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In this paper we present an extension of the relativistic disordered local moments �RDLM� scheme to
layered systems in order to perform ab initio calculations of the temperature-dependent magnetic anisotropy
energy of magnetic surfaces, interfaces, or films. As implemented within the relativistic spin-polarized
screened Korringa-Kohn-Rostoker method, we apply this scheme to thin Con /Cu�100� films and observe a
temperature dependence of the magnetic anisotropy energy �MAE� that significantly differs from that of the
bulk systems studied so far. In addition to the overall agreement of our results with experiments in showing an
in-plane magnetization for almost all layer thicknesses and temperatures under consideration, our calculations
also systematically predict a temperature-induced reverse �in-plane to out-of-plane� spin reorientation. In order
to explain this unexpected feature we fit the parameters of a classical Heisenberg model solved within the
mean-field approach to the MAE obtained from the RDLM calculations, and conclude that the spin reorienta-
tion is driven by a competition of exchange and single-site anisotropies.
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I. INTRODUCTION

The developments made in recent decades in the field of
high-density magnetic data storage created significant inter-
est in the magnetocrystalline anisotropy �MCA� of magnetic
thin films. The writing process on a magnetic storage me-
dium is performed by applying a magnetic field, the required
magnitude of which is governed by the magnetic anisotropy
�K�, i.e., the energy difference between different possible
magnetization directions. For the sake of easier writing, the
sample is heated, because then the magnetic anisotropy de-
creases with increasing temperature. In order to understand
this process and design new magnetic storage devices, it is
therefore necessary to investigate also the temperature de-
pendence of the magnetic properties.

The first significant theoretical study concerning the
temperature-dependent MCA was already published at the
end of the 1960s.1 In this study a single-ion anisotropy model
was assumed, and implicit analytical formulas were deduced
for the temperature and magnetization dependence of the an-
isotropy constants. From the late 1990s on, also analytical
Green function methods were applied to describe the tem-
perature dependence of the MCA.2 In these methods appro-
priate decoupling procedures2,3 are used to take into account
thermal fluctuations and collective excitations beyond the
mean-field description. Recently even ab initio methods have
been applied to investigate the MCA.4,5 Mryasov et al.4 set
up a model Hamiltonian based on constrained local density
approximation calculations and included the temperature de-
pendence by performing Langevin dynamics simulations
with this Hamiltonian. They get a K�T��M2.1�T� relation for

the anisotropy energy versus magnetization dependence for
L10 FePt.

Other works5,6 are based on the disordered local moment
�DLM� scheme.7 The DLM is based on the idea that in itin-
erant metallic magnets, on a certain time scale �, which is
small as compared to the characteristic time of spin fluctua-
tions, but longer than the electron hopping times, the spin
orientations of the electrons leaving an atomic site are suffi-
ciently correlated with those arriving such that a nonzero
magnetization exists when the appropriate quantity is aver-
aged over �. In the DLM scheme the magnetic excitations are
modeled by associating local spin-polarization axes with all
lattice sites and the orientations �ê� vary very slowly on the
time scale of the electronic motions. These local moment
degrees of freedom produce local magnetic fields centered at
the lattice sites, which in turn affect the electronic motions
and are self-consistently maintained by them. By taking ap-
propriate ensemble averages over the orientational configu-
rations, the system’s magnetic properties can be determined.
In the first applications of the DLM approach, paramagnetic
electron systems could be described by formally mapping
“up” and “down” moments onto the problem of a disordered
binary alloy A0.5B0.5 with A and B representing the constitu-
ents. To compute the configuration average the well-tried
Korringa-Kohn-Rostoker �KKR� coherent potential approxi-
mation �CPA� was used. From the temperature-dependent
paramagnetic susceptibility8 the Curie temperature was de-
termined even for thin films.9

Recently, we developed a DLM scheme in order to take
into account every local moment direction weighted with a
statistical probability, such that investigations below the Cu-
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rie temperature are accessible. The MCA is caused largely by
spin-orbit coupling, so a relativistic treatment is necessary.
Staunton et al.5 investigated the MCA of bulk L10-ordered
FePt, L10 FePd, and Fe50Pt50 solid solutions6 and found de-
viations from the Callen-Callen single-ion anisotropy rule.
For the uniaxial magnets L10 FePt and FePd they obtained a
K�T��M2�T� anisotropy-magnetization dependence and for
the cubic magnet Fe50Pt50 K�T��M6, in good agreement
with experiment. In the present paper we extend this theory
to layered systems and apply it to ferromagnetic Co films
deposited on a Cu�001� surface.

II. THE RELATIVISTIC DLM METHOD FOR LAYERED
SYSTEMS

The theory of disordered local moments in conjunction
with the Korringa-Kohn-Rostoker coherent potential ap-
proximation was proposed more than 20 years ago by
Györffy et al.7 and has recently been generalized by Staunton
et al.5,6 to include relativistic effects. In this section we
briefly outline how to use this scheme for layered systems,
i.e., for systems with two-dimensional translation invariance
and introduce a few new concepts concerning the calculation
of Weiss fields and the MCA energy.

The key quantity of the DLM scheme is the electronic
grand potential ��n̂���ê�� of a ferromagnetic system as ob-
tained within the local spin-density approximation �LSDA�
for a given direction of the magnetization, n̂, as a function of
the orientations of the local spins, �ê�. The DLM method is
therefore not confined to a model Hamiltonian with a fixed
form such as a classical Heisenberg model, but, at least
within the LSDA, takes into account spin-spin correlations to
any order.

In the case of a layered system, i.e., for a system with 2D
translational invariance and, for brevity, with one sublattice
per geometrical layer the Weiss field in a given layer p,

h�p
�n̂�=hp

�n̂�n̂ is defined by6

hp
�n̂� =

3

4�
� dêpi�êpi · n̂����n̂��êpi

�1�

where ���n̂��êpi
denotes a thermodynamical average over the

orientations of the spins at all sites in the system with the
exception of a particular site i in layer p, for which êpi
= �sin �pi cos �pi , sin �pi sin �pi , cos �pi�. The layer-resolved
probabilities

Pp
�n̂��êpi� =

�hp
�n̂�

4� sinh��hp
�n̂��

exp	− �hp
�n̂��êpi · n̂�
 , �2�

where �=1/kBT, are then used to solve the conditions of the
coherent-potential approximation for the effective medium
described within the Korringa-Kohn-Rostoker method in
terms of layer-resolved scattering t matrices t�p

c�n̂� and the
scattering path operator matrix �=c�n̂�= ���pi,pj

c�n̂� � �underlined
symbols refer to matrices in angular momentum space�.

In the spirit of the magnetic force theorem,11 the free en-
ergy is approximated by the single-particle grand potential
�band energy�,

��n̂���ê�� � −� d� f��;��N�n̂���;�ê�� , �3�

where � is the chemical potential, f�� ;�� is the Fermi-Dirac
distribution, and N�n̂��� ; �ê�� denotes the integrated density of
states, which can be expressed in terms of Lloyd’s formula.12

The Weiss field can then be calculated as

hp
�n̂� =

3

4�2 Im � d� f��;��

	�� dêpi�êpi · n̂�ln det M� p
�n̂���; êpi� , �4�

where

M� p
�n̂���; êpi� = 1� + 	t�p��; êpi�−1 − t�p

c�n̂����−1
��pi,pi
c�n̂� ��� . �5�

In the case of spherically symmetric effective potentials and
fields, t�p�� ; êpi� can be calculated in terms of the following
similarity transformation:

t�p��; êpi� = R� �êpi�t�p��; ẑ�R� �êpi�+, �6�

where t�p�� ; ẑ� refers to the case of an effective field pointing
along the z axis and R� �êpi� contains blockwise the projective
representations of the O�3� transformation that rotates the z
axis into êpi.

We developed an approximate but less demanding way of
calculating the Weiss fields. In supposing an orientational
dependence for the restricted grand potential,

���n̂��êpi
= �c�n̂� + hp

�n̂��êpi · n̂� + Kp sin2�pi, �7�

where �c�n̂� is the grand canonical potential of the com-
pletely disordered effective medium and Kp is a microscopic
uniaxial anisotropy constant, the Weiss field can be obtained
from the derivative of ���n̂��êpi

with respect to the average
magnetization direction n̂. The result for n̂= ẑ is given by

hp
�ẑ� = −

1

�
Im � d� f��;��

	Tr� �t�p��; êpi�−1

��pi
��pi,pi

c�ẑ� ���D� p
�ẑ���; êpi�

êpi=ẑ
, �8�

with D� p
�ẑ��� ; êpi��M� p

�ẑ��� ; êpi�−1. Similar expressions can be
obtained for any direction n̂ of the Weiss fields. Reassuringly
enough, the above two methods, Eqs. �4� and �8�, gave the
same result for the Weiss fields within about 1% numerical
accuracy. The average magnetization in layer p can then be
calculated as

mp
�n̂� =� dêpi�êpi · n̂�Pp

�n̂��êpi� = L�− �hp
�n̂�� , �9�

with L�x� being the Langevin function.
As in Ref. 6 for calculating the MCA energy we used the

torque method.13 Assuming for uniaxial systems the follow-
ing orientational dependence of the free energy:

F��� = F0 + Ksin2 � , �10�

yields for the torque
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T�� =
�

4
 = �dF���

d�
�

�=�/4
= �d���n̂��

d�
�

�=�/4
= K . �11�

In the above formula we replaced the derivative of the free
energy with respect to the magnetization angle by the corre-
sponding derivative of the grand potential, which follows
from an approximation of neglecting the dependence of hp

�n̂�

on n̂, implying that the spin-entropy term in the free energy
is also independent of n̂.6 Note that for K
0 ��0� the sys-
tem is magnetized normal �parallel� to the planes. By em-
ploying again the magnetic force theorem the LSDA contri-
bution to the magnetic anisotropy constant, usually termed
the band energy part Kb, can be given as a sum of layer-
resolved contributions Kb,p,

Kb = �
p

Kb,p, �12�

where

Kb,p =
1

�
Im � d� f��;�� � dêpiPp

�z��êpi�

	 Tr�� �R� �n̂�
��

t�p��; êpi�−1R� �n̂�+

+ R� �n̂�t�p��; êpi�−1�R� +�n̂�
��

��pi,pi
c�n̂� ���D̂� p

�n̂���; êpi��
�=�/4,�=0

.

�13�

Note that for an accurate calculation of Kb,p in terms of Eq.
�13� the CPA condition, Eq. �29� of Ref. 6, has to be satisfied
with a high precision.

The total magnetic anisotropy energy �MAE� also con-
tains a contribution arising from the magnetic dipole-dipole
energy �Kdd�, which we approximate by simply inserting the
averaged magnetic moments Mp�T�=Mp�0�mp�T� �in units of
Bohr magnetons� 	see also Eq. �9�
 into the expression de-
rived for completely ordered �T=0 K� ferromagnetic layered
systems,

Edd
�n̂� = �

pq

MpMq

c2 n̂D� pq
ddn̂ , �14�

where c �=274.072� is the velocity of light in atomic �Ryd-
berg� units and D� pq

dd are the dipole-dipole Madelung
matrices.14 The corresponding contribution to the uniaxial
MAE is then defined as

Kdd = Edd
�x̂� − Edd

�ẑ�. �15�

Thus, the total MA constant is given by

K = Kb + Kdd. �16�

III. COMPUTATIONAL DETAILS

The calculations were performed by using the relativistic
version of the screened KKR method10 within the LSDA as
parametrized by Vosko et al.15 and the atomic sphere ap-
proximation. Self-consistent potentials were calculated both

for the ferromagnetic ground state and for the paramagnetic
state; these potentials then were used for the DLM calcula-
tions at finite temperatures �see below�. The experimental
lattice constant of bulk Cu �a=6.83a0� was used, i.e., no
attempt was made to include geometrical relaxations in a fcc
�001� parent lattice.

For a fixed orientation of the average magnetization n̂ and
at a given temperature T, our strategy for determining the
layer-dependent effective t matrices t�p

c�n̂� and Weiss fields hp
�n̂�

simultaneously, is as follows.
�1� Choose an initial �usually uniform� set of hp

�n̂�.
�2� Solve the CPA condition, with the corresponding prob-

abilities, Pp
�n̂��êpi�, Eq. �2�. For this step we employed the

method proposed by Ginatempo and Staunton,16 and per-
formed the integral over orientations in terms of a cascade
adaptive sampling. This turned out to be numerically very
efficient when using a local frame of reference fixed to the
average magnetization direction, since in that case Pp

�n̂��êpi�
depends just on �pi. The CPA loop was iterated up to a
relative accuracy of 10−5 for t�p

c�n̂�.
�3� Calculate a new set of hp

�n̂� from Eq. �4� or �8�. An
asymmetric sampling of 16 points on a semicircular contour
in the upper complex semiplane was sufficient for the corre-
sponding energy integration to achieve a relative accuracy of
10−4 for hp

�n̂�. In order to keep this accuracy, the Brillouin
zone �BZ� integration of the scattering path operator
	��pp

c�n̂��k�
 was performed by using a variable k mesh with a
maximum of 465 k points in the irreducible �1/8� wedge of
the BZ for energies close to the Fermi level.

�4� Repeat steps 2 and 3 until convergence of hp
�n̂� is

achieved. By using Broyden’s second modified method17 we
needed just 5–10 iterations in order to reach the above men-
tioned accuracy.

After having obtained well-converged Weiss fields and
effective t matrices, the band energy part of the MA constant
Kb 	see Eq. �12�
, was calculated using Eq. �13�. It turned
out, however, that unlike the local moments the MA constant
is very sensitive to the self-consistent potentials used.
Clearly, a self-consistent calculation of the effective poten-
tials and fields at each temperature would complete the rela-
tivistic DLM �RDLM� scheme described above. Here we ap-
proximated the potentials in first order of the layer-dependent
average magnetizations mp�T� 	see Eq. �9�
,

Vp�T� = mp�T�VFM
p + �1 − mp�T��VPM

p , �17�

and similarly for the effective fields, which obviously recov-
ers the limiting cases, i.e., the ferromagnetic ground state of
the system is described by the self-consistent potentials and
exchange fields VFM

p and BFM
p , while above the Curie tem-

perature the system is in the paramagnetic DLM state, speci-
fied by VPM

p and BPM
p , respectively. The parameters for the

energy and BZ integrations used for the Weiss fields were
sufficient to achieve a relative numerical accuracy of 5% for
Kb.

IV. APPLICATION TO Co FILMS ON Cu(001)

Ferromagnetic Co films are known to grow epitaxially on
Cu�100� due to the small lattice mismatch, and show a strong
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in-plane magnetic anisotropy.18,19 As this system is experi-
mentally and theoretically well studied it is most suitable for
an application of the RDLM scheme for layered systems that
we developed. For the present study we performed calcula-
tions for film thicknesses of n=1 to 6 monolayers.

In Fig. 1 the calculated layer-dependent magnetizations
are shown as a function of temperature for the case of the
Co4 film. As can be inferred from this figure the magnetiza-
tion in all layers vanishes at TC=960 K. Interestingly, how-
ever, the shape of the curves differ from layer to layer: the
largest overall magnetization corresponds to the surface layer
�S�, the lowest to the interface layer �S−3�. This behavior
can be attributed to the well-known tendency of enhanced
ferromagnetism20 �i.e., enhanced Weiss fields� at the surface
due to the reduced coordination of the Co atoms, while at the
interface a weakening of the magnetic interactions is ex-
pected due to hybridization between electron states of the Co
and Cu atoms.

This reasoning can be justified by comparing the DLM
results with the mean-field solution of a classical Heisenberg
spin model. Supposing isotropic exchange interactions Jpq,
the mean-field energy takes the simple form

EMF = −
1

2�
pq

mpJpqmq, �18�

while the corresponding Weiss fields

hp = �
q

Jpqmq �19�

can be used together with Eq. �9� to determine the average
magnetizations mp as a function of temperature. Figure 2
shows the corresponding results with the parameters J11
=155 meV, J22=90 meV, J33=70 meV, J44=115 meV, J12
=J34=100 meV, and J23=70 meV �the labels 1, 2 and 3, 4
refer to the surface layer, the intermediate layers, and the
layer adjacent to the substrate, respectively�. These results
reproduce qualitatively well those obtained from the DLM
calculations. From this model study, it obviously turned out
that the asymmetry of the exchange parameters, in particular,
J11
J44, and J22
J33, is the main source of the asymmetry
of the magnetizations, since by choosing J11=J44, and J22
=J33 this asymmetry is completely removed.

In Table I we summarize the Curie temperatures calcu-
lated for different Co layer thicknesses. Reassuringly, these
values are consistent with those of Szunyogh and Udvardi20

obtained from a mean-field solution of a Heisenberg model
containing exchange parameters as calculated in the para-
magnetic DLM state. Razee et al.9 derived the Curie tem-
perature of Con /Cu�100� by directly evaluating the spin sus-
ceptibility from the paramagnetic DLM state. Although a
smaller Curie temperature for the monolayer case was re-
ported, for thicker layers they obtained roughly the same
results as here. Experimentally, much smaller Curie tempera-
tures were measured, in particular, for very thin layers, while
TC increased with increasing film thickness according to a
power law.18,19 The reason for the disagreement with respect
to experiment can most probably be attributed to the mean-
field approximation used in the ab initio DLM theories,
which is most critical for very thin layers. In terms of a
spin-wave theory and by using estimated bulk parameters for
the magnetization and the exchange field, Bruno21 obtained
about 200 K for TC of the Co1/Cu�001� system. Pajda
et al.22 performed first-principles calculations for the ex-
change parameters Jij in the ferromagnetic ground state of
Co1/Cu�001� and showed that by solving the Heisenberg
spin model within the random phase approximation reduces
the calculated TC to 426 K with respect to a value of 1043 K
predicted by the mean-field theory. Other reasons for the
deviation between the experimental and theoretical results
can be the incomplete layer growth and surface relaxations in
the experimental studies, again most critical for very thin
layers. The experimental value of about 950 K for large
thicknesses of Co �Ref. 19� is, however, in good agreement
with our present �and previous� results. In a recent review23

Jensen and Bennemann showed that a strong enhancement of
the exchange coupling in the surface layer can lead to a
considerable deviation from the power scaling law for TC

TABLE I. Calculated Curie temperatures �K� for
Con /Cu�100�.

n 1 2 3 4 5 6

TC 1330 933 897 960 945 960
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FIG. 1. �Color online� Average magnetizations mp 	see Eq. �9�
,
versus temperature for Co4/Cu�100�. The label S refers to the sur-
face Co layer, S−n �n=1,2 ,3� to the nth Co layer beneath the
surface.
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FIG. 2. �Color online� Average magnetizations mp 	see Eq. �9�
,
versus temperature for Co4/Cu�100� as obtained from a mean-field
solution of an isotropic Heisenberg model �see text for the exchange
parameters used�. The label S refers to the surface Co layer, S−n
�n=1,2 ,3 ,4� to the nth Co layer beneath the surface.
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and can result even to an enhancement for very thin mag-
netic layers. This observation qualitatively explains the trend
seen in Table I.

In Fig. 3 the calculated band energy contributions of the
magnetic anisotropy energy, Kb, are plotted as a function of
temperature. The corresponding values near T=0 are consis-
tent with our previous calculations for the ground state in
terms of the relativistic screened KKR method showing quite
large fluctuations with respect to the layer thickness �see Fig.
1 of Ref. 24�. As in the bulk systems studied so far,5,6 the
MA constant decreases in the monolayer case almost mono-
tonically in magnitude with increasing temperature. For
thicker films, however, Kb�T� shows a nonmonotonic tem-
perature behavior with a more or less pronounced maximum.
Correspondingly, for the cases of n�3, Kb�T� also changes
sign at a given temperature. This kind of behavior did not
show up in early studies such as in the model description
�Ref. 1� or in ab initio calculations4–6 of Kb�T�.

In order to explain this unusual result, we again used a
classical Heisenberg spin model that includes terms arising

from relativistic �spin-orbit coupling� effects to describe
magnetic anisotropy. In particular, due to itinerant electrons
in a metallic system the anisotropy of the exchange interac-
tions, Jpq

xx �Jpq
zz , has to be accounted for. Similar to the strat-

egy of our ab initio RDLM calculations, by taking Eq. �2�
with Eq. �19� for the probabilities and supposing orienta-
tional independence for the Weiss fields �magnetizations�,
the anisotropy of the mean-field free energy,

K = Fx − Fz = −
1

2�
pq

mp�Jpq
xx − Jpq

zz �mq + �
p

Kp� 3

�hp
mp + 1 ,

�20�

was then used to fit the exchange anisotropies Jpq
=Jpq

zz −Jpq
xx and the on-site anisotropies Kp to the Kb�T� values

obtained from the RDLM calculations. Note that, in order to
reduce the number of fitting parameters, unlike the interpre-
tation of the layer-dependent magnetizations, here we re-
stricted ourselves to exchange parameters that are symmetric
with respect to the layers. Indeed, from our tests, we found
the moderate asymmetry of the magnetizations �see Fig. 2�,
to have only a very small effect to the MA constants obtained
from the spin model. Furthermore, for some cases we also
checked our results by comparing them with a full solution
within the mean-field theory,25 i.e., by using the canonical
partition function with an exact account of the on-site
anisotropies and of the orientational dependence of the mag-
netizations, and obtained a nearly perfect agreement between
the two approaches.

The fitted parameters are listed in Table II, while in Fig. 4
the corresponding magnetic anisotropies, Eq. �20�, are
shown. As can be seen, the MA constants obtained from the
spin model compare qualitatively well with the DLM results,
Fig. 3. Inspecting the parameters in Table II it is obvious that
the exchange anisotropies Jpq are of the same order of mag-

TABLE II. Model parameters Jpq, Jpq=Jpq
zz −Jpq

xx and Kp, see Eqs. �19� and �20�, fitted to the temperature-
dependent MA constants of the Con /Cu�100� films as obtained from the RDLM calculations. All parameters
are given in units of meV.

n Parameters

1 J11
z =336, J11=0.36, K1=−0.615

2 J11
z =J22

z =136, J11=0.36, J12
z =100, J12=0.64, K1=−0.37, K2=−0.615

3 J11
z =J33

z =136, J11=J33=0.36, J22
z =60, J22=0,

J12
z =J23

z =100, J12=J23=0.4,

K1=−0.37, K2=−0.425, K3=−0.615

4 J11
z =J44

z =136, J11=J44=0.36, J22
z =J33

z =60,

J22=J33=0, J12
z =J34

z =100, J12=J34=0.23, J23
z =60, J23=0,

K1=−0.37, K2=0, K3=−0.37, K4=−0.615

5 J11
z =J55

z =136, J11=J55=0.36, J22
z =J33

z =J44
z =60, J22=J33=J44=0,

J12
z =J45

z =100, J12=J45=0.8, J23=J34=60, J23=J34=0,

K1=−0.37, K2=−0.37, K3=−0.37, K4=−0.615, K5=−0.615

6 J11
z =J66

z =136, J11=J66=0.36,

J22
z =J55

z =60, J22=J55=0, J33
z =J44

z =20, J33=J44=0,

J12
z =J56

z =100, J12=J56=0.36, J23
z =J34

z =J45=60, J23=J34=J45=0,

K1=−0.37, K2=0, K3=0, K4=0, K5=−0.4, K6=−0.615
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FIG. 3. �Color online� Band energy part of the magnetic aniso-
tropy constant Kb�T� for Con /Cu�100�.

AB INITIO THEORY OF TEMPERATURE… PHYSICAL REVIEW B 76, 064417 �2007�

064417-5



nitude as the on-site anisotropy energies Kp, but of the op-
posite sign. Clearly from Eq. �20� the exchange anisotropy
part of the MAE is proportional to m2, while the on-site
anisotropy term follows the Callen-Callen behavior, i.e., K
�m2 for small m, and K�m3 for large m. Thus, an interplay
of these two terms in an itinerant electron system can lead to
thermal reorientation transition.

In order to demonstrate this effect, we performed model
calculations for the MA constants of the Co3/Cu�100� sys-
tem by uniformly scaling the exchange anisotropies Jpq
=xJpq

fit and the on-site anisotropies Kp=yKp
fit, with Jpq

fit and
Kp

fit taken from Table II. As a constraint, we kept the MA
constant at T=0 fixed, from which the scaling factors y can
uniquely be determined as a function of x. The correspond-
ing MA constant vs T curves are plotted for selected x values
in Fig. 5. As can be seen in this figure, by decreasing the
exchange anisotropy the MA constant gradually decreases
and the reorientation transition completely disappears below
about x=0.5. For vanishing exchange anisotropy, x=0, the
Callen-Callen behavior is recovered. In the case of
Jpq=−0.2Jpq

fit, as in the L10 FePt and FePd systems,6 a
nearly K�m2 dependence over the whole temperature re-
gime is obtained. Thus the remarkably different behavior of

K�T� for different itinerant metallic magnets, i.e., L10 FePt
and FePd vs Con /Cu�100�, can be interpreted as an effect of
different magnitudes and, in particular, of different signs of
the exchange anisotropies with respect to the corresponding
on-site anisotropies.

As mentioned in Sec. II the total magnetic anisotropy en-
ergy is obtained by adding the magnetic dipole-dipole con-
tribution 	see Eq. �15�
 to the band energy part Kb�T�. The
corresponding results can been seen in Fig. 6. Since for lay-
ered systems Kdd�T� is always negative, favoring thus an
in-plane magnetization, except in the two-monolayer case,
the total MA constants are shifted to negative values over
almost the entire temperature range. Since, however, Kdd�T�
is proportional to M�T�2, which goes to zero very rapidly at
TC, and since as shown above Kb�T� exhibits a maximum,
K�T� slightly overshoots to positive values near TC. This be-
havior is most pronounced for n=2, where K�T�
0 between
350 K and TC �=933 K�.

Theoretically, such a temperature dependence of the MA
constant implies a reorientation transition from an in-plane
orientation to an out-of-plane orientation of the magnetiza-
tion. However, as can bee seen in Fig. 6 the positive values
of K�T� are very small and might be reduced by quite a few
circumstances such as growth conditions, interface mixing,
surface relaxations and stresses, or domain formation, which
in turn make it difficult to relate this prediction to experi-
ments. Indeed, so far such an inverse reorientation has not
been found for Co films on Cu�001�.

In conclusion we have presented a generalization of the
recently introduced relativistic disordered local moments
scheme5,6 to systems with two-dimensional translational
symmetry. We also introduced recipes to calculate the Weiss
fields and the magnetic anisotropy constants 	see Eqs. �8�
and �13�
. We implemented the RDLM method within the
relativistic screened KKR code for layered systems and ap-
plied it to study the temperature dependence of the MAE of
ferromagnetic Co films on Cu�001�. Our results are in overall
agreement with experiment as far as it is found that the mag-
netization is oriented parallel to the surface for almost all
temperatures below the Curie temperature except for the
two-monolayer system. Our calculations predict, however,
also a reverse �in-plane to out-of-plane� spin reorientation
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FIG. 4. �Color online� Magnetic anisotropy constants vs tem-
perature obtained from a mean-field approach of the Heisenberg
model, Eq. �20�, with the fitted parameters listed in Table II.
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FIG. 5. �Color online� Magnetic anisotropy constant of the
Co3/Cu�100� system vs temperature obtained from a mean-field
approach of the Heisenberg model and scaling the exchange
anisotropies Jpq=xJpq

fit with Jpq
fit from Table II and the on-site

anisotropies accordingly. Squares, x=1; circles, x=0.5; up triangles,
x=0.0; down triangles, x=−0.2.
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FIG. 6. �Color online� Calculated total magnetic anisotropy con-
stant K�T�=Kb�T�+Kdd�T� as a function of temperature for
Con /Cu�100�.
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near TC, which we interpreted in terms of a classical Heisen-
berg model and associated with relatively large exchange
anisotropies arising due to itinerant electrons. As in the case
of Co2/Cu�001�, such a thermal reorientation effect seems to
be most likely to occur for systems close to the reorientation
at T=0, i.e., where K�T=0� has a small negative value.
Therefore, we expect that the ab initio RDLM scheme can
describe well the temperature-induced reverse spin reorien-
tation of 7–9 monolayer thick Ni films on Cu�001� observed

experimentally26 and studied theoretically in terms of a clas-
sical Heisenberg model.27
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