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The full-charge-density screened Korringa-Kohn-Rostoker method is described and applied to calculate bulk
and surface energies of transition metals. It is demonstrated that due to a truncated angular momentum
expansion of the shape functions, the otherwise ultimate freedom of adding a constant to the potential in all
space leads, in particular close to the cell boundaries, to potentials of fairly different shapes. Thus a dependence
on this constant potential shift emerges for the calculated bulk total energies, equilibrium volumes, and bulk
moduli, as well as for the surface energies and the work functions. A reasonable choice for the constant shift
seems to set the bulk potential at the muffin-tin radius to zero. By making this choice the calculations give
results that are in very good agreement to those calculated by other full-charge-density or full-potential
methods.
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I. INTRODUCTION

In order to remove deficiencies of the atomic sphere ap-
proximation �ASA� one would like to describe the potentials
and the charge �and magnetization� densities in such a way
that nonspherical contributions in the interstitial region �and
to some extent even inside the nonoverlapping muffin tins�
are described correctly. Such a description is in principle
provided by a full-potential �FP� approach which has already
been implemented and used in various methods of electronic
structure calculation. The main drawback of this approach is
the disproportional computation time compared to the gain in
accuracy achieved by using a complete FP description. In
recent years a technique has come up which requires the
knowledge of just the spherically symmetric part of the po-
tential while still making use of the full nonspherically sym-
metric charge distribution; hence, it is called the full-charge-
density �FCD� method.1–4 It turned out that results obtained
from such a technique compare very well to those of FP
methods. The main reason for this is that it is more crucial to
calculate the total energy of the system by taking into ac-
count the anisotropic charge density �even from a spherical
potential� than to evaluate the self-consistent anisotropic po-
tential. Another point is that FP methods have to be used for
a certain �max in order to be practically applicable. Usually
�max=3 is used for the radial amplitudes, in certain cases
even �max=4, implying that for the potential and charge den-
sity an �max=6 or �max=8 has to be considered. Since in
order to account for the nonspherical shape of the Wigner-
Seitz cells multiple-scattering-based FP methods �Korringa-
Kohn-Rostoker �KKR�, linear muffin-tin orbital �LMTO��
make use of shape functions which are slowly converging in
angular momentum space, the convergence against �max
should carefully be checked in these types of calculations. It
should be mentioned that intra-atomic forces needed to per-
form geometry optimization can be calculated accurately
only by using a truly FP scheme—i.e., by taking into account

the nonspherical components of the potential.
In the following we shall discuss a full-charge-density

technique as implemented within the screened Korringa-
Kohn-Rostoker �SKKR� method5 �in the following referred
to as the FCD-SKKR method�. It relies on using only the
spherically symmetric part of the single-cell potential for
finding the scattering solutions of the Schrödinger �or Dirac�
equation, describing, however, the highly nonspherically
symmetric charge density in the interstitial region correctly.
The major gain is an accurate computation of total energies
while keeping the efficiency of the ASA. In what follows we
outline the main features of this method and present results
for the bulk and surface properties of transition metals.

In using the FCD-SKKR method we faced, however, the
following problem. In the case of an exact solution of the
Schrödinger and Poisson equations one has the freedom to
add a constant “shift” to the potential that leaves the total
energy of the system unchanged. As will be demonstrated,
due to truncations in angular momentum space used for the
shape functions the invariance of the results with respect to

FIG. 1. �00�r� /�4� �solid line� and the resulting full-crystal po-
tential �dashed line� for fcc Cu along a nearest-neighbor direction.
The potential is shifted to −0.8 Ry at the muffin-tin radii.
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an arbitrary shift of the potential is not satisfied. By the way,
such a dependence is also found when using the ASA. We
present systematic calculations as a function of the potential
shift and conclude that, at least for the case of simple lattices,
a reasonable choice for this potential shift can be made that
reproduces well the results obtained by other FCD or FP
methods.

II. SINGLE-SITE PROBLEM

The full-crystal potential denoted by V�r� can be ex-
panded around the position vector pointing to the center of
cell i �center of the corresponding Wigner-Seitz cell�, Ri, in
terms of complex spherical harmonics6 as

V�r� = �
L

ViL�ri�YL�r̂i�, ri = r − Ri, �1�

where L= �� ,m� denotes a composite angular momentum in-
dex. The potential V�r� can be written as a sum of individual
potentials confined to space-filling Wigner-Seitz cells,

V�r� = �
i

�i�r� , �2�

where the single-cell potential �i�r� can be expressed by us-
ing shape functions7–9 �i�r� that project to the respective
Wigner-Seitz polyhedron, �i,

�i�r� = �1 if r � �i,

0 anyway,
�3�

�i�r� = �
L

�iL�ri�YL�r̂i� , �4�

as

�i�r� = V�r��i�r� . �5�

The single-site potential �i�r� can now be expanded in terms
of complex spherical harmonics,

�i�r� = �
L

�iL�ri�YL�r̂i� , �6�

where the expansion coefficients are given by

�iL�ri� = �
L�L�

CL�L�
L ViL��ri��iL��ri� , �7�

with the Gaunt coefficients, CL�L�
L , defined by

CL�L�
L =� dr̂YL�r̂�*YL��r̂�YL��r̂� . �8�

In a full-potential method the single-site problem should
be solved for the anisotropic potential �i�r�; see Eq. �6�. The
anisotropy in this case not only arises from the aspherical
shape of the potential V�r�, but also from the shape function
�i�r�. To simplify the single-site problem we use only the
spherical component of this “shape-truncated” potential,
�i,00�ri�Y00�r̂i�=�i,00�ri� /�4�. Then the potential entering the
Schrödinger equation is given by

1
�4�

�i,00�ri� =
1

4�
�
L

ViL�ri��iL�ri� , �9�

which is the so-called “zeroth approximation” to a full po-
tential. Furthermore, if only the spherically symmetric com-
ponent of the crystal potential is taken into account, we have

�i
0�ri� =

1

4�
Vi,00�ri��i,00�ri� . �10�

Whether one takes the potential of Eq. �9� or that of Eq. �10�
turns out to be of minor importance for the quantities pre-
sented in Sec. VI.

III. CONSTANT POTENTIAL “SHIFT”

Within density functional theory10 one is in principle free
to add a constant value Vc to the full �crystal� potential V�r�,

Ṽ�r� = V�r� + Vc �11�

=�
i

��i�ri� + �i�ri�Vc� , �12�

since in a self-consistent �converged� full-potential calcula-
tion the results should be independent of such a constant.

FIG. 2. Full-crystal potential for Cu bulk in the nearest-neighbor
direction for different shift parameters. Solid line: VMT=−0.8 Ry.
Dashed line: VMT= +0.2 Ry. Dotted line: VMT=0.0 Ry. FIG. 3. Relative change of the total energy, �Etot=Etot−Etot

max, of
bulk Cu and Mo with respect to the potential at the muffin-tin
radius, VMT.
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However, in practical terms—i.e., by using truncated angular
momentum expansions—the final self-consistent potential as
well as the charge density and subsequently also the total
energy do depend on the choice of Vc. In Fig. 1 the crystal
potential of Cu as constructed from spherical single-cell po-
tentials, Eq. �9�, is shown along a nearest-neighbor direction.
Note that the boundaries of the adjacent cells correspond to
the muffin-tin radius rMT. For the case displayed in Fig. 1 we
have chosen a potential shift Vc such that the single-site po-
tential at rMT, VMT, equals −0.8 Ry. As can be seen, the
individual potentials are not exactly confined to the corre-
sponding Wigner-Seitz cells but have “tails” that go
smoothly to zero beyond rMT. If these overlapping potentials
are added up, a local minimum with a discontinuous deriva-
tive appears at the boundary of neighboring cells. Further-
more, the ultimate relationship between the full-crystal and
the single-cell potentials �see Eq. �5�� is not satisfied.

By varying the potential shift Vc, different shapes for the
full-crystal potential are obtained as is evident from Fig. 2.
From this figure it is also obvious that the condition in Eq.
�5� is best satisfied for the case of VMT=0. It should be noted
that by using spherical potentials this condition is exactly
satisfied only for nonoverlapping muffin-tin potentials—i.e.,
when �i�ri�=0 for ri�rMT.

The existence of this parameter has been noted previously
by other authors from a slightly different viewpoint.4,11 In
Refs. 4 and 11 some suggestions for the best choice of Vc as
summarized below are given:

Vc,�1� = 	V
�WS-MT
= �

rMT

rBS

r2dr�
L

VL�r��L�r�/�WS-MT,

�13�

Vc,�2� = 	V
�BS-MT
= �4��

rMT

rBS

r2drV00�r�/�BS-MT, �14�

Vc,�3� =
	�V
�WS-MT

	�
�WS-MT

= �
rMT

rBS

r2dr �
LL�L�

CL�L�
L

�L�r�VL��r��L��r�/�
rMT

rBS

r2dr

��
L

�L�r��L�r� , �15�

Vc,�4� =
	�V
�BS-MT

	�
�BS-MT

= �
rMT

rBS

r2dr�
L

VL�r��L�r�/�4��
rMT

rBS

r2dr�00�r� . �16�

As can be seen from these expressions the main idea is to
take the average of the potential or the potential weighted by
the charge density, ��r�, in the interstitial region. The inter-
stitial region may either be defined as the difference of the
volumes of the Wigner-Seitz cell and the muffin-tin sphere
��WS-MT� or, alternatively, of the bounding sphere and
muffin-tin sphere ��BS-MT�. Values for VMT using shift pa-
rameters calculated with these definitions range �for our test
cases� between approximately −0.1 and +0.1 Ry. Conse-
quently any quantity calculated with this or our choice of Vc

is very similar in value as can be seen from Figs. 5, 6, and 9
below. One advantage of either definition, Eqs. �13�–�16�, is
that it can easily be extended to the case of complex lattices.
A convenient extension of Vc based on the above equations
is, however, less straightforward in the case of surfaces or
interfaces as one optimal constant for all layers cannot be
found when the potentials vary from layer to layer.12

The present “muffin-tin discontinuity” problem not only
applies for spherically symmetric potentials �for ASA poten-
tials it was already noted13�, but due to the slowly converging
shape functions, this might also be the case for full potentials
that are not fully converged in L. It should be emphasized
that full-potential methods not making use of the shape func-
tion technique such as the full-potential linearized aug-

FIG. 4. Total energy of bulk Cu as a function of the lattice
constant a for different values of the potential at the muffin-tin
radius, VMT �in rydberg units�.

FIG. 5. Equilibrium lattice parameter a0 and bulk modulus B of
bulk Cu as a function of the potential at the muffin-tin radius, VMT.
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mented plane-wave �FLAPW� method,14,15 do not suffer
from the problem discussed in this section.

IV. EVALUATION OF THE CHARGE DENSITY

At a given �complex� energy z the Green’s function
G�z ;r ,r�� can be written in terms of spherical harmonics,

G�z;r,r�� = �
LL�

YL�r̂i�GLL�
ij �z;ri,rj��YL�

* �r̂ j�� . �17�

The radial part GLL�
ij �z ;ri ,rj�� can be expressed in terms of the

regular and irregular scattering solutions of the spherically
symmetric potential, Z�

i �z ;r� and J�
i �z ;r�, respectively,

GLL�
ij �z;ri,rj�� = Z�

i �z;ri�	LL�
ij �z�Z��

j �z;rj��

− J�
i �z;r��Z�

i �z;r
��ij�LL�, �18�

where the 	LL�
ij �z� denote the site angular momentum matrix

elements of the scattering path operator16 and r�

=max�ri ,ri�� and r
=min�ri ,ri��.
The charge density is then defined as

��r� = −
2

�
Im�

�

dzG�z;r,r� , �19�

where the energy integration, usually evaluated along a suit-
able contour in the upper complex semiplane, extends from
the bottom of the valence band to the Fermi level and in the
case of a nonrelativistic description a factor of 2 accounts for
the spin degeneracy. Inserting Eq. �17� into Eq. �19� allows
us to write the charge density confined to a cell labeled by i
as follows:

�i�ri� = −
2

�
Im�

LL�

YL�r̂i�Gi,LL��ri�YL�
* �r̂i� �20�

=−
1

�i�
LL�

�Gi,LL��ri�

− Gi,L�L�ri�*�YL�r̂i�YL�
* �r̂i� , �21�

with

Gi,LL��ri� = �
�

dzGLL�
ii �z;ri,ri� . �22�

By using the identity

YL�r̂�YL�
* �r̂� = �

L�

CLL�
L� YL�

* �r̂� , �23�

the charge density can be expanded as

�i�ri� = �
L

�i,L�ri�YL
*�r̂i� , �24�

with partial radial densities �i,L�ri� being defined as

�i,L�ri� = −
1

�i �
L�L�

CLL�
L� �Gi,L�L��ri� − Gi,L�L��ri�*� . �25�

V. CALCULATION OF THE TOTAL ENERGY

A precise calculation of the total energy using first-
principles electronic structure methods is crucial to obtain
meaningful results for most bulk and surface properties. It is
exactly the main advantage of the full-charge-density ap-
proximation to perform this step at the accuracy of full-
potential methods. In this section we briefly outline the FCD
scheme to calculate total energies for non-spin-polarized sys-
tems, an extension to the spin-polarized case being quite ob-
vious.

Within density functional theory10 the total energy Etot���
is defined by the sum of the kinetic energy T���, the electro-
static energy U���, and the exchange-correlation energy
Exc���,

FIG. 6. Surface energies � for �100� and �111� surfaces of Cu as
calculated by using the FCD method and the ASA as a function of
the potential at the muffin-tin radius, VMT.

FIG. 7. Anisotropy ratio ��100� /��111� of Cu and Mo as a
function of the potential at the muffin-tin radius, VMT. The ideal
value of 4 /3 is indicated by the solid horizontal line.
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Etot��� = T��� + U��� + Exc��� . �26�

By using the Kohn-Sham equations the kinetic energy can
be expressed as the sum of single-particle energies, contain-
ing core and valence band energy contributions Ec and Eb,
respectively, and a “potential energy” Epot,

T��� = Ec + Eb + Epot. �27�

It should be noted that when calculating Epot the same poten-
tial as the one that appears in the Kohn-Sham equations has
to be used: namely the one defined in Eq. �10�,

Epot = − �
i
� dr��r�V�r��i�r� �28�

=− �
i
�

0

ri,BS

ri
2dri�i,00�ri�Vi,00�ri��i,00�ri� ,

�29�

where ri,BS denotes the radius of the bounding sphere of the
corresponding Wigner-Seitz polyhedron. Especially, this part
of the kinetic energy has to be computed very accurately.

Following Weinert et al.18 we calculate the electrostatic
energy as

U��� =
1

2�
i
�

�i

dri�i�ri��Vi
c�ri� −

2Zi

�ri�
 −

1

2
ZiVi

c,Inter�0� ,

�30�

where Zi denotes the nuclear charge in cell i at ri=0, while
the Coulomb potential Vi

c�ri� is the sum of contributions
from charge densities inside and outside the cell, Vi

c,intra�ri�
and Vi

c,inter�ri�, respectively,

Vi
c�ri� = Vi

c,intra�ri� + Vi
c,inter�ri� , �31�

both of which have to be calculated up to an order of 2�max
with respect to the expansion in Eq. �1�. Note that, since in
Eq. �28� only the �=0 term of the Coulomb potential is used,
within a full-charge-density scheme, Eqs. �28� and �30� can-
not be combined in order to cancel the Coulomb singularities

as suggested in Ref. 18. A particularly important contribution
to the intercell potential arises from so-called near-field cor-
rections �NFC’s� which can efficiently be calculated by the
so-called removed sphere method of Ref. 19 or the method
discussed in Ref. 16. To obtain the intercell potential for bulk
systems Ewald’s method20 is applied, while for surfaces and
interfaces a method similar to that discussed by Kambe21 is
used.16 In a recent publication17 we have studied the conver-
gence properties not only of the electrostatic energy but also
of the electrostatic potential. For special test cases analytic
expressions have been evaluated and for several �max com-
pared to the exact solution.

Finally, within the local density approximation the
exchange-correlation energy

Exc��� =� dr��r�xc���r�� �32�

=�
i
�

0

ri,BS

ri
2dri �

LL�L�

CL�L�
L

�i,L�ri�i,L�
xc �ri��i,L��ri� , �33�

i,L
xc �ri� =� dr̂ixc��i�ri��YL�r̂i�*, �34�

can be calculated by means of a direct Gaussian quadrature
as described in Ref. 16.

VI. RESULTS

We first applied the FCD method described in Secs. II–V
to calculate total energies and related properties for the bulk
and the surface of Cu and Mo, both of them exhibiting fcc
crystal structure. The core states were treated relativistically,
while for the valence band we used the so-called scalar-
relativistic approach.16 For the exchange-correlation terms
the functional of Ceperley and Alder22 in the parametrization
of Perdew and Zunger23 was employed. In order to perform
the necessary Brillouin zone integrals 45 k points have been
used in the irreducible part of the two-dimensional Brillouin
zone for the fcc�100� and 278 k points for the fcc�111� face.

FIG. 8. Work functions for Cu�100� and Cu�111� as calculated
by using the FCD method and the ASA as a function of the potential
at the muffin-tin radius, VMT.

FIG. 9. Work functions for �100� and �111� surfaces of Cu and
Mo as a function of the potential at the muffin-tin radius, VMT.
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In all cases 16 energy points have been used on a complex
semicircular contour such that the density of points is in-
creased as the Fermi energy is approached. For the bulk sys-
tems we determined the equilibrium lattice constants; for the
surface calculations, however, we used experimental lattice
constants for all cases under consideration. The angular mo-
mentum quantum number for the scattering solutions was
�max=3; hence, in the calculation of the total energy the po-
tential and charge density were expanded up to �max=6. To
calculate the surface energy �, we evaluated the difference
between the total energy per unit cell of the self-consistently
treated surface region of Na atomic layers and Nvac vacuum
layers and Na times the total energy/unit cell in the bulk:

� = Etot
surf�Na + Nvac� − NaEtot

bulk. �35�

We carefully checked the convergence of the results with
respect to the number of self-consistently treated surface and
vacuum layers; see Ref. 5. It was found that Na=10 and
Nvac=2 completely serve the purpose and hence have been
used for all systems under investigation.

In particular, we focused on the dependence of the results
with respect to the potential shift as discussed in Sec. III and
as parametrized by the value of the potential at the muffin-tin
radius, VMT. For the �simple lattice� bulk case it is trivial to
impose this constraint since each cell potential is identical.
For the surface calculations we used this potential shift as a
bulk boundary condition for the Poisson equation to be
solved for the intercell Coulomb potential; see Ref. 16. The
surface potentials were then self-consistently adjusted to the
specific potential shift.

A. Bulk properties

For fixed lattice parameters aCu=6.831 a .u. and aMo
=7.656 a .u., the dependence of the total energy on VMT is
shown in Fig. 3. In addition, the corresponding results from
an ASA calculation are also displayed in the case of Cu. In
all cases, the variation of Etot is within some tenths of ryd-
bergs; the displayed curves show a maximum for quite dif-
ferent values of VMT. A physical relevance can, however,
hardly be associated with this behavior.

In Fig. 4 the total energy of bulk Cu is displayed for
different values of VMT as a function of the fcc lattice con-
stant. According to Fig. 3 the total energies differ consider-
ably with respect to VMT; however, each of the curves exhib-
its a minimum at approximately the same lattice constant,
a0�VMT� �see Fig. 5�. As can be inferred from this figure, in
the range of VMT under consideration the calculated equilib-
rium lattice constant changes less than 0.03 a .u.—i.e., is of a
relative accuracy of 0.5%. Choosing an optimal value for
VMT—namely, VMT=0 �see Sec. III�—the local density-
approximation �LDA� equilibrium lattice constant for Cu can
be deduced to be a0=6.70±0.02 a .u. The calculated bulk
modulus B is also plotted in Fig. 5 and, as can be seen,
shows a weak dependence with respect to VMT. Interestingly,
in the vicinity of VMT=0 an almost stationary behavior of
B�VMT� can be seen. Therefore, we deduce a LDA value of
B=1.65±0.01 Mbar for Cu.

Quite surprisingly, our calculated lattice parameter and
bulk modulus for Cu compare better to the experimental val-
ues of 6.84 a .u. and 1.37 Mbar than those calculated in
terms of a FP-KKR-LDA or a FLAPW-LDA method,
6.63 a .u and 1.88 �1.90� Mbar,24 respectively. It should be
noted that by using the generalized gradient approximation
�GGA� for the exchange-correlation functional the FP-KKR
method produced an almost perfect agreement with
experiment.24

B. Surface properties

Taking the experimental lattice constants and neglecting
surface relaxations we first performed calculations for
Cu�100� and Cu�111� surfaces. In Fig. 6 the corresponding
surface energies � as obtained from the present FCD method
and by using the ASA are shown as a function of VMT. As
can be inferred, the calculated surface energies are more sen-
sitive to VMT than the bulk equilibrium lattice constants or
bulk moduli, since they vary about 10% in magnitude for
−0.5 Ry
VMT
0.5 Ry. The FCD surface energies at VMT
=0 of 0.90 eV for Cu�100� and 0.69 eV for Cu�111�, how-
ever, compare well to those calculated by the FP-KKR,
0.87 eV and 0.67 eV,25 the FLAPW, 0.81 eV and
0.62 eV,25or the FCD-LMTO method, 0.91 eV and
0.71 eV,26 respectively.

In Ref. 25 a “broken-bond rule” for the surface of noble
metals has been proposed. According to this rule the aniso-
tropy ratio, defined as ��100� /��111�, is close to the ideal
value of 4/3 as follows from the number of nearest neighbors
of atoms in the top surface layers. In Fig. 7 this anisotropy
ratio is plotted for Cu and Mo as a function of VMT. For Cu
a weak dependence of this quantity on VMT is observed, and
the value of 1.31 for VMT�0 agrees nicely with other values
reported in the literature.25,26 For Mo the anisotropy ratio
depends more strongly on VMT ranging from 1.34 at VMT=
−0.5 Ry to 1.57 at VMT=0.5 Ry. It should be noted that this
nearest-neighbor broken-bond rule is less applicable in the
case of Mo because of the larger spatial extent of the open-
shell 4d orbitals.

It is worthwhile to consider the calculated work functions
that, as can be seen from Fig. 8 in the case of Cu, are sig-

FIG. 10. Angular momentum convergence of the work function
of fcc Cu�100� as calculated using the FCD scheme using VMT=0.
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nificantly reduced by the FCD scheme as compared to the
ASA, a fact that was already noticed about 10 years ago,
when introducing the FCD method in Ref. 1. In particular,
for Mo a variation of about 10% with respect to VMT of the
calculated work function can be established from Fig. 9. In
addition Fig. 10 illustrates the convergence of the work func-
tion in the case of Cu�100� as a function of �max used in the
solution of the radial equations.

Finally, in Table I we summarized the surface energies
and the work functions for some transition metals obtained
by using the presently applied FCD-SKKR method. For all
these calculations the bulk potentials have been shifted to
zero at the muffin-tin radius. A comparison with other FP and
FCD values from the literature, also listed in Table I, indi-
cates that the method introduced and applied in this paper is
capable of yielding results with an accuracy of today’s com-
putational standards set by FP ab initio approaches.

VII. CONCLUSIONS

A full-charge-density version of the SKKR method has
been presented. It relies on making use of only a spherically
symmetric potential while still keeping all components in the
expansion of the charge density. The major improvement
over the ASA is the much more accurate evaluation of the
total energy and the exact solution of Poisson’s equation.

It turns out that for both the ASA and FCD methods a
dependence on a numerical parameter—the potential
shift—is present. For bulk properties such as the equilibrium
lattice constant and the bulk modulus this dependence is
found to be of minor importance, while for the surface ener-
gies and work functions a much larger sensitivity was found.

Based on experiences made so far it is hard to answer the
question whether for FCD calculations there is a certain

value of the potential shift which for any physical or numeri-
cal reason has to be preferred over others. Figure 2 suggests
that the best choice one can make in a �simple lattice� bulk
calculation is to shift the potential to zero at the muffin-tin
radius, as there the difference between the full-crystal poten-
tial and the individual single-site potentials is minimized.
However, even for a bulk system with sublattices this choice
can be made at best in terms of an average over nonequiva-
lent potentials. Furthermore, in the case of surfaces the �layer
resolved� potentials are shifted upwards until they reach the
vacuum potential level. Thus probably a different choice for
the potential shift can turn out to be optimal. Still, it seems
that it is more favorable to shift the potential rather to posi-
tive values at and beyond the muffin-tin radius not only for
this particular reason, but also because the energy-dependent
KKR structure constants show better convergence properties
in this regime.

It has to be emphasized that the main reasons to use the
FCD-SKKR method are that �1� truly semi-infinite systems
can be studied, �2� an implementation of fully relativistic
spin-polarized descriptions16 are rather straightforward, and
�3� even a Green’s function corresponding to a full potential
for evaluating physical properties can be obtained. In par-
ticular by avoiding a film geometry mandatory—e.g., in the
FLAPW method in the case of systems with surfaces or
interfaces—a more realistic description of the substrate can
be achieved. Clearly enough also the possibility of using an
approach based on the Dirac equation rather than applying a
perturbative treatment of spin-orbit coupling offers advan-
tages in dealing with magnetic anisotropies. Therefore, the
present paper has to be viewed also with this respect, rather
than describing only well-known physical properties such as
equilibrium lattice constants, bulk moduli, or surface ener-
gies. This is necessary only once in order to gauge the nu-
merical reliability of results to be obtained.

TABLE I. Calculated surface energies, anisotropy ratios, and work functions for some transition metals.
All calculations are for fcc lattices using the experimental lattice constants. In all cases the bulk potential has
been shifted to zero at the muffin-tin radius.

� �eV/atom� ��100� /��111� Work function �eV�

Cu �100� 0.899 0.87,a 0.906,b 0.81c 1.309 4.826

�111� 0.686 0.67,a 0.707,b 0.62c 4.951

Mo �100� 1.794 1.413 4.748

�111� 1.270 1.36d 4.699 4.98,e 4.65d

Pd �100� 1.102 1.049,a 1.152b 1.283 5.504

�111� 0.859 0.822,a 0.824b 5.419 5.53,e 5.33d

Ag �100� 0.757 0.73,a 0.653,b 0.65c 1.327 4.564

�111� 0.571 0.57,a 0.583,b 0.51c 4.575 4.67,e 4.56d

Pt �100� 1.371 1.272,a 1.378b 1.368 6.401

�111� 1.002 0.957,a 1.004b 6.137

Au �100� 0.859 0.84,a 0.895,b 0.68c 1.325 5.637

�111� 0.648 0.62,a 0.611,b 0.50c 5.526

aFP-KKR calculations, Ref. 25.
bFCD-LMTO calculations, Ref. 26.
cFLAPW calculations, Ref. 25.
dFCD-LMTO calculations, Ref. 1.
eFP-LMTO calculations, Ref. 27.
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