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Abstract

We review some of our recent work on first principles calculations of the magnetic structure of
surface and bulk nanostructures. The calculations are based on implementation of relativistic density
functional theory within state of the art surface embedding and order-N multiple scattering Green’s
function methods. First principles spin-dynamics and the constrained local moment approximation
are reviewed as they relate to optimization of moment configurations in highly inhomogeneous
materials such as surface and bulk nanostructures. Results are present for three prototypical
nanostructures — short Co-chains adjacent to a Pt{111}-surface step-edge, a Cr-trimer on the
Au{l111}-surface, and Fe-chains and impurities in Cu — that illustrate the need to treat the under-
lying electronic interactions on a fully self-consistent basis in which the very different energy scales
appropriate to exchange coupling and magneto-crystalline anisotropy are treated on an equal
footing.
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1. Introduction

Driven by the need for ever higher density recording media, smaller and more respon-
sive sensors, and higher energy product permanent magnets, nanomagnetism, the science
and technology of nanoscale magnetic materials and devices, is currently one of the focii
of nanoscience research [1]. A fundamental problem in understanding nanoscale magnetic
phenomena is that it is generally not possible to construct simple models based on param-
eters obtained for bulk systems — neither experimentally nor theoretically. Furthermore,
experimental characterization of nanoscale features is also often problematical without
sophisticated theory and modelling to interpret experimental results.

Modelling of magnetic properties is an example of a complex multiscale problem of a
type long championed by Professor Pettifor where different models are applied at different
length scales, from the electronic quantum scale where moment formation occurs, to the
atomistic scale where Heisenberg and related spin models are appropriate, to the device
level where it is often sufficient to describe the magnetic state and moment dynamics using
continuum micromagnetics methods [2].

The phenomenological theory of moment or spin dynamics (SD) is encapsulated in the
well-known Landau-Liftshitz—Gilbert equation (LLG) equation [3-5,2]
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where v is the gyromagnetic ratio and 1 is the Gilbert damping factor and the effective
forcing field A" = 8E(im)/dm is obtained from the derivative of the internal energy
E(m) with respect to the moment 7. For application purposes it is often useful to decom-
pose A" into a series of terms
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which from left to right, correspond to contributions from applied external fields, intrinsic
exchange interactions, magneto crystalline anisotropy, dipolar interactions, and magneto-
elastic effects. Although the LLG equation is extremely valuable in simulations, particularly
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in device physics, where it provides the basis for modern industrial micromagnetics simu-
lations, the fact that its microscopic underpinning is not well formulated makes it of much
less value at the nanoscale. Indeed, at the nanoscale the discretised elements of material to
which magnetic moments and their interactions are assigned necessarily approach atomic
dimension and it becomes necessary to treat the underlying atomistic nature of the
magnetic moments and their interactions.

Although, at an intermediate scale, Heisenberg and related spin models can be used,
this does not aid with the fundamental issue of how to determine the parameters of
such a model (exchange interactions, J;, anisotropy constants K, ...) in small, highly
inhomogeneous systems. Clearly, these considerations demand theory and modeling tech-
niques that can deal with the quantum nature of the atomic scale interactions while
still being able to deal with the complexity and inhomogeneity of realistic models of nano-
structures. Here modern first principles density functional theory (DFT) based electronic
structure methods have progressed to the stage where this is increasingly practicable
[6-8].

In general, spin structures result from a subtle interplay between the exchange inter-
action, which normally determines the magnetic order, and the spin—orbit interaction,
which couples the spin to the lattice and gives rise to the magneto-crystalline anisotropy
energy (MAE). As a result the magnetic structure — magnetic moments, non-collinearity,
magnetic anisotropy — can only be fully discussed within the framework of relativistic
electron theory [9]. In the remainder of this paper we discuss results of some of our
recent calculations that address magnetic structure of prototypical nanostructures
using first principles electronic structure methods. In the next section, we outline fully
relativistic DFT as the vehicle for treating the quantum mechanical interactions that
determine the magnetic structure. In particular allowing for treatment of exchange and
magneto-crystalline anisotropy within a unified electronic framework. First principles
spin dynamics and the constrained local moment model of non-equilibrium moment con-
figurations is discussed in Section 2.2. A brief description of the first principles multiple
scattering theory Greens function codes for performing calculation for surface [10,11]
and bulk [8] nanostructures in which these techniques are implemented is given in Section
2.3. In Section 3, we present results for three prototypical nanostructures — short Co-
chains adjacent to a Pt{l11}-surface step-edge (Section 3.1), a Cr-trimer on the
Au{l11}-surface (Section 3.2), and Fe-chains and impurities in Cu (Section 3.3) — that
highlight the need for using such first principles electronic structure techniques when
dealing with the inhomogeneities inherent to nanostructures. Section 4 contains some
concluding remarks.

2. Computational methods for magnetic nanostructures
2.1. Relativistic density functional theory

The calculations discussed in the following sections are based on first principles DFT
[16,17]in the local spin density approximation (LSDA) [18]. A detailed presentation of rel-
ativistic DFT is given by Dreizler and Gross [19], here we only review the main results as
they apply to our relativistic treatment of magnetic systems. A fully relativistic extension
of DFT leads to a current density functional [20-22] where the energy functional takes the
form
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where j, (7) is the four-current. This expression can be reformulated in terms of the charge
and magnetisation densities [23] using the Gordon decomposition. When the orbital cur-
rent densities are neglected the form of the functional becomes identical to the non-rela-
tivistic spin density functional

Efn, ] = / Efen(e)de—e; / / %d%dwwm[nﬁ]
- / SESX;[(’;’)W”(;')d% / 5%’;1[’(;)’7‘]@(7)d3r 4)

where the Kohn-Sham orbitals are now obtained as solutions of the Kohn-Sham-Dirac
equation

(—ificd - V + pmc® + VI (7) + & - B (F) — &), = 0 (5)

in which the interaction of the orbital current with the vector potential is excluded. In this
equation the effective potential ¥°T and magnetic field B are given by

Veff( ) Vext / d3 / 6Ex08[n }(7) (6)

and
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respectively. Using the standard definition of the Green function G(¥,7;¢€) =
lim, o> 0! (F),(7)/(e; — € + in) the density of states n(e), the charge density n(¥), an
the magnetisation density 7(7) can then be written as
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Taken together, Eqgs. (5)—(10) define a a set of (relativistic) self-consistent field equations
for determining the ground state charge and magnetization densities and together with
Eq. (4) the total energy.

In principle, these equations allow the calculation of any magnetic state that is an extre-
mum of the energy functional. This is particularly important for calculating the magneto-
crystalline anisotropy energy, Enag, as the difference
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where E(7,) and E(7,) are the LSDA-energies for the two orientations of the magnetiza-
tion, m; and 7i,, corresponding to the easy and hard directions. Clearly, the easy direction
refers to a minimum (actually the global minimum) of the LSDA energy functional which
standard iterative approaches to solving the LSDA equations can be expected to find. On
the other hand, the hard direction corresponds to a maximum of the functional with re-
spect to the magnetization, in fact the global maximum. While for high symmetry systems,
candidates for the hard direction are simple to obtain, for highly inhomogeneous nano-
structures this may not be the case. This situation is further complicated by the fact that
iteration from some guess that is not precisely a maximum will generally result in the solu-
tion to the LSDA equations running towards the closest local minimum. In Section 2.2, we
outline a method to overcome this difficulty using the constrained local moment approach.

Magneto-crystalline anisotropy energies are typically very small and are notoriously
difficult to calculate from the subtraction of the (large) total energies corresponding to
independent self-consistent LSDA calculations as in Eq. (11). Thus, it is common to
approximate the MAE as the difference in band structure energies, namely,

Enage = Eps(mi1) — Eps (i) (12)

where the band structure energy is simply the first term on the right hand side of the LDA
energy functional, namely,

ep (7i;)
Egs(;) = / n(e; ;) de (13)
This approximation is the result of using magnetic force theorem (MFT) [12] or frozen po-
tential approximation (FPA) [13,14] and involves performing a fully self-consistent LSDA
calculation for only one of the magnetization directions (say the easy direction) and then
using the LSDA potentials for this orientation in a single shot calculation (a single eval-
uation of Eq. (5)) for the second with subsequent subtraction of the (much smaller) band
structure energies (Eq. (12)).

2.2. First principles spin dynamics

The formalism developed in the previous section is valid for the ground state only and
does not provide any mechanisms for addressing moment dynamics in a manner equiva-
lent to the LLG-equation. The foundation for a first principles spin-dynamics of itinerant

QOO
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Fig. 1. Tllustration of general local moment state {¢&;} (left). Example ferromagnetic (FM) and antiferromagnetic
(AFM) states (center and right) are specified by & = (0,0, 1) for all sites (FM) and & = (0,0,1) or (0,0,—1)
depending on whether the particular site moment is up or down (AFM).

Sl=ls
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electron systems was set out by Antropov et al. [24,25], and was later expanded upon by
others [26-28]. The basic assumption underlying first principles spin dynamics (FP-SD) is
that it is useful to divide moment dynamics according to two different time scales; a fast,
electronic, time-scale responsible for the formation of a well defined local, atomic like,
moment at each site and a slow, reorientational, time-scale upon which the preformed
local moments turn rigidly [29]. This is illustrated in the leftmost frame of Fig. 1 where,
within some volume about the ith atomic site, the local moment points in the direction
of the unit vector & = [, 7i;(¥)d7/| [, :(F)d7| and a general orientational configuration
can be specified by a set of such vectors {&;}. The corresponding moment configuration
is then {7} with 7i; = m;é; where m; = |i;|. The central result of FP-SD is that, for the
precessional component of the motion, the evolution of the time dependent moment con-
figuration, {m;,}, is described by a microscopic, quasi-classical equation of motion which is
exactly of the form as the classical LL-equation; namely, the first term on the RHS of Eq.
(1) but now with an effective field, Ef“ , that is based on first principles theory. Specifically,

%ﬁ’ii = _Vﬁ"l, X E?ff (14)
with
BST({m;}) = SEVSPA({i}) /8, (15)

where EMPA({7,}) is the LSDA energy obtained by solving the LSDA equations for the
instantaneous state {#;}. Thus FP-SD is very much an equivalent for the local moment
dynamics of first principles molecular dynamics (FP-MD) for atomic motion with the
obvious caveat that the separation of times scales between the electronic degrees of free-
dom that determine the forces in FP-MD and the slow nuclear motion which is governed
by Newton’s equations is much cleaner that in the case of moment dynamics where there is
no equivalent of Born—-Oppenheimer approximation for local moments.

Compared to FP-MD, there is a second problem to be faced by FP-SD. This results
from the fact that DTF is specifically geared to finding the total energy (and forces) cor-
responding to a fixed external potential, which, for FP-MD, is fully specified once the
atomic positions are given, for local moments there is no such external potential. For
the spins, solutions to the LSDA equations, in both relativistic and non-relativistic forms,
correspond only to extrema; normally some fairly simple ferromagnetic (FM) or antifer-
romagnetic (AFM) ground state of the type visualized in the two rightmost two frames
of Fig. 1. In particular, LSDA is silent on a general orientational configuration {é;} of
the type visualized in the leftmost frame of Fig. 1. Furthermore, any attempt to iterate
the standard LSDA equations starting from such a configuration will result in the solu-
tion, once again, running towards the nearest local minimum, e.g. a nearby FM or
AFM state. Thus, in order to have a theory for EXPA({i;}), it is necessary to go beyond
conventional LSDA theory for the ground state. This same conclusion was reached by
Capelle et al. [27] in their work to derive FP-SD by taking the adiabatic limit of time
dependent DFT [27].

A technique to deal with such a general state has been presented by Stocks et al. [30,31]
based on the constrained density functional theory developed by Dederich et al. [32]. In
the constrained local moment (CLM) model the LSDA equations are solved subject to
a constraint
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that ensures that the local magnetizations lay along the directions prescribed by {&;}. The
result is that, in order to maintain the specific orientational configuration, a local trans-
verse constraining field must be applied at each site the effect of which is to kill compo-
nents of the magnetization transverse to &;.. The constraining field is obtained from the
condition

BE<"({@}, {B;"]
dé;
applied to all sites and where E the generalized energy functional in the presence of the
constraining field

B (@), (B = £ (@) (B + [ @it @) - B (19)

This formalism can be made into a practical computational algorithm by choosing B;*"(¥)
to be of the functional form

B(P) = B (P8 (19)

-0 (17)

where B’ (7) is the local (longitudinal) exchange correlation potential at the site i and & is a
unit vector normal to local orientation &;. That Eq. (19) is a good approximation for the
constraining field can be monitored a posteriori by checking the extent to which the trans-
verse components of m,(7) are quenched.' Coupled with an efficient iterative algorithm for
finding the constraining field, [31], the above equations provide a straightforward way to
obtain the energy and constraining fields associated with any non-equilibrium CLM state.
Of course the standard LSDA ground states are simply CLM states for which B{*" = 0 at
all sites.

To make the connection between the CLM model and FP-SD it is sufficient to note that
the internal effective field that rotates the spins is just the opposite of the constraining field,
i.e. Eq. (15) in BS™ = —B¢". Although implied by use of Eq. (15) with Eq. (14), we do not
include a torque coupling the spin and orbital degrees of freedom. As pointed out by
Antropov et al. [25], this is only applicable when the deviation between the orientations
of the spin and orbital moments is small.

As set out Eq. (14) only takes care of the precessional motion of the moment and the
equivalent of the Gilbert term does not occur. Some ideas about how to include such a
term have been given by Capelle and Gyorffy [28], here however we are only interested
in FP-SD as a devise for finding the ground state it is sufficient to add Gilbert damping
phenomenologically as

)

ot
where « is an constant that can be adjusted to ensure rapid convergence to the ground state
(or, at least, the nearest local minimum).

iy = —yi; x BN + oy x [ii; x BV (20)

! Studies of the residual transverse moments of Fe in various non-equilibrium situations reveal that they are
typically reduced by 2-3 orders of magnitude by the application of this form of constraint.



378 G.M. Stocks et al. | Progress in Materials Science 52 (2007) 371-387
2.3. Multiple scattering theory Green's function methods

To solve the LSDA equations, we use multiple scattering theory (MST) [33,34], or Kor-
ringa, Kohn and Rostoker (KKR) [35,36], Green’s function (GF) approaches tailored to
deal with realistic models of nanostructures. Specifically, we use two different implemen-
tations of relativistic MST one appropriate to isolated nanostructures on metal surfaces
and one for nanostructures embedded in bulk materials. Both codes treat non-collinear
magnetism, CLM states and use of damped FP-SD (Eq. (20)) to find complex magnetic
ground state structures. It is important note that in both of these methods we can control
the convergence and numerical precision of the solutions of the LSDA equations to a
degree that allows to directly compute magneto-crystalline anisotropy and to find the easy
direction using the CLM model and FP-SD.

To treat surface nanostructures, we use the Green’s function embedded cluster (GF-
EC) method developed by Lazarovits et al. [11]. An important advantage of this method
is that an isolated nanostructure placed on an otherwise semi-infinite surface is modelled
directly; as opposed supercell approaches where some artificial periodicity and, conse-
quently, interactions is introduced. Use of the GF-EC method involves two distinct steps.
Firstly, a self-consistent calculation for the pristine surface system is performed using the
relativistic Screened-KKR method [10]. The nanostructure (or extended impurity) is sub-
sequently embedded into this host using standard MST embedding techniques [11]. Of
course to treat the interaction between the nanostructure and the surface the extended
impurity that is actually treated self-consistently consists of the actual nanostructure plus
surrounding surface and subsurface atoms and vacuum sites as appropriate [7].

To treat nano-structures embedded in bulk materials we deploy a fully relativistic (Rel-
LSMS) version of the Locally Self-consistent Multiple Scattering (LSMS) approach. In the
Rel-LSMS method the Kohn—-Sham-Dirac equation (Eq. (5)) is solved rather than the cor-
responding non(semi)-relativistic Schrodinger equation of the original technique [37]. The
Rel-LSMS method has basically the same order-N scaling properties of the original and is
therefore capable of treating the large numbers of atoms needed to model nanostructures
while being able to obtain total energies, and consequently charge and magnetization den-
sities, converged to the high degree of numerical precision required to treat anisotropy.

3. Calculated magnetic structure of nano-structures

In this section we present results of first principles calculations of the ground state mag-
netic structure for some prototypical nanostructures using the techniques outlined above.
Specifically, we discuss three nanostructures, namely, short Co-chains adjacent to a
Pt{111}-surface step-edge [6], a Cr-trimer on the Au{l11}-surface, and Fe-chains and
impurities in Cu. Taken together these examples illustrate the need to treat the underlying
electronic interactions on a fully self-consistent basis in which the very different energy
scales appropriate to exchange coupling (~1 mRy) and magneto-crystalline anisotropy
(~1 n Ry) are treated on an equal footing.

3.1. Co-chains at a Pt[111 ]-surface step

In a recent Nature article, Gambardella et al. [38,39] reported the results of experiments
on well characterized finite linear chains of Co atoms located at a step edge of a Pt(111)
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Fig. 2. Moment orientations for Co-atoms at a Pt-(11 1) step-edge. Left: Oblique view to illustrate collinearity of
Co-moments. Right: Edge view to illustrate the tilt of the ferromagnetically ordered Co-moments towards the Pt-
step edge.

surface terrace. At 45 K the formation of ferromagnetic spin-blocks of about 15 atoms was
observed with an easy magnetization axis normal to the chain and pointing along a direc-
tion of 43° towards the step edge. This surprising result is not readily understood it terms
of either simple symmetry considerations or spin models and, presumably, arises from the
details of the electronic interactions of the Co atoms with the Pt-step edge.

In Fig. 2 we show, in the left panel, a visualization of the results of our first principles
calculations of a 7-atom Co-chain adjacent to a 111-Pt step-edge using the GF-EC cluster
approach outlined above [7]. As can been seen the Co moments align ferromagnetically
and are almost collinear, with a maximum deviation of <1°, and cant at an angle of 42°
towards the step edge — in quantitative agreement with the experiments of Gambardella
[38].

The calculations were performed using the GF-EC method describe above. Computa-
tionally the Co-chain together with the Pt-step was treated as an extended impurity
embedded in a trough in an otherwise perfect semi-infinite Pt-surface (for details of the
model see Ref. [7]). Constrained density functional theory was used to calculate the mag-
netic state at each time step in the evolution of Eq. (20) as the moments were relaxed
towards equilibrium. In the calculations only the damping term was included during the
integration of Eq. (20).

In Fig. 3 we show a visualization of the evolution of the moment orientations (the fic-
titious moment dynamics) for 4 time-steps (¢ =1, t = 10, ¢ = 25 and ¢ = 100) in the FP-SD
optimization. As can been from the leftmost frame of this figure, the Co-moments were
initialized to point along the step-edge.” To obtain good converge for the ground state
moment configuration took a total of 800 time-steps, thus the visualizations shown in
Fig. 3 show only the short time behavior. As emphasized earlier because the calculations
were fully relativistic, the large exchange interactions and much smaller magneto-crystal-
line anisotropy energy were treated on the same footing. Thus, what is being seen in Fig. 3
is the effect of the large, exchange interaction dominated, energy scale as the moments
snap into an over-all FM state. The subsequent slow relaxation of the FM-state from
the positions shown in the rightmost from of Fig. 3 to the final positions of Fig. 2, which
takes a further 700 time-steps, is reflective of the much smaller energy scale of the MAE.

2 Addition calculations where the initial Co-moment configuration was chosen randomly produced the same
ground state and had similar over-all behavior in terms of its convergence characteristics.
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Fig. 3. Moment orientations for 4 time-steps in the LL-optimization of the magnetic structure of a 7-atom Co-
chain adjacent to a 111-Pt step edge. From left to right the time steps are r =1, t = 10, # = 25, ¢t = 100.

Fig. 4. Right-frame: Contour plot of the energy as a function of the orientation of the magnetization relative to
the Co-Chain. Left-frame: Definition, relative to the Co-chain, of the angles 0 and ¢ used in the contour plot;
the upper component is a side elevation while the lower component is a plan view of the Co-chain (green) and the
lower (low-density orange) and upper (high-density orange) terraces of the Pt-step. (For interpretation of the
references to the color in this figure legend, the reader is referred to the web version of this article.)

Since the ground state is essentially collinear, studies of the energy of the system as a
function of the orientation can be greatly simplified by studying the rotation of the global
and uniform magnetization, E(0, ¢) using the FPA. Fig. 4 (right-frame) is a contour plot of
the energy as a function of the angles 0, the angle the magnetization makes relative to the
surface normal, and ¢, the same but relative to the step edge and in the Pt-surface (Fig. 4,
left frame). These particular calculations are based on the potentials of the ground state
obtained from the FP-SD optimization procedure. The full surface was obtained by calcu-
lating the energy for four (three plus the ground state) orientations of the magnetization
and fitting the resulting energies to the functional form appropriate for the wire symmetry
and expanded to second order in the anisotropy constants, namely [6]

E(0,¢) =Ey+ Kz2c0820 + K;5(1 — cos20) cos 2¢ + K, 3 sin 20sin ¢ (21)

where K, ;, i =1,2,3 are the three second order anisotropy constants. The calculated val-
ues are K> =—0.16 meV, K,,=—1.06 meV, and K,; = —4.81 meV. From this fit the
easy axis turns out to be 0 = 38° and ¢ = 90°, which is rather close to the one obtained
from the FP-SD calculation, indicating that the FPA works rather well for this system.
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Fig. 5. Sketch of the atomic positions of a Cr trimer (full circles) on a Au(11 1) surface (shaded circles) used in the
calculations.

Furthermore, the hard axis is obtained at 0 = —52° and ¢ = 90°, i.e., by A0 = —90° away
of the easy axis. This is again in good agreement with experiment [38]. Finally,
Eyniag = 1.42 meV/Co-atom, once more in rather good agreement with the experimental
estimate of 2 meV/Co-atom. From Fig. 4 it is clear that there is a meta-stable state at
6 =90° and ¢ = 0° which is AE = 0.33 meV/Co-atom relative to the easy axis which im-
plies a blocking temperature of ~3.8 K.

Before closing this section it should be noted that this system has been the subject of at
least two other studies [40,41]. In these studies the full-potential linearized-augmented-
plane-wave (FP-LAPW) method, including spin—orbit coupling, was used in conjunction
with super-cell models of the Co-wire against the Pt-step-edge nanostructure. In the most
recent and most detailed study, Baud et al. obtain very similar results to ours, provided
they do not allow atomic relaxation (also neglected in our work). However, when relaxa-
tion is included the agreement worsens, this despite the fact that they are presumably
improving the quality of the overall model. This suggests that the underlying LSDA
may need improvement, perhaps by including orbital polarization effects.

3.2. Cr trimer on Au(111)

Antiferromagnetically coupled moments placed on a triangular lattice experience frus-
tration which leads to the development of complex non-collinear magnetic orderings.
Although the consequences of such frustration have been well-studied for localized spins
by using Ising and Heisenberg model Hamiltonians [42,43] and more recently using first
principles LSDA methods, it remains a subject of great interest [44-48]. Here we present
results of a study of a close packed Cr-trimer on the Au(111) surface that displays these
effects and illustrates the subtleties involved in uniquely determining the ground state.
Although, DFT based ab-initio methods fail to describe strong electron correlation and
hence Kondo effect that has been experimentally observed in this system® the Cr trimer

3 It is important to note that, when the Cr atoms form an equilateral triangle, a sharp Kondo resonance of
width Tk ~ 50 K (T being the Kondo temperature) [49] was found in scanning tunneling microscopy (STM)
signals. Consequently, at least at low temperatures, the system is subject of strong electron correlations that can
be studied, e.g., in terms of renormalization group methods [50].
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treated as an itinerant magnetic system provides an instructive case for first principles
spin-dynamics studies of frustrated systems.

To study this system we have again used the relativistic ab-initio spin-dynamics and the
GF-EC code to search for the ground state of a Cr trimer deposited on Au(l111), see
Fig. 5. For the positions of the Cr atoms and the underlying Au atoms we adopted the
sites of the host Au fcc lattice, i.e., we neglected possible relaxations of the geometry.
We started the simulations from arbitrary random directions of the Cr magnetic moments
specified by an azimuthal angle, ¥, between the surface normal (z axis) and the moments
and a polar angle, ¢, with respect to the x axis in the plane. As seen in Fig. 6 there are very
rapid changes in these angles during the first 20-30 time-steps. The main feature of this
initial part of the simulation is that the ¢ angles of the moments (Fig. 6, center panel) tend
to arrange themselves 120° apart, i.e., at least in the lateral plane the moments immediately
orient according to a 120° Néel state. This is obviously the consequence of the strong anti-
ferromagnetic coupling, J ~ 145 meV [50], between the Cr atoms. This ordering also serves
to reduce the constraining fields (Fig. 6, right panel), initially comparable in size with J, by
several orders of magnitudes. The evolution of the spin directions is then characterized by
much slower changes whereby the v} angles tend to nearly 90° (Fig. 6, left panel). Beyond
2000 timesteps the moments lie, to all practical purposes, in the surface plane. Reassur-
ingly, the slow changes seen here are accompanied by very small constraining fields clearly
converging to zero. This indicates that the procedure converges indeed to a ground state of
the system represented by the 120° Néel state.

While the relativistic theory we use allows us to determine the direction of the moments
with respect to the lattice, the total number of timesteps calculated (~2400) was still not
sufficient to achieve full convergence. In the ‘final’ state shown in Fig. 6 the three polar
angles take the values ~75°, ~195°, and ~315°, respectively, but still they change very
slowly towards the angles ~90°, ~210°, and ~330° which corresponds to the most sym-
metric, non-degenerate spin-configuration [51]. The cause of this extremely slow conver-
gence is the very small in-plane magnetic anisotropy (as compared to the exchange
interactions or even to the uniaxial magnetic anisotropy) which in turn results in very
small constraining fields to drive the dynamics of the moments. Clearly, such a situation
shows the practical limitations of first principles spin-dynamics methods without addi-
tional accelerating devices.

In order to justify that the ground state is the above mentioned most symmetric spin
arrangement we used an alternative method based on the MFT, Eq. (12), where we use
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Fig. 6. Evolution of azimuthal angles (left panel) and polar angles (center panel) of the moments, as well as the
magnitude of the constraining fields (right panel) from a first principles spin-dynamics simulation of a Cr trimer
on Au(111). Different line styles correspond to different Cr atoms.
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the potentials and fields from the end-state of our first principles spin-dynamics simulation
and studied the energy as a function of the spin configuration.

In the left panel of Fig. 7 the variation of the energy is plotted for the case when the o
angle of all the three moments is changed from 0 to 90°, while the angles ¢; = 90°,
@2 = 210°, and @3 = 330° are kept fixed. As expected from a simple Heisenberg model with
an AFM exchange interaction, the variation of the energy closely follows a cos®9 depen-
dence, and the state with 9 = 90° is by about 660 meV (=~ —9J/2) lower in energy than the
ferromagnetic state. Next we fixed the moments in plane with ¢ angles 120° apart and
rotated the moments around the z axis. The center panel of Fig. 7 clearly demonstrates
that the 0° and the respective time-reversed state are indeed the lowest energy configura-
tions. The magnitude of the energy change is, however, four orders of magnitude less than
in the previous case, indicating the large difference between the size of the exchange inter-
actions and the in-plane magnetic anisotropy energy. This, in turn, satisfactorily explains
why the spin-dynamics simulation converged so slowly towards the ground state.

Finally, we investigated a series of spin-configurations, different from the 120° Néel
state, where the direction of one moment was held at ¢; = 90°, while the remaining two
moments were rotated around the z axis; one clockwise, the other one anti-clockwise.
As a visualization aid, some of these configurations are depicted above the right panel
of Fig. 7. As can be inferred from this panel, all the configurations under consideration
are higher in energy than the Néel state. A local maximum and a global maximum can
indeed be found at a collinear antiferromagnetic (state 2) and the ferromagnetic state (state
4), respectively. Apparently, the non-collinear state labeled by 3 is only about 7 meV
higher in energy than the ground state. In fact, within a simple Heisenberg model, these
two states are degenerate. Since the in-plane anisotropy energy is about one order magni-
tude smaller than this energy difference (see the middle panel of Fig. 7), the origin of the
observed non-degeneracy has to be related mainly to four-spin interactions [50].

The small energy difference seen between two particular spin-states also raises the need
to test the accuracy of the MFT with respect to the effective potentials and fields used. As
an example we repeated the latter calculations with effective potentials and fields obtained
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Fig. 7. Variation of the energy for different spin-configurations of a Cr trimer on Au(111) as derived from
magnetic force theorem calculations based on (almost) converged effective potentials and fields of the first
principles spin-dynamics simulation. Left: tilting the moments from a ferromagnetic state normal to the surface to
an in-plane 120° Néel state; middle: an in-plane 120° Néel state rotated around the z axis; right: one moment
fixed, two moments symmetrically rotated around the z axis. For this case some representative configurations are
depicted above the panel and marked also in the figure at the corresponding angle of rotation. Also in this case,
the energy curve obtained by using the effective potentials and fields from a self-consistent calculation with
moments parallel to each other and normal to the surface is shown by dashed line (see text).
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from a self-consistent calculation by setting all the moments parallel to each other and
normal to the surface. The corresponding results are plotted by the dashed line in the bot-
tom panel of Fig. 7. Apparently, there are significant differences as compared to the pre-
vious case of using the (nearly) converged potentials and fields from the SD calculation. In
particular, the energy of spin-states 2 and 3 decreased in order by about 40 meV and
11 meV with respect to the Néel state. As a consequence, the energy minimum now corre-
sponds to state 3. Since the most prominent observation of our SD simulations was a clear
tendency towards Néel state* concluding state 3 is ground state must to be considered
erroneous. This strongly indicates that one has to be careful when applying the MFT, since
reliable results can only be expected by using effective potentials and fields corresponding
to the real ground state (see also Ref. [12]), which then requires that one knows ahead of
time what the ground state configuration is or has a way to find it.

3.3. Exchange mediated magnetic anisotropy (EMMA)

As we have seen above, magnetism in nanostructures can be significantly different from
that of bulk system. This notwithstanding, in the previous examples, the physics that
determines the final magnetic structure is also well-known in bulk materials; specifically
the interplay between exchange and anisotropy in one and magnetic frustration in the sec-
ond. Here, we discuss a situation where a novel physical effect manifests itself.

In previous investigations of the magnetic anisotropy of (110) nearest-neighbor (100)
next-nearest-neighbor Fe-chains embedded fcc Cu, Eisenbach et al. [8] reported anisotropy
energies that turned out to be competitive with the magnetostatic energy giving rise to dif-
ferent ground state orientations of the chain’s magnetization for the two chains; along and
perpendicular to the Fe-chain for (110)- and (100)-chains respectively. Although large,
the actual values of the anisotropy energies (5.5 and 9.1 pRy per Fe-atom for the (110)
and (100)-chains respectively) were not, however, too surprising, given the reduced,
one-dimensional, symmetry of the chains. However, subsequent calculations for a (111)
Fe-chain yielded an anomalously large MAE, 38 uRy, a value that is clearly out-of-line
with the results for the other two orientations and normal expectations. Indeed, this find-
ing is particularly surprising given that Fe-atoms in (110)- and (100)-chains are first and
second nearest-neighbors respectively, while, for the (11 1)-chain, adjacent Fe-atoms are
on opposite body diagonals of a cube and are only 6th nearest-neighbors. As a result
the Fe-atoms are rather isolated from one another. Upon noting that an isolated Fe-impu-
rity in Cu would see a cubic environment, intuitively, one may have expected a small
anisotropy; more typical of a cubic metal.

To test this Fisenbach et al. [15] performed a fully self-consistent calculation of the
magnetic anisotropy of a monatomic substitutional Fe-impurity in fcc copper. Specifically,
they consider a single Fe atom replacing a Cu-atom in a periodically repeated supercell of
108 sites. The lattice constant @ was taken to be that of pure Cu (6.83 Bohr) and possible
lattice relaxations due to the iron substitution were disregard. In determining the MAE,
advantage was taken of the fact that the Fe-site has a well developed and stable magnetic
moment which then polarizes surrounding Cu-sites and induces small moments on them.

4 In fact, we tried several random initial configurations and all tended towards the same Néel state under FP-SD
iteration.
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Accordingly, the direction of the Fe-moment was constrained to lie, first along the (100)
easy-direction and subsequently along the (111) hard-directions and in each case the
induced moments on the Cu-sites were allowed to relax without constraint. Once again
the MAE is unexpectedly large; 45.3 uRy per Fe atom. In fact, comparison with the
MAE for the (111)-chain, 38 uRy, confirms that (111) Fe-chain does indeed resemble a
series of isolated Fe-impurities, but now posses the question as to why the anisotropy
of the isolated impurity is so large.

Insight into this is provided by Fig. 8 where we show the orientations of the induced
moments for the easy and hard directions (left and right frames respectively) taken from
the work of Eisenbach et al. [15]. From these figures it can be seen that the induced mag-
netic moments on the second neighbor Cu-sites reverse their orientation between the easy
and hard directions giving rise to an exchange contribution to the magnetic anisotropy;
Eisenbach et al. referred to this novel effect as exchange mediated magnetic anisotropy
(EMMA).

Not only is EMMA a result of a subtle interplay between spin orbit coupling and the
formation of the induced moments, but is also one that likely would have been missed
using the MFT. Obviously, for the hard direction the induced moment orientations are
very different from what would be obtained by a rigid rotation of the moments of the easy
direction. Thus, the influence of self-consistently on the magnetic anisotropy is substantial
and can not be neglected. To illustrate this, we have calculated the MAE using the FPA
approximation and a configuration where the directions of all the induced moments are
rigidly rotated with the Fe moment. For this, we find a MAE of only 0.05 uRy per Fe-
atom, i.e. the order of magnitude that would be intuitively expected, and one that is com-
parable to the value we obtain for bulk bce Fe (0.06 uRy per Fe-atom). On the other hand,
a FPA calculation performed using the potentials we have found for the easy direction, but

(100)

Fig. 8. The induced magnetic moment directions (green) on the first and second nearest neighbour shells
surrounding the Fe impurity (red) for the easy 100 direction (left) and the hard 111 direction (right). The
magnitude of the moments are not shown. Notice the switch in the direction of the second shell Cu moments. (For
interpretation of the references in color in this figure legend, the reader is referred to the web version of this
article.)
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using the self-consistently calculated moment directions for the hard direction, we find the
much larger MAE of 10.3 pRy per Fe-atom. While this calculation will not properly take
into account the change in Fe d—Cu p hybridization, it clearly shows the importance of the
fully self-consistent treatment of magnetic moments and their direction.

4. Conclusions

Taken together the nanostructures that we have presented results for illustrate the need
to treat the underlying electronic interactions on a fully self-consistent basis in which the
very different energy scales appropriate to exchange coupling (~1 mRy) and magneto-
crystalline anisotropy (~1 pRy) are treated on an equal footing. In the case of Co-chains
adjacent to a Pt{111}-surface step-edge the interplay between exchange interactions and
anisotropy results in a non-intuitive angle of tilt of the Co-moments relative to the Pt step
edge but one that can be readily understood in terms of the underlying anisotropy con-
stants which, in this case, can be obtained using the frozen potential approximation
[12,14] once the ground state configuration is known. For the Cr-trimer, due to the in-
plane anisotropy being very small, two very different orientational states are energetically
competitive and fully self-consistent calculations are needed in order to identify the actual
ground state. Studies of Fe-chains embedded in Cu reveal an unexpectedly high MAE for
chains oriented along the 11 1-direction; compared with those oriented along the 110- and
100-directions. Further calculations for an isolated Fe-impurity trace this anomaly to an
exchange like contribution resulting from the interaction of the Fe-impurity with induced
moments on surrounding Cu-sites [15].

Acknowledgements

This research was supported in part by an appointment (M.E.) to the Postgraduate Re-
search Program at the Oak Ridge National Laboratory administered by the Oak Ridge
Institute for Science and Education. Research sponsored by DOE-OS, BES-DMSE and
OASCR-MICS under contract number DE-AC05-000R22725 with UT-Battelle LLC.
The calculations presented in this paper were performed at the Center for Computational
Sciences (CCS) at ORNL and at the National Energy Research Scientific Computing Cen-
ter (NERSC). Some of us (B.U., L.S., B.L.) acknowledge the financial support of the Hun-
garian National Scientific Research Foundation (OTKA T037856 and T046267). Partial
support has been provided by the HPC-Europa project, and the Center for Computational
Materials Science, Vienna, Austria (Contract No. GZ 45.531, GZ 98.366).

References

[1] Kiibler J. J Phys: Condens Matter 2003;15:V21.

[2] Aharoni A. Introduction to the theory of magnetism. Oxford: Oxford Science Publications; 2000.

[3] Brown WF. Micromagnetics. New York: Interscience; 1963.

[4] T. Gilbert, Armour research foundation, report no. 11, Illinois Institute of Technology; 1955.

[5] Gilbert TL. Phys Rev 1955;100:1243.

[6] Ujfalussy B, Lazarovits B, Szunyogh L, Stocks GM, Weinberger P. Phys Rev B 2004;70:100404(R).

[7] Lazarovits B, Ijjfalussy B, Szunyogh L, Stocks GM, Weinberger P. J Phys: Condens Matter 2004;16:S5833.
[8] Eisenbach M, Gyorfy BL, Stocks GM, Ujfalussy B. Phys Rev B 2002;65:144424.

[9] Anton J, Fricke B, Engel E. Phys Rev A 2004;69:012505.



G.M. Stocks et al. | Progress in Materials Science 52 (2007) 371-387 387

[10] Szunyogh L, Ijjfalussy B, Weinberger P. Phys Rev B 1995;51:9552.
[11] Lazarovits B, Szunyogh L, Weinberger P. Phys Rev B 2002;65:104441.
[12] Jansen HJ. Phys Rev B 1999;59:4699.

[13] Pettifor DG. Commun Phys 1976;1:141.

[14] Nicholson DMC, Brown RH. Phys Rev B 2003;67:16401.
[15] M. Eisenbach, G.M. Stocks, B.L. Gyorffy, unpublished.
[16] Hohenberg P, Kohn W. Phys Rev 1964;136 B:864.
[17] Kohn W, Sham LJ. Phys Rev 1965;140 A:133.

[18] von Barth U, Hedin L. J Phys C 1972;5:1629.

[19] Dreizler RM, Gross EKU. Density functional theory. Heidelberg: Springer Verlag; 1990.
[20] Rajagopal AK, Callaway J. Phys Rev B 1973;7:1912.
(21]
[22]
(23]
(24]
(25]
[26]
(27]
(28]
[29]

approach for studying metals above their Curie temperature and of the magnetic phase transition. For a
discussion see: Gyorffy BL et al. J Phys F — Metal Phys 1985;15:1337.
[30] Stocks GM, Ujfalussy B, Wang X, Nicholson DMC, Shelton WA, Wang Y, Canning A, Gyérffy BL. Philos
Mag B 1998;78:665.
[31] Ijjfalussy B, Wang X, Nicholson DMC, Shelton WA, Stocks GM, Wang Y, Gyorffy BL. J Appl Phys
1999:85:4824.
[32] Dederichs PH, Bliigel S, Zeller R, Akai H. Phys Rev Lett 1984;53:2512.
[33] Gyorfly B, Stott MJ. In: Fabian DJ, Watson LM, editors. Band structure spectroscopy of metals and
alloys. Academic; 1972.
Faulkner SJ, Stocks GM. Phys Rev B 1980;21:3222.
Korringa J. Physica 1947;13:392.
Kohn W, Rostoker N. Phys Rev 1954;94:1111.
Wang Yang, Stocks GM, Shelton WA, Nicholson DMC, Szotek Z, Temmerman WM. Phys Rev Lett
1995;75:2867.
[38] Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C. Nature
2002;416:301.
[39] Gambardella P. J Phys: Condens Matter 2003;15:S2533.
[40] Shick A, Méca F, Oppeneer PM. Phys Rev B 2004;69:212410.
[41] Baud S, Ramseyer Ch, Bihlmayer G, Bliigel S. Phys Rev B 2006;73:104427.
]
]

[34
[
[
[

[ e

35
36
37

[42] Kawamura H. J Phys: Condens Matter 1998;10:4707.

[43] Fazekas P. Lecture notes on electron correlation and magnetism. Series in modern condensed matter physics,
vol. 5. Singapore: World Scientific; 1999 and references therein.

[44] Kurz Ph, Bihlmayer G, Hirai K, Bligel S. Phys Rev Lett 2001;86:1106.

] Kohl C, Bertsch GF. Phys Rev B 1999;60:4205.

[46] Hobbs D, Kresse G, Hafner J. Phys Rev B 2000;62:11556.

[47] (a) Uzdin S, Uzdin V, Demangeat C. Comp Mater Sci 2000;17(441):441;
(b) Uzdin S, Uzdin V, Demangeat C. Surf Sci 2001;482-485:965.

]

] Jamnelea T, Madhavan V, Crommie MF. Phys Rev Lett 2001;87:256804.

50] Lazarovits B, Simon P, Zarand G, Szunyogh L. Phys Rev Lett 2005;95:077202.
]

@1 = 270°, ¢y =30°, and 3 = 150°.



	On calculating the magnetic state of nanostructures
	Introduction
	Computational methods for magnetic nanostructures
	Relativistic density functional theory
	First principles spin dynamics
	Multiple scattering theory Green rsquo s function methods

	Calculated magnetic structure of nano-structures
	Co-chains at a Pt[111]-surface step
	Cr trimer on Au(111)
	Exchange mediated magnetic anisotropy (EMMA)

	Conclusions
	Acknowledgements
	References


