��̃�p,s�

�r� �

1 − ��̃�p,s�
�r� �2

and sin 2�r =
2 Im��̃�p,s�

�r� �

1 + ��̃�p,s�
�r� �2

, �24�

the Kerr angles then directly result from23

�K = �r − �i and �K = �r − �i . �25�

III. COMPUTATIONAL DETAILS

From a computational point of view, the contributions
�̃pq��� to the zero-wave-number current-current correlation
function depend, besides the number of Matsubara poles for
a given � and T, also on both the number of complex energy
points considered along the contour and on the number of k�
points used to compute the scattering path operator within
the SKKR method.25

By applying the Konrod-Legendre rule �Appendix A� and
the cumulative special-points method �Appendix B�, it has
been also shown25 that the summed up contributions from
the contour and Matsubara poles in the upper semiplane is a
conserved quantity with an accuracy of N1�k�, where N1 is the
number of Matsubara poles in the upper semiplane and �k� is
defined in Eq. �B3� of Appendix B. This independence of the
optical conductivity tensor �̃pq��� from the contour form in
the upper semiplane is then exploited to significantly reduce
the computational effort by considering N1�N2, with N2 be-
ing as small as possible, e.g., N2=2.

The imaginary part of the Matsubara poles 
T is the only
quantity which directly depends on the electronic tempera-
ture T because of the Fermi-Dirac distribution function. In
accordance with the applied constraint 
=2
2, when T var-
ies, the lifetime broadening 
 also changes. Thus, to preserve
the broadening of bands involved in optical transitions, N2
has to be taken as T dependent. However, to keep the differ-
ence N1−N2 large enough, e.g., 35 poles, N1 has to change
with T. Evaluations of the optical conductivity tensor for
different T and 
=0.048 Ryd �0.653 eV� kept fixed, how-
ever, have shown that, with the exception of some low pho-
ton energies, the T dependence of �̃pq��� can be neglected.15

The present calculations of the magnetic properties of bcc
Ni bulk and its �001� surface have been performed also by
using the SKKR method; for a detailed review, see Ref. 4.
Considering an overall lattice constant of a=2.82 Å, no at-
tempt has been made to include eventual surface relaxations
because, as recently shown by Khmelevskyi and Mohn,26 a
tetragonal distortion of the bcc Ni lattice not really changes
its magnetic properties. The effective potentials were treated
within the atomic sphere approximation using a local density
approach �LDA� to DFT as parametrized in Ref. 27, and a
cutoff lmax=2 was used in all angular momentum expansions.
For the SKKR self-consistent calculations, 16 energy points
along a semicircular contour in the upper complex semiplane
were used and 45 k�� points in the irreducible wedge of the
surface Brillouin zone �SBZ�.

The lowest-order directional dependence of the energy in
a ferromagnetic cubic system,

E�m� � = E0 + K1�mx
2my

2 + my
2mz

2 + mx
2mz

2� , �26�

where m� is a unit vector pointing along the magnetic moment
and K1 is the cubic magnetic anisotropy �MA� constant, im-
plies that

K1 = E�110� − E�100� , �27�

where E�hkl� is the total energy for the case that the magne-
tization points uniformly along the �hkl� direction. This
quantity has been evaluated in terms of the magnetic force
theorem,28

K1 = 	
p=1

N

K1
p, �28�

where K1
p denotes the layer-resolved contribution to the MA

constant, and N stands for the number of layers within the
surfaced system. In order to obtain theoretical values K1

within a relative accuracy of 5%, about 20 000 k�� points in
the SBZ were needed.

IV. RESULTS AND DISCUSSIONS

All results presented in this section were calculated for a
photon energy �=0.144 Ryd �1.9592 eV, i.e., for a wave-
length �=632.824�633 nm typical for a He-Ne laser and
with regards to a parametrization with T=300 K �
T

=5.9693 mRyd�, N2=2 �
=0.048 Ryd�, and N1=N2+35
=37.
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Assuming the semi-infinite bcc Ni bulk �lattice parameter
of 2.82 Å� as an electron reservoir, the self-consistently de-
termined Fermi level of bcc Ni bulk has been used in all
calculations.

A. Layer-resolved permittivities

Having determined all inter- and intralayer contributions
to the complex optical conductivity, Eqs. �8� and �9�
directly provide the layer-resolved permittivities. For bcc
VacNvac

/NiNlay
/Ni�100� layered system, they are of the form

�̃p =�
�̃xx

p �̃xy
p mxmy − �̃xz

p my

�̃xy
p mxmy �̃xx

p �̃xz
p mx

�̃zx
p my − �̃zx

p mx �̃zz
p
�,

∀ p = 1, . . . ,N = Nlay + Nvac. �29�

The dimensionless quantities �̃��
p �C ��, �=x, y, z and ∀p

=0,1 , . . . ,Nlay+Nvac� are independent of the polar angle �M�

between the x axis and the uniform in-plane magnetizations

M� p. In Eq. �29�, mx=cos �M� and my =sin �M� denote the nor-

malized Cartesian components of M� p for ∀p=0,1 , . . . ,N,
with N=Nlay+Nvac.

A slightly different tensor form than that in Eq. �29� ap-
plies for the permittivity of the substrate viewed as a bcc
Ni�100� /NiN0

/Ni�100� layered system,

�̃0 =�
�̃xx

0 �̃xy
0 mxmy − �̃xz

0 my

�̃xy
0 mxmy �̃xx

0 �̃xz
0 mx

�̃xz
0 my − �̃xz

0 mx �̃zz
0
� . �30�

Here and in the following, N0 denotes the total number of Ni
layers in between two semi-infinite bcc Ni�100� systems.

Note that the higher symmetry of �̃0 in comparison with
�̃p�0 is a consequence of the symmetrization for the N0
layer-resolved permittivities, which, as shown elsewhere,29 is
absolutely necessary to determine uniquely the permittivity
of the substrate.

Therefore, independent of the unique direction of the in-
plane layer-resolved magnetizations, the difference between
the layer-resolved permittivities and that of the substrate,

��̃p = �̃p − �̃0, ∀ p = 1, . . . ,Nlay + Nvac, �31�

can be viewed as a measure of the surface sensitivity in bcc
VacNvac

/NiNlay
/Ni�100�. Indeed, Figs. 2 and 3 fully confirm

that the larger ��̃p, the closer is the layer p to the surface.
Furthermore, these figures show that, with the exception of
��̃xy

p =��̃yx
p , which are negligible for ∀p=1, . . . ,N−1, the
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FIG. 2. Difference in the off-diagonal elements of the layer-resolved permittivities between bcc Vac3 /Ni15 /Ni�100� and bcc
Ni�100� /Ni24 /Ni�100� for a photon wavelength ��633 nm. Circles, squares, diamonds, and triangles �up, left, and down� refer to �M�

=15°, 30°, 45°, 60°, 75°, and 90° �see Eqs. �29� and �30��. Black symbols correspond to the first label on the ordinate, gray symbols to the
second one. The layer numbering starts with the first layer on top of the semi-infinite bulk substrate.
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diagonal elements of the layer-resolved permittivities are
more affected by the surface than the off-diagonal ones. Not
shown in Fig. 2 are the off-diagonal tensor elements ��̃yz

p

���̃yz
p /mx and ��̃zy

p ���̃zy
p /mx, because they are identical to

−��̃xz
p �−��̃xz

p /my and −��̃zx
p �−��̃zx

p /my, respectively. The
��̃p show a two-layer periodicity typical for the ABAB. . .
stacking of a bcc �100� surface. The amplitude of these os-
cillations, however, is more attenuated near the substrate
than in the vicinity of the surface.

B. Kerr angles for oblique incidence

In the following, ab initio Kerr angles are presented for a
linearly polarized light ���633 nm, i.e., �=0.144 Ryd
�1.9592 eV� at oblique incidence within the 0yz plane,
namely, for 0���90° and �=90° in Eq. �11� as obtained
by applying the 2�2 matrix technique.

The permittivity �̃0 of the substrate was obtained using a
perfect two-dimensional periodic infinite
Ni�100� /Ni24 /Ni�100� layered system; the layer-resolved
permittivities �̃p of the surface system correspond to semi-
infinite bcc Vac3 /Ni15 /Ni�100�. All permittivity calculations
have been repeated for all directions considered here,
namely, for polar angles �M� specifying the direction of the
in-plane layer-resolved magnetizations with respect to the x
axis, and were varied in the first quadrant �0, 90°� by a step
of 15°.

The �M� dependence of the so-calculated Kerr angles for a
p-polarized incident light and different angles of incidence �
is shown in Fig. 4. A similar linear behavior of ml-scaled
Kerr angles as a function of mt,

ml = sin �M� , mt = cos �M� , �32�

has also been obtained for an s-polarized incident light, in-
dependent of its handedness, with Kerr angles being identical
for left- and right-handed s waves, respectively. This latter
feature is easily understood when using the well-known
approximation23 �K,s− i�K,s� r̃ps / r̃ss to determine the Kerr
angles �K,s and �K,s, because in the case of bcc Ni /Ni�100�,
the incident azimuth dependence of the complex reflectivity
coefficients r̃ps and r̃ss is really negligible.

Comparing the Kerr data for different linearly polarized
incident light, one can observe that the ml dependence of the
Kerr angles is, by far, more pronounced for an s-polarized
incident light than for a p one, and the � dependence of Kerr
angles is also incident polarization dependent. For example,
as long as for any unique direction of all layer-resolved mag-
netizations the Kerr rotation angle achieves a maximum at
�=55° when a p-polarized light is in use, the largest �K,s
occurs for an angle of incidence of 70°.

In spite of all these dependencies, the calculated Kerr
angles for any �M� are well reproduced by the appropriate
expressions:2

�K = �K
l ml + �K

q mlmt ,

�K = �K
l ml + �K

q mlmt , �33�

containing both linear �K
l , �K

l and quadratic �K
q , �K

q Fresnel
coefficients,30 which, however, are only functions of the in-
cidence angle �. In Eq. �33�, the linear Fresnel coefficients
describe the contribution to the amplitude of the linear

-2.0

-1.0

0.0

1.0

2.0

R
e

∆ε∼
p xx

2 4 6 8 10 12 14
Ni layers

-2.0

-1.0

0.0

1.0

2.0

Im
∆ε∼

p xx

(a) (b)

-2.0

0.0

2.0

4.0

6.0

8.0

R
e

∆ε∼
p zz

2 4 6 8 10 12 14
Ni layers

-2.0

0.0

2.0

4.0

6.0

8.0

Im
∆ε∼

p zz

FIG. 3. As in Fig. 2, but for the diagonal elements. Not shown here is ��̃yy
p =��̃xx

p .

ETZ et al. PHYSICAL REVIEW B 77, 064420 �2008�

064420-6



MOKE, whereas the quadratic Fresnel coefficients determine
the quadratic MOKE part in the Kerr angles.

Having calculated the Kerr angles �K��M� �, with �K��K

or �K, for n values of the longitude �M� , i.e., by assuming all

�K��
M�
�j�

��R for j=1, . . . ,n known, within a least-squares fit-

ting method,31 the Fresnel coefficients entering Eq. �33� can
be viewed as adjustable parameters which minimize the
merit �chi-square� function

�2 = 	
j=1

n

��K�ml
�j�,mt

�j�� − ��K
l ml

�j� + �K
q ml

�j�mt
�j���2 �34�

and, hence, can directly be obtained by solving a set of linear
equations corresponding to the extremum conditions:

��2

��K
l = − 2	

j=1

n

��K�ml
�j�,mt

�j�� − ��K
l ml

�j� + �K
q ml

�j�mt
�j���ml

�j� = 0,

��2

��K
q = − 2	

j=1

n

��K�ml
�j�,mt

�j�� − ��K
l ml

�j� + �K
q ml

�j�mt
�j���ml

�j�mt
�j�

= 0. �35�

Note that the deviations made in calculating �K�ml
�j� ,mt

�j��
have not been taken into account and, therefore, in Eq. �34�,
all standard deviations � j, ∀j=0,1 , . . . ,n, have been set
equal to 1.

The main advantage of the least-squares fitting method is
that per definition any deviation of used data from their gen-
eral trend is corrected. By testing this feature for a relatively
small bcc Vac3 /Ni6 /Ni�100� layered system, it is, therefore,
not at all surprising that the Kerr angles determined by using
Eq. �33� with Fresnel coefficients obtained for a finite mesh
of ��M� =15° or ��M� =5°, respectively, turned out to be iden-
tical. This, in turn, shows that an increment of ��M� =15° is
sufficient to determine highly accurate Fresnel coefficients
even for large systems.

The � dependence of the Fresnel coefficients in Fig. 5 has
been calculated via the least-squares fitting method using an
increment of ��=1°. This fine mesh guaranteed to accu-
rately determine values of � at which particularities of
Fresnel coefficients occur. For example, besides �=0 and 90°
for which quite clearly the linear Fresnel coefficients vanish,
�K

l is also zero when �=78°. Furthermore, extrema of �K
l are
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achieved for �=55° �maximum� and 84° �minimum�, but the
smallest value of �K

q corresponds to �=54°.
The fact that the linear Fresnel coefficients show a simple

sin � dependence with respect to the angle of incidence � is
well known in the literature,32 but is only partially confirmed
by our ab initio calculations, namely,

�K
l = �K

l sin �, � � 55 ° ,

�K
l � sin �, � � 35 ° , �36�

where �K
l is independent of �. By assuming that

��K
l � � �M� � , ��K

q � � �M� �2, �37�

with M� being the averaged magnetization of the layered sys-
tem

M� =
1

N
	
p=1

N

M� p, �38�

where the layer-resolved magnetizations M� p differ only in
magnitude, then in accordance with Eqs. �36� and �37�,

� �K
q

�K
l � � �M� � �39�

at least for ∀��55°. The calculated averaged total magnetic
moment,

�� =
1

N
	
p=1

N

�� p, �40�

with the layer-resolved total magnetic moment �� p containing
both in-plane spin and orbital moments from a layer p,
amounts for bcc Vac3 /Ni15 /Ni�100� to ��� �=0.6562 �B/atom
�see Fig. 9�. In view of Eqs. �38�–�40�, therefore

1.5 �
�̄

� �K
q

�K
l �

av

� � , �41�

where � is a characteristic �reference� volume in each layer
p such as, for example, the volume of the Wigner-Seitz �WS�
sphere 4�RWS

3 /3, with RWS=2.624a0 in the case of bcc Ni
�Bohr radius a0=0.5292 Å�.

Having obtained highly accurate Fresnel coefficients, Eq.
�33� can directly be used to determine Kerr angles for an
arbitrary direction in any quadrant of the 0xy plane. The Kerr
rotation angle, e.g., is shown in Fig. 6. As can be seen from
this figure, for angles of incidence �
� �0,23° �� �70° ,82° �, the Kerr rotation angle as a function
of �M� has four extrema, whereas for �
� �23° ,70° �� �82° ,90° �, there are only two. According to
the appropriate formulas for the Kerr angles given by Eq.
�33�, extrema of �K��M� � occur, e.g., either when �K=�K or
�K=�K, if the first derivative of �K��M� � with respect to the
polar angle �M� vanishes, i.e.,

��K��M� �

��M�
= 2�K

q mt
2 + �K

l mt − �K
q = 0. �42�

According to Eq. �42�, an extremum of the Kerr angles is
achieved when the normalized transverse component of all
in-plane layer-resolved magnetizations is given by

mt
��� = −

�K
l

4�K
q ��1

2
+ � �K

l

4�K
q �2

��K
j = �K

j ,�K
j ; j = l and q� ,

�43�

which is the case for one of the four polar angles

�
M�
s

= � arccos�mt
���� + 2k�, k � Z �s = 1,2,3, and 4� ,

�44�

provided that �mt
�����1. In terms of Eq. �44�, one would

expect, therefore, that always four extrema of �K occur.
However, this is not always the case, although in Eq. �43� the
discriminant is a strictly positive quantity,

1

2
+ � �K

l

4�K
q �2

� 0,

and the cosine an even function. The reason for this is the
criterion �mt

�����1 which additionally limits the number of
extrema to be observed for the Kerr angles �see Fig. 7�. By
recalling Eq. �39�, one also notes that Eqs. �43� and �44�
yield the extrema of the Kerr angles when parametrized by a
quarter of the inverse magnitude of the average magnetiza-
tion.
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FIG. 6. Kerr rotation angle �K for oblique incidence and
p-polarized light within the 0yz plane ���633 nm� in bcc
Ni /Ni�100� as a function of the polar angle �M� � �0,360° � between
the x axis and the uniform in-plane magnetization. Black full,
dashed, dash-dotted, and dotted lines refer to Kerr rotation angles
showing four extrema, i.e., for an angle of incidence �=0, 10°, 20°,
and 80°, whereas gray dash-dotted, dashed, continuous, dot–long
dashed, dotted, and double dot–dashed lines correspond to �=30°,
40°, 50°, 60°, 70°, and 90°, for which the Kerr rotation angle has
only two extrema.
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Further features of the Kerr rotation angle in Fig. 6 can be
deduced by exploiting in Eq. �33� the symmetry properties of
the normalized magnetization components ml and mt. By tak-
ing �M� +180° in Eq. �33�, one gets

�K��M� + 180�� = �K��M� � − 2�K
l ml , �45�

which, in turn, immediately yields a linear Fresnel coeffi-
cient �K

l , provided that the layer-resolved in-plane magneti-
zations are not in a direction for which ml vanishes. On the
other hand, once �K

l is known, the quadratic Fresnel coeffi-
cient �K

q can directly be evaluated by using

�K
q =

�K��M� � − �K
l ml

mlmt
, �46�

if in addition to ml�0, also mt�0. From a formal point of
view, Eq. �45� shows that it is enough to calculate �K��M� �
∀�M� � �0,180° � in order to cover the complete interval �0,
360°�. Similarly, from Eq. �33� also results

�K��M� + 90 ° � = �K
l �ml + mt� − �K��M� � ,

which means that one needs only �K��M� � ∀�M� � �0,90° � to
get Kerr angles also ∀�M� � �90° ,180° �. The quadratic
Fresnel coefficient, on the other hand, follows directly from
Eq. �46�.

Altogether this not only fully confirms our choice of lim-
iting the polar angle to �M� � �0,90° � when calculating the
Kerr angles, but also explains why it is possible to success-
fully determine Kerr angles for any other uniform direction
of layer-resolved in-plane magnetizations.

C. Two-media approach

All macroscopic models, which from an optical point of
view approximate reasonably well any semi-infinite layered

system, involve fewer number of interfaces to account for
when describing multiple reflections and optical interfer-
ences than the initial one. Common in all these optical mod-
els, however, is the presence of a semi-infinite substrate of
known permittivity �̃0. Because there are no interfaces in the
substrate of thickness d0= +�, its reflectivity matrix R0=0
and, hence, according to Eq. �17�

D0 = B0
12�A0

12�−1, �47�

where both matrices A0
12 and B0

12 directly follow from Eqs.

�15� and �16� using coefficients �̃0
�k� and �̃0

�k� �k=1 and 2� as
determined by solving Eqs. �10� and �12� in terms of �̃0, �,
and �.

In the case of a homogeneous layered system consisting
of identical layers, it has been shown elsewhere29 that, at
least for polar geometry and normal incidence, our 2�2 ma-
trix technique yields the well-known Fresnel formula for the
complex reflectivity coefficients. Formally, one deals with
N=0 layers such that the surface reflectivity matrix within
the two-media approach can be written as

Rsurf
�2� = R1 = �D0 − B1

34�−1�B1
12 − D0� , �48�

�see Eq. �18�� because A1
34=A1

12=I2�2, with I2�2 being the
2�2 identity matrix �see Eq. �20��. Quite obviously, in Eq.
�48� the matrices B1

12 and B1
34 refer to those in Eq. �19�, and

D0 is given by Eq. �47�.
The difference between the Kerr angles �K ��K=�K or �K�

obtained by applying the 2�2 matrix technique and the cor-
responding angles �K

�2� resulting from the two-media ap-
proach unambiguously reveals the contribution of the surface
to the MOKE. As can be seen from Fig. 8, these contribu-
tions are not only extremely significant, but represent the
major part of the magnitude of the Kerr angles. Furthermore,
a detailed analysis has shown that about 75% of the linear
Fresnel coefficients are due to the presence of the surface.
Finally, it should be noted that only for a normal incidence,
the Kerr angles calculated via the 2�2 matrix technique and
using the two-media approach, respectively, are identical.

D. Magnetic moments and magnetic anisotropy

In Ref. 1, the magnetic properties of a 3.5 nm bcc
Ni /GaAs�001� sample has been investigated. In terms of su-
per conducting quantum interference device measurements,
the magnetic moment of Ni was found to be 0.52�0.08�B,
while from ROTMOKE measurements, a magnetic cubic an-
isotropy of K1=4.0�105 erg cm−3 has been deduced, which
for the experimental lattice constant a=2.82 Å of bcc Ni
corresponds to an anisotropy constant K1=2.8 �eV/atom.

Our calculations lead to a spin magnetic moment of
0.59�B for bcc Ni bulk, which although is slightly larger
than the experimental one is in good agreement with the
scalar-relativistic value of 0.54�B reported in Refs. 26 and
33. According to our relativistic calculations, the orbital
magnetic moment is 0.054�B. Our MA calculations �see Eqs.
�26� and �27�� correctly predict the easy axis to be the �100�
one; however, the calculated value for K1=10−2 �eV/atom is
by 2 orders of magnitude smaller than the experimentally
deduced value.
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FIG. 7. Normalized transverse component of the uniform in-
plane magnetization that corresponds to the extrema of the Kerr
rotation angle for oblique incidence and p-polarized light within the
0yz plane ���633 nm� in bcc Ni /Ni�100� as a function of the
incidence angle �. Circles and squares denote values of mt

��� ob-
tained by using the � dependence of Fresnel coefficients shown in
Fig. 5. Open symbols mark mt

��� values out of range �−1,1�. Gray
dotted lines denote intervals of � in between which the Kerr rotation
angle has either four or two extrema.
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It is well known that by including a heuristic orbital po-
larization �OP� contribution34 into the LDA, a substantial
improvement in both the calculated orbital moments and MA
energies, respectively, can be achieved in the case of ferro-
magnetic bulk materials.35 By adapting the OP potential
scheme of Ref. 36 to our relativistic SKKR method, the so-
obtained MA constant K1=0.84 �eV/atom is only about one-
third of the experimental value given in Ref. 1. Note also that
by including the OP term, a moderately enhanced orbital
magnetic moment of 0.079�B has been obtained in compari-
son to the LDA result.

As already mentioned, the measurements in Ref. 1 are for
a probe thickness of 3.5 nm, i.e., for an about 25 ML thick
Ni film. Therefore, the MA constant deduced from the torque
measurements via ROTMOKE corresponds to an average
value over the entire film, which consists of the surface/
interface and the interior �bulklike� regions. In order to relate
this average to the bulk value, also calculations for the �001�
surfaced bcc Ni have been performed, revealing an enhance-
ment of 0.76�B and 0.23�B, respectively, in the Ni surface
layer with respect to the bulk values of the spin and orbital
magnetic moments �see Fig. 9�. The moments then rapidly
decreased with the distance from the surface such that all
layers below the seventh one are, in fact, bulklike.

As can be seen from Fig. 10, the layer-resolved contribu-
tions to the MA constant with respect to the number of layer

strongly oscillate and converge very slowly to the calculated
bulk value. In particular, the in-plane MA constant at the
surface layer is nearly 20 �eV/atom, i.e., is more than 20
times larger than in the bulk. Quite clearly, then for even a
very thick bcc Ni film, the layer averaged MA,

K̄1
p =

1

N + 1 − p
	
q=p

N

K1
q, �49�

�recall Eq. �28�� will always be much larger than the bulk
MA constant. It is worthwhile to note that the averaged the-
oretical MA constant approaches the experimental bulk value
only after 12–13 monolayers of Ni. Considering that in the
experiment a larger system of about 25 monolayers of bcc Ni
on GaAs�001� was used, the MA constant as experimentally
determined by applying the ROTMOKE seems to be
strongly overestimated.

V. SUMMARY

By using the Luttinger formula and the spin-polarized
relativistic screened Korringa-Kohn-Rostoker method, the
inter- and intralayer contributions �̃pq��� to the complex op-
tical conductivity have been computed for a photon wave-
length �=633 nm and in bcc VacNvac

/NiNlay
/Ni�100� surface

and Ni�100� /NiNlay
/Ni�100� for different in-plane magnetiza-
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FIG. 8. Differences in the Kerr angles for oblique incidence of p-polarized light in 0yz plane ���633 nm� and bcc Ni /Ni�100� when
using the 2�2 matrix technique and the two-media approach as a function of the incidence angle � �left� or the polar angle �M� �right�. In
the left panel, circles, squares, diamonds, and triangles �up, left and down� refer to Kerr angles obtained for a polar angle �M� =15°, 30°, 45°,
60°, 75°, and 90° �open symbols�; in the right panel, circles, squares, diamonds, and triangles �up, left, down, and right� represent Kerr angles
obtained for an angle of incidence �=0,10, . . . ,60° �open symbols�; stars, pluses, and crosses stand for �=70°, 80°, and 90°.

ETZ et al. PHYSICAL REVIEW B 77, 064420 �2008�

064420-10



tion orientations. In comparing the layer-resolved permittivi-
ties with that of the semi-infinite bulk substrate, it was shown
that, with the exception of the xy components, all other per-
mittivity tensor elements are dominated by contributions
arising from the surface.

Ab initio Kerr angles obtained via the 2�2 matrix tech-

nique for an arbitrary linearly polarized light at oblique inci-
dence within the 0yz plane proved that the appropriate for-
mulas for Kerr angles widely used in the literature are valid
for a relatively large range of incidence angles and are inde-
pendent of the polarization of the incident light. The calcu-
lated Fresnel coefficients showed that besides the magnitude
of the average magnetization, they only depend on the angle
of incidence �. Within the range of validity of the appropriate
formulas, the � dependence of the linear Fresnel coefficients
was found to scale as sin �, confirming the experimental ex-
pectation, whereas the quadratic Fresnel coefficients are al-
most independent of �. With these highly accurate Fresnel
coefficients, the appropriate formulas can be applied to de-
termine Kerr angles for any arbitrary direction of a uniform
in-plane magnetization. A comparison of the calculated Kerr
angles via the 2�2 matrix technique with those determined
by using the two-media approach has evidenced that the lat-
ter only applies for a normal incidence, whereas for arbitrary
oblique incidences, about 75% of the magnitude of Kerr ro-
tation angles arises from surface contributions.

Furthermore, magnetic anisotropy calculations led to os-
cillating layer-resolved cubic magnetic anisotropy constants
dominated by contributions from layers situated near the sur-
face on the vacuum side. The average magnetic anisotropy
constant, however, is in good agreement with that derived
from ROTMOKE measurements. However, not even this
quantity can be unambiguously identified with that obtained
for bcc Ni bulk.
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APPENDIX A: KONROD QUADRATURE

Although the Gauss-Legendre integration rule can be im-
mediately used to calculate the contour integrals in Eqs. �5�
and �6�, this quadrature is very inefficient when the accuracy

is estimated from a comparison of �̃pq��� obtained for dif-
ferent numbers of energy points nz. In order to overcome this
difficulty, for the computation of the contour path contribu-

tion to �̃pq���, the Konrod-Legendre rule was adapted.25 The
basic idea proven by Konrod37 is that one can determine
2nz+1 nodes including all nodes of an nz-point Gauss
quadrature such that each of the additional nz+1 nodes falls
in between two nodes of the nz-point Gauss quadrature. Be-
cause within the Gauss-Legendre rule all nz nodes are roots
of nzth order Legendre polynomials corresponding to a unity
weighting function, the construction of the Jacobi-Konrod
matrix is not a trivial task. The present implementation
closely follows Laurie’s mixed moments algorithm to gener-
ate the Jacobi-Konrod matrix for even nz.

38 The main advan-
tage of the so-performed Konrod quadrature is that having
evaluated the integrand for 2nz+1 nodes, both the Gauss sum

Gnz
�̃pq��� and the Konrod sum K2nz+1�̃pq��� are simulta-
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the surface Ni layer.
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FIG. 10. Layer-resolved in-plane magnetic anisotropy con-
stants �circles� and their averaged value �squares� in bcc
Vac3 /Ni15 /Ni�100�. Dashed and dotted lines refer to the ab initio
and experimental �Ref. 1� cubic anisotropy constants, respectively.
Layer 15 corresponds to the surface Ni layer.
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neously available. By comparing these sums on each particu-

lar part of the contour, �̃��
pq ��� is considered to be converged

if the criterion

max�K2nz+1�̃��
pq ��� − Gnz

�̃��
pq ���� � �z, �A1�

is fulfilled for a given �z defining the accuracy.

APPENDIX B: CUMULATIVE SPECIAL-POINTS METHOD

The special-points method �SPM� is the counterpart of the
Gauss quadrature in k� space. Within the SPM, the integrand
is expanded in terms of symmetrized plane waves Am�k��,
which are real and translationally and point-symmetry group
rotationally invariant functions orthogonal to each other.
Therefore, the special points k� j are solutions of the homoge-
neous system:

	
j=1

nk

wjAm�k� j� = 0 �m = 0,1, . . . ,M� , �B1�

where the sum of weights wj =w�k� j� considered over all k�
points �j=1, . . . ,nk� ;nk� being the number of special points�
equals 1. It has been shown39 that k� points of a uniform,
periodic mesh,

k� j = 	
�=1

dBZ

kj�
b��,

taken with respect to the edges b�� of the reciprocal unit cell
�dBZ is the dimension of the Brillouin zone, i.e., dBZ=2 or 3�,
where

kj�
=

j� − 1

n�

+ a� −
1

2
, j� = 1, . . . ,n�, �B2�

are solutions of Eq. �B1�, minimizing the remainder in the
expansion of the integrand. Exploiting the arbitrariness of the
parameter a� in Eq. �B2�, the SPM has been extended in Ref.
25 by proving that successively denser k� meshes including
all k� points of the previous meshes can be created indepen-
dently on dBZ if and only if a� does not depend on n�. Ac-
cording to this statement, the so-developed cumulative
special-points method �CSPM� can be viewed in some extent
as the analog of the Konrod quadrature in k� space. In par-

ticular, by using ni=2i+2n0 �n0�N� divisions along each b��,
with �=1, . . . ,dBZ, in the two-dimensional k� space �dBZ=2�,
the CSPM permits all k�-space integrations to be performed
with an arbitrary high precision �k� by applying the conver-
gence criterion:

max�Sni
�̃��

pq �z � 	� + i
,z� − Sni−1
�̃��

pq �z � 	� + i
,z�� � �k� ,

�B3�

for each complex energy point on the contour and Matsubara
pole, respectively. Note that here all optical conductivity ten-
sor calculations were carried out such that the convergence
criteria �A1� and �B3� were fulfilled for �z=�k� �10−3 a.u.
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