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Abstract
We present calculations for the electronic and magnetic properties of surface
states confined by a circular quantum corral built of magnetic adatoms (Fe)
on a Cu(111) surface. We show the oscillations of charge and magnetization
densities within the corral and the possibility of the appearance of spin-
polarized states. In order to classify the peaks in the calculated density of
states with orbital quantum numbers we analysed the problem in terms of a
simple quantum mechanical circular well model. This model is also used to
estimate the behaviour of the magnetization and energy with respect to the
radius of the circular corral. The first-principles calculations are performed
fully relativistically using the embedding technique within the Korringa–Kohn–
Rostoker method.

1. Introduction

Over the past two decades, electrons in two-dimensional (2D) surface states on closed packed
surfaces of noble metals have been at the centre of much experimental and theoretical
attention [1, 2]. For a pristine surface the energies of such states lie in the ‘gap’ around
the L point of the bulk Brillouin zone and the wavefunctions are confined to the surface. The
corresponding dispersion relations have been determined by angle resolved photoemission
spectroscopy and they have been found to be 2D free-electron-like parabolas [1, 3]. Moreover,
they are partially filled and hence the electrons, which fill them, form a 2D metal. The most
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interesting feature of this remarkable state of matter is its response to perturbations such as
those caused by placing transition metal atoms on the surface. As might be expected, such
response displays long range, ‘Friedel-like’, charge oscillations governed by the 2D Fermi
‘surface’. Indeed, one of the iconal experiments in nanotechnology has been the fabrication
of a circular arrangement of 48 Fe atoms on a Cu(111) surface and the direct observation, by
scanning tunnelling microscopy (STM), of such oscillations within the circle [4–7]. In this
paper we wish to discuss the (as yet unexplored) magnetic properties of such quantum corrals.

Until recently, STM studies of atoms on well defined Cu, Ag and Au(111) surfaces
imaged only the charge distribution of the surface electrons [4–7]. But now, remarkable
developments in spin-polarized STM (SPSTM) [8] make the observing of spatial variations in
the magnetic density a distinct possibility and, therefore, an attractive new area of research.
Evidently, this opens up the possibility of building magnetic nanostructures for both scientific
and technological purposes. For instance, while the observation of a single Fe or Co atom on a
Cu surface may be beyond the spatial resolution of the first generation of SPSTMs, the magnetic
state of a single quantum corral of 50–100 atoms can be readily identified [9]. The motivation
behind the theoretical work reported here is the need to identify the principal conceptual issues
which govern the physics, in general, and the magnetism, in particular, of such structures.

Individual impurities and clusters of impurities embedded in the above surface–2D-host-
metals have been studied for Friedel oscillations around them [10, 11], for RKKY interactions
between them [12–14], and for a rich variety of Kondo-like phenomena they are host to [7, 15–
17]. Clearly, all these effects can occur inside a corral with the interesting aspect that now the
electronic structure of the host can be controlled by the geometry of the corral. It is perhaps
useful to note that these circumstances are rather analogous to those of quantum wells in
semiconductor physics [18].

In the semiclassical limit the states of the quantum corrals can be associated with classical
orbits of particles bouncing off confining walls. Depending on the shape of the corral the
classical motions may be integrable or chaotic. Thus, quantum corrals can serve as examples
of quantum chaos at work [19, 20].

Clearly, to think about using different impurities, different substrates and/or different
confining geometries one needs simple but reliable models as guides. In the unfamiliar physical
circumstances at hand, an efficient way to such models is to perform large scale first-principles
calculations including all conceivably relevant effects and interpret the results in terms of simple
models. This is the approach that we take in the present paper. Our first-principles calculations
are a spin-polarized and relativistic generalization of the pioneering work of Hörmandinger
and Pendry [2] and Crampin and collaborators [21, 22]. We interpret our results in terms of
a flat bottom ‘circular potential well’, non-relativistic, model. To illustrate the power of this
approach, once it has been established that the model faithfully reproduces the main features
of the results from first-principles calculations, properties which would be too difficult to
calculate from first principles are estimated.

2. Method of calculations

Within multiple scattering theory of the electronic structure the information about each atom
(scattering centre) is coded in the scattering path operator (SPO) matrix, τ (E) = {τ nm(E)} =
{τ nm

QQ′(E)}, with Q and Q′ being angular momentum indices referring to atomic sites whose
position vectors are labelled by n and m, respectively, and E being the energy. For scatterers
described by non-overlapping (muffin-tin) potential wells, the SPO matrix,

τ (E) = [t−1(E) − G(E)]−1, (1)
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Cu surface

Fe
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Figure 1. Cross section of the surface showing the position of sites in the ‘vacuum layers’ (open
circles), the Cu surface layers (grey circles) and an Fe impurity in the first ‘vacuum layer’ (black
circle). Inset: the positions of the Fe atoms (black dots) and the empty spheres (open circles) along
a diameter for a quadrant of the investigated corral.

describes the full hierarchy of scattering events between any two particular sites, n and m.
In equation (1), t(E) = {tn(E) δnm} = {tn

QQ′(E) δnm} and G(E) = {Gnm(E)} = {Gnm
QQ′(E)}

denote the single-site t-matrices on the energy shell and the real-space structure constants,
respectively6.

We begin our investigations by two fully self-consistent calculations: one for a semi-
infinite Cu with a (111) surface and another for a single Fe adatom on this semi-infinite host.
In the first case, above the Cu layers there are two layers of sites occupied by atomic cells
without nuclear charge which we call empty sites, but we note that they do contain electronic
charge and their electrostatic potential is calculated fully self-consistently. In the second
type of self-consistent calculation, one empty site above the topmost Cu layer is occupied
by an Fe atom. We then construct ‘crystal potentials’ for further single pass, one-electron
calculations according to the following recipe: within the corresponding atomic spheres, all
Fe sites are described by the potential as obtained from the single impurity calculation and all
other sites are described by the appropriate potentials from the pristine surface calculation. The
configurations of interest are those in which some empty sites in the layer above the topmost Cu
layer are replaced by Fe atoms, forming thus the wall of a corral as shown in figure 1. Clearly,
by this construction, at the level of the ‘crystal potential’, we are neglecting the influence of
neighbouring Fe atoms on each other. Fortunately, this ‘frozen potential’ approximation was
shown to be reasonable in the case of Fe adatoms on Ag(100) [24].

For a given ‘crystal potential’ constructed according to the above recipe we solve the
multiple scattering problem by means of the embedding method [24]. In short, we embed a
cluster of sites labelled by C, consisting of the corral Fe atoms and selected empty sites inside
and outside the corral, in the unperturbed semi-infinite Cu host. A particular cluster C can
then be treated as a perturbation of the host. In practice, we first calculate the SPO matrix of
the 2D translational invariant layered host, τ h(k‖, E) = {τ pq

h (k‖, E)}, within the framework
of the SKKR method [25], where p and q denote layers and the k‖ are vectors in the surface

6 For more details, especially how to calculate tn
QQ′ (E) within a fully relativistic spin-polarized scheme, see e.g. [23].
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Brillouin zone (SBZ). The real-space SPO matrix is then given by

τmn
h (E) = 1

�SBZ

∫
SBZ

e−i(Ti −T j )k‖τ
pq
h (k‖, E) d2k‖, (2)

where the atomic position vectors are decomposed as Rm = Ti + cp and Rn = T j + cq with
Ti and T j being 2D lattice vectors, cp and cq the so-called layer-generating vectors, and �SBZ

the unit area of the surface Brillouin zone.
Replacing the t-matrices of the unperturbed host, th(E), with those of the cluster-atoms,

tC(E), leads to the following Dyson-like equation,

τ C(E) = τ h(E)
[
I − (t−1

h (E) − t−1
C (E))τ h(E)

]−1
, (3)

where τ C(E) is the SPO matrix corresponding to all sites in cluster C, from which in turn local
quantities, such as the densities of states (DOS), magnetic densities of states (MDOS), spin
and orbital moments, as well as the total energy can be calculated. Note that equation (3) takes
into account all scattering events both inside and outside the cluster.

2.1. Geometries of interest

The 48 Fe atoms forming the corral were positioned on the surface along a circle with a diameter
of 28a, where a is the 2D lattice constant of the fcc(111) Cu surface. The investigated geometry
is shown in the inset of figure 1. This is similar to a popular experimental one [5]. The corral
sites refer to the positions of an ideal fcc parent lattice with the experimental Cu lattice constant;
therefore, there is some deviation from the exact circular shape. The positions of the adatoms
were chosen such that the spacing between them is approximately constant. Within the interior
of the corral the physical properties (DOS, MDOS) of 55 empty spheres along a diameter were
calculated. Note that the rotational symmetry of the considered structure is not continuous.
Nevertheless, to reduce the computational effort, we followed Crampin et al [21] and assumed
that the properties on an arbitrary position within the corral depend only on the distance from
the centre of the circle.

2.2. Computational details

Self-consistent, fully relativistic calculations for the pristine Cu(111) surface as well as for
the Fe adatom on Cu(111) have been performed in the framework of the local spin–density
approximation (LSDA) as parameterized by Vosko et al [26]. The potentials were treated
within the atomic sphere approximation (ASA). For the calculation of the t-matrices and for
the multipole expansion of the charge densities, necessary to evaluate the Madelung potentials,
a cut-off of �max = 2 was used. The energy integrations were performed by sampling 16
points on a semicircular contour in the complex energy plane according to an asymmetric
Gaussian quadrature. Both for the self-consistent calculation of the Cu(111) surface and for
the evaluation of equation (2) we used 70 k‖-points in the irreducible wedge of the SBZ
(ISBZ). The DOS and MDOS were calculated at an energy mesh parallel to the real axis with
an imaginary part of 0.5 mRyd. In here, in order to cover the surface-state properties properly,
a sampling of about 3300 k‖-points within the ISBZ was necessary.

3. Results of first-principles calculations

3.1. Clean Cu(111) surface

In order to determine the dispersion relation and the effective mass of the surface electrons
the Bloch-spectral function (BSF) (see footnote 6) was calculated between �̄ and K̄ in the
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Figure 2. Dots: Bloch spectral function maxima near to the �̄ point of the SBZ. Line: parabola
fitted to the calculated maxima. It should be noted that only the first third of the SBZ is displayed
(K̄ ≈ 0.65 au−1). The estimated effective mass is m∗ = 0.366 me.

fcc(111) SBZ close to the Fermi energy by using the SKKR method, in which the properties
of the semi-infinite substrate are calculated by the surface Green function method [25]. The
proper treatment of the host is necessary to account for the interaction between the bulk and
surface states in an ab initio way. The maxima of the BSF can be identified as the surface state
band. In agreement with the experiments, the calculated dispersion relation is free-electron-
like and can be estimated with a parabola as indicated in figure 2. The bottom of the calculated
surface states band, EB, is 0.3 eV below the Fermi energy, which is a bit smaller than the
experimental value (0.39 eV) [1, 3]. By using a quadratic approximation for the dispersion
relation,

E(k‖) = EB +
h̄2k2

‖
2m∗ + · · · , (4)

we obtained an effective mass with m∗ = 0.366 me, which is in good agreement with the
experiment (m∗/me ≈ 0.41) [3].

3.2. Fe impurity on a Cu(111) surface

In these calculations the magnetic moment of the Fe impurity on the surface turned out to
be 3.27 µB and, due to the magneto-crystalline anisotropy (MCA) induced by spin–orbit
coupling [27], its preferred orientation was perpendicular to the surface. The MCA energy,
defined as the difference of the LSDA total energy between an in-plane and a normal-to-plane
orientation of the magnetization, yielded 4.3 meV. Both of these results are consistent with
those already reported in the literature [28]. We note that the orientation of the magnetic
moments in the quantum corral built up from Fe atoms is, in principle, also affected by the
so-called shape anisotropy, arising from the magnetostatic dipole–dipole energy [26]. This,
purely classical, interaction would direct the orientations of the magnetic moments into the
plane. According to our estimates, the magnetostatic dipole–dipole energy is, however, lower
than the above MCA energy by at least one order of magnitude. Therefore, in our further
calculations the Fe adatoms were taken to be spin-polarized in the z direction, i.e., normal to
the surface. Moreover, the exchange (RKKY) interaction between two Fe atoms can be both
ferro- and antiferromagnetic depending on the distance between them. This implies that by
varying the geometry of the corral various ground-state magnetic configurations can occur.



S1042 B Lazarovits et al

Because of experimental interest, in this work we have studied the case of a ferromagnetic
corral.

3.3. DOS of confined surface states

In order to study the properties of surface states confined by the quantum corral first we
investigated the local density of states (LDOS),

ni (E) = ni,↑(E) + ni,↓(E) = − 1

π

∑
σ=↑,↓

Im Tr Gii
σσ (E), (5)

and the local magnetic density of states (LMDOS),

mi (E) = ni,↑(E) − ni,↓(E), (6)

of an empty sphere at various lattice points (sites) labelled by i within the corral, where Gii
σσ (E)

is the site- and spin-diagonal part of the resolvent in (�, m, σ ) representation. Although in our
relativistic theory the spin is not a good quantum number, and hence Gii

σσ ′(E) is not diagonal,
we can interpret the diagonal elements in a similar manner as in a non-relativistic theory,
because within an empty sphere the spin–orbit coupling is bound to be small. In figure 3 we
show the LDOS and LMDOS at the centre of the corral.

The striking peaky structure of the DOS in figure 3 is in sharp contrast to the constant
2D density of states expected from the dispersion relation in equation (4). However, the
peaks are rather similar to those found by Crampin et al [21], who interpreted them as ‘bound
states’ within the corral. We confirm this interpretation using a simple circular well model in
section 3.5. Nevertheless, it is somewhat surprising that the coherent scattering from a circular
arrangement of Fe impurities is almost equivalent to that of an infinite confining potential wall.
Evidently, such confined states are analogous to the quantum well states in semiconductor
physics [18]. In contrast to Crampin et al [21], we have also calculated the spin-resolved
densities of states (LMDOS) which are also presented in figure 3. Clearly, the LMDOS is
more structured than the LDOS, suggesting that the quantum well states are exchange split.
To lend further credence to such an interpretation we calculated the sum of the LDOS and
LMDOS,

n(E) =
∑

i

ni(E), m(E) =
∑

i

mi(E), (7)

along a diameter of the corral. Note that near to the Fe atoms the LDOS increases rapidly due
to the direct charge transfer; therefore, in the above sums the contributions from the empty
spheres adjacent to the Fe atoms are neglected. These summed densities of states are then
plotted in figure 4. Although the peaks seen in figure 3 are still present, figure 4 suggests a
more complex spectrum. In order to shed light on the nature of the extra states, the spatial
resolution of the DOS at selected energies corresponding to the most prominent peaks are
shown in figure 5 and, for the fifth peak in figure 3 (E − EF � 0.01 Ryd), the LDOS for the
whole area within the corral is depicted in figure 6. Note that the oscillations continue outside
the corral. This implies that the states we have been studying are really resonances rather than
bound states. Reassuringly, the obtained pattern for the confined surface electrons agrees well
with the experimental one [4–6]. Beyond agreeing with experiments, the oscillations with
distance from the centre in figure 5 strongly support the interpretation that the selected peak
positions are those of ‘bound’ states confined by the corral.

Evidently, even for the present very simple geometry the full results are too complicated
to allow an unambiguous identification of each structure with specific physical processes. To
maximize the information gained from our first-principles calculations we shall now introduce
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Figure 3. Calculated local density of states (LDOS) and
local magnetic density of states (LMDOS) at the centre of
a quantum corral. The dotted lines indicate the maxima
in the LDOS. The vertical solid curves are the energy
eigenvalues, E0i , predicted by the circular quantum well
model (see section 3.4).

Figure 4. Calculated density of states (DOS) and
magnetic density of states (MDOS) summed for a
diameter of the corral. The vertical lines indicate the
energy eigenvalues corresponding to different values of
the quantum number n predicted by the circular quantum
well model (see section 3.4).

a simple model whose parameters can be chosen such that it reproduces most of the above
results quantitatively.

3.4. The non-relativistic circular quantum well model

The circular quantum well model is defined by a potential of the form

V (r) =
{

0 if r < r

+∞ if r � R.
(8)

It should be recalled that the radial solutions of the corresponding Schrödinger equation are
Bessel function of the first kind Jn(pr), where

p =
√

2m∗

h̄2 E . (9)

The energy eigenvalues arise from the boundary condition that the radial solutions vanish at
the boundary:

Eni = x2
ni

R2

h̄2

2m∗ , (10)

where xni refers to the i th zero of the Bessel function Jn. In order to investigate the
magnetic properties of this model, one can generalize it by adding a spin-dependent part,
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Figure 5. Spatial distribution of the DOS along a diameter of the quantum corral at energies
corresponding to selected peaks in figure 4. The line shapes in parts (a) and (b) can be identified as
n = 0 and as n 	= 0 quantum states of a circular quantum well model (see section 3.4), respectively.

Figure 6. Spatial distribution of the DOS at the energy corresponding to the fifth peak of the LDOS
at the central position (E − EF � 0.01 Ryd). The LDOS of the Fe atoms is removed from the
figure.

V↑(↓)(r) = V (r) + Ui,↑(↓), where the constant Ui,↑ = −Ui,↓ can also depend on the quantum
number n. The magnetic exchange term modifies the energy values as follows:

E↑(↓)

ni = x2
ni

R2

h̄2

2m∗ + Ui,↑(↓). (11)

In order to facilitate a comparison with the ab initio results, the value of R = 27a is used.
This means that the radial solution has to vanish at the lattice position neighbouring the corral
atoms. The corresponding energy values with and without magnetic exchange term for n = 0
can be seen in figure 7.
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Figure 7. Energy levels of the n = 0 states within the circular quantum well model at the radius
used for the self-consistent calculation. (a) Non-spin-polarized model, (b) spin-splitting term
added. The energy-dependent splitting between the spin-up and spin-down states is estimated from
the LMDOS shown in figure 3.

3.5. Interpretation of the results of first-principles calculations

In what follows we comment on the results of our first-principles calculations in the light of
the above circular quantum well model. Firstly, we note that in figure 3 the vertical solid
lines correspond to the bound state energies E0i for m∗/me = 0.366 and Ui,↑(↓) = 0. The
agreement between the peak positions and the E0i is especially striking in the low-energy
regime. This can be viewed as an indication that at lower energies the scatterers act more like
a hard wall than at higher energies. Given that the model is solved by using the Schrödinger
equation, it also suggests that relativistic effects inside the corral are not too important. In
the first-principles calculations the peaks have finite widths due to the combined effects of the
discreteness of the confining boundary and the energy-dependent scattering into bulk states.
Remarkably, the width of the peaks agrees quantitatively with the experimental values [29].
This result, however, may be fortuitous. Note, for instance, that for reasons not entirely clear,
in the experiments the third peak is the highest one, but in our results the highest peak is the
second one.

The spatial distribution of the DOS along a diameter of the corral is plotted in the upper
panel of figure 5 at energies referring to the first three peaks in figure 3. As can be expected,
the LDOS has a maximum at the centre, similar to the Jn=0 Bessel function. The circular well
model suggests that there are states with non-zero orbital moment, n 	= 0, for which there is
a minimum at the centre of the corral. In order to find these states, in figure 4 we investigated
the spatial sum of the LDOS along a diameter. Evidently, the n 	= 0 states would contribute to
this sum. Indeed, as noticed already, in figure 4 there are new peaks as compared with figure 3
to which states with zero amplitude at the origin do not contribute. In figure 4, the values Eni

as predicted from the circular quantum well model with zero exchange-split term, Ui↑(↓) = 0,
are also indicated by vertical lines up to n = 4. Note, for example, that the second peak clearly
corresponds to the n = 1, i = 1 quantum state. To pursue this matter further, in the lower panel
of figure 5 we have plotted the spatial density of the states corresponding to those peaks which
appear only in the summed DOS. Reassuringly, these spatial densities have minima at the
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centre. For higher energies this correspondence is not so clear; nevertheless, this comparison
serves as an explanation why the shape of the peaks differs from that of an ideal Lorentzian.
The small features between the prominent peaks which can be seen in figure 3 and in the
experimental results [5] also show some systematic trends which we assume can be explained
in terms of a circular quantum well model based on the two-dimensional Dirac equation.

Turning to the LMDOS at the central position,we note that in the upper panel in figure 3 the
prominent DOS peaks are split into a pair of ‘up’ and ‘down’ peaks. This oscillatory behaviour
of the LMDOS is a consequence of the spin-polarization of the corral Fe atoms, namely of the
perturbation of the surface-state electrons by the Fe atoms forming the corral. This exchange
splitting can be reproduced in the circular well model by choosing Ui,↑(↓) appropriately. It
turns out that for a good fit Ui,↑(↓) should be non-uniform in energy. The corresponding energy
values with the exchange splitting terms estimated from figure 3 are shown in figure 7(b).
Thus, the prediction of the model is that if the Fermi energy falls between an exchange-split
doublet then the whole corral has a net magnetic moment of one Bohr magneton in addition to
the magnetization due to the Fe atoms forming the wall. Furthermore, such a moment will not
be uniformly distributed within the corral but varies from empty-cell to empty-cell as required
by the wavefunction of the confined surface state; namely, it oscillates like the charge density
in figure 5. Of course, even for a relatively small corral of R = 27a, as indicated by the highly
structured summed LMDOS in the upper panel of figure 4, there are many states near the Fermi
energy and hence the local magnetic moment can vary rapidly with Fermi energy and spatial
location. Some of the complexities in this figure can be attributed to the appearance of the
n 	= 0 states. Although the exchange splitting around the DOS peaks can be clearly observed,
a full analysis of the results of our relativistic spin-polarized ab initio calculations will have to
has to be based on a relativistic treatment of the circular well model.

3.6. Tuning of the magnetic properties

From the point of view of engineering corrals with specific properties it is important to
investigate the magnetic properties of the confined surface states within the corral as a function
of the corral radius R. As a preliminary effort in this direction we shall now make some
estimates based on the model whose credibility we have established in the previous sections.
First, we have calculated the dependence of the exchange split energy levels, shown in figure 7
for the specific case of R = 130.41 au, as a function of R. The results are displayed in
figure 8. Assuming that the exchange energies are independent of the geometry, we used the
values estimated from figure 3. It can be seen that as the radius is decreased the energy levels are
pushed upwards, possibly changing the number of occupied states. As a consequence of this
effect one can find ranges of radii where the spin-down state is occupied but the corresponding
spin-up state is empty and, therefore, the surface states hold a finite magnetic moment. The
predicted total magnetic moment of the surface states is depicted in the inset of figure 8. It
should be stressed that the model neglects a multitude of effects such as the partial confinement
of the electrons and the width of the levels. In realistic first-principles calculations the magnetic
moment is expected to show a smoother change with the radius. When states with n > 0 are
also taken into account the results are expected to be even more complicated but, qualitatively,
the basic effect should remain the same. For instance, at the centre of the corral one can expect
from figure 4 that it is enough to take into account the n = 0 states. Therefore, we can predict
that at least at the centre there is a finite magnetic moment at well defined geometries. In short,
by varying the geometry a rich variety of magnetic states can be produced.

As might be expected by now, the total energy also shows an interesting behaviour by
varying the corral radius. As a simple, and perhaps artificial, example we have studied the
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Figure 8. The n = 0 energy levels with spin-splitting
(dashed curve: spin-up states, solid curves: spin-down
states). Inset: value of the magnetization with respect to
the radius within the circular quantum well model due
to the n = 0 states. The energy-dependent splitting
between the spin-up and spin-down states is estimated
from the MDOS calculations. The vertical line indicates
the radius used for the first-principles calculation.

Figure 9. Oscillation in the total energy with respect to
the radius of the corral within the circular quantum well
model due to the n = 0 states. In the inset, the total
energy and its best linear fit (R > 25 au) are plotted by
solid and dashed line, respectively. In the main figure,
the difference between the total energy and its linear fit
is depicted for a better representation of the oscillations.

case when symmetry constrains the system such that only the n = 0 states are occupied. The
total energy for this case is shown in figure 9. The oscillations resemble, and have similar
origin to, those responsible for the de Haas–van Alphen effect. Note, however, that in the
present example the oscillations are not equally spaced but follow from the distribution of the
Bessel zeros. Interestingly, similar oscillations can be expected if, instead of the radius R,
the Fermi energy EF changes. In an experiment one may contrive such variations in EF by
‘gating’ the corral with an STM tip.

4. Summary

In this work we have presented calculations of the electronic and magnetic properties of the
surface states confined in a circular quantum corral. The ab initio results are interpreted in
terms of a simple quantum mechanical, circular potential well model with infinitely high walls.
We found that at low energies the energy levels of the model gave a good quantitative account
of the peaks of the DOS obtained in ab initio calculations. In particular, unlike previous
calculations for the quantum corrals, we were able study and interpret the magnetic as well as
the charge oscillations within the corral. On the bases of these calculations we conclude that
a rich variety of magnetic structures can be expected by varying the shape, size and gating of
these fascinating nanostructures.

Acknowledgments

Financial support was provided by the Center for Computational Materials Science (Contract
No GZ 45.531), the Austrian Science Foundation (Contract No W004), the Research and
Technological Cooperation Project between Austria and Hungary (Contract No A-3/03) and the
Hungarian National Scientific Research Foundation (OTKA T046267 and OTKA T037856).
The work of BU was supported by DOE-OS, BES-DMSE under contract number DE-AC05-
00OR22725 with UT-Battelle LLC.



S1048 B Lazarovits et al

References

[1] Kevan S D 1983 Phys. Rev. Lett. 50 526
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