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Temperature Dependent Magnetic Anisotropy in Metallic Magnets
from an Ab Initio Electronic Structure Theory: L1)-Ordered FePt
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Using a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism,
we investigate the variation of magnetic anisotropy K with magnetization M in metallic ferromagnets. We
apply the theory to the high uniaxial K material, L1y-ordered FePt, and find its magnetic easy axis
perpendicular to the Fe/Pt layers for all M and K to be proportional to M? for a broad range of values of
M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of
magnetic order. Our ab initio results for this important magnetic material agree well with recent
experimental measurements, whereas the single-ion anisotropy model fails to give the correct qualitative

behavior.
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By accounting for relativistic effects such as spin-orbit
coupling on electronic structure, recent ‘“‘first-principles”
theoretical work has succeeded in describing trends in the
magnetocrystalline anisotropy (MCA) of magnetic mate-
rials [1-3]. This is useful for the understanding of perma-
nent magnetic properties, domain wall structure, magnetic
nanostructures, etc. One aspect, however, which has re-
ceived scant attention from such ab initio theories is its
temperature dependence. Modeling this phenomenon
seems to rest largely on the seminal papers by Callen and
Callen and others [4] published nearly 40 years ago which
focused on the temperature dependence associated with
single-ion magnetic anisotropies. In this Letter we inves-
tigate how far this approach can be justified for metallic
magnets on the basis of a first-principles, material specific,
parameter-free theory of how the magnetocrystalline an-
isotropy depends on temperature. We find that our ab initio
theory gives the correct behavior of the MCA for a case
where the single-ion model fails. The theory involves a
detailed, relativistic description of the electronic structure
and hence includes a complete description of the spin-orbit
coupling. The thermally induced magnetic fluctuations are
accounted for by a relativistic generalization of the, by now
well-tried, disordered local moment (DLM) picture [5,6].

The topic has recently received extra impetus from
extensive experimental studies of magnetic films and nano-
structures and their technological potential. For example,
the fabrication of assemblies of smaller and smaller mag-
netic nanoparticles holds considerable promise for the
design of ultrahigh density magnetic data storage media
[7]. But this is hampered by a particle size limit set so that
thermally driven demagnetization and loss of data are
avoided over a reasonable storage period. This limit can
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be lowered by using materials with high magnetocrystal-
line anisotropy, K, since the superparamagnetic diameter
of a magnetic particle is proportional to (kzT/K)'/3, where
kgT is the thermal energy [8]. In this context, the chemi-
cally ordered L1, phase of equiatomic FePt, which has
high uniaxial MCA (4-10 X 107 ergs/cm® or up to
1.76 meV per FePt pair [9,10]), has attracted much atten-
tion and arrays of FePt nanoparticles with diameters as
small as 3 nm have been synthesised [7,11]. For a uniaxial
magnet like this, K is the difference between the free
energies FO01 and F(1.09 of the system magnetized along
(0,0, 1) and (1, 0, 0) crystallographic directions. A way to
write to media of very high K material is by temporary
heating [12,13]. The MCA is reduced during the magnetic
write process and the information is locked in as the
material cools. Modeling this process and improving the
design of high density magnetic recording media therefore
requires an understanding of how K varies with tempera-
ture. So for the first application of our theory we have
chosen FePt. Given its technological potential there have
recently been some careful experimental studies of its
fundamental magnetic properties [11,12,14]. These show
a strong temperature dependence to K. We find good
agreement with these data. In particular, we find K(T) o«
[M(T)/M(0)]? over a broad magnetization range, in line
with experimental reports [12,14]. Notably the low tem-
perature behavior is qualitatively different from that of the
single-ion anisotropy models used over many years [4].
The MCA of a material can be conveniently expressed as
K= Zykygy(ﬁ), where the k,’s are coefficients, 7 is the
magnetization direction, and g,’s are polynomials (spheri-
cal harmonics) of the angles 6, ¢ fixing the orientation of 7
and belong to the fully symmetric representation of the
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crystal point group. For a uniaxial ferromagnet K = ky +
ky(cos?@ — 1/3) + - - -. As the temperature rises, K de-
creases rapidly. The key features of the results of the early
theoretical work on this effect [4] are revealed by a clas-
sical spin model pertinent to magnets with localized mag-
netic moments. The anisotropic behavior of a set of
localized “‘spins” associated with ions sitting on crystal-
line sites, i, in the material is given by a term in the
Hamiltonian H,, =3 ,;>", k7g7(§i) with §; a unit vector
denoting the spin direction on site i. As the temperature is
raised, the spins sample the energy surface over a small
angular range about the magnetization direction and the
anisotropy energy is given from the difference between
averages taken for the magnetization along the easy and
hard directions. If the coefficients k, are assumed to be
rather insensitive to temperature, the dominant thermal
variation of K for a ferromagnet is given by K(T)/K(0) =
(g,(8))7/{g1(8))y. The averages (- - -); are taken such that
(8)r = M(T), the magnetization of the system at tempera-
ture 7, and [ is the order of the spherical harmonic describ-
ing the angular dependence of the local anisotropy, i.e.,
[ = 2 and 4 for uniaxial and cubic systems, respectively. At
low temperatures K(T)/K(0) = [M(T)/M(0)]**V/2 and
near the Curie temperature T., K(T)/K(0) = [M(T)/
M(0)]". These features are borne out rather well in magnets
where the magnetic moments are well localized, e.g., rare-
earth and oxide magnets, but it is questionable whether
such an analysis should hold for itinerant ferromagnets [8].
Here, we examine FePt for which careful experiments
[12,14] find K(T)/K(0) = [M(T)/M(0)]", where n = 2
instead of n = 3, over a large temperature range. As we
show presently, our ab initio calculations are in good
agreement with this surprising result.

Magnetocrystalline anisotropy is caused largely by spin-
orbit coupling and receives an ab initio description from
the relativistic generalization of spin density functional
theory (SDFT) [1]. Up to now calculations of the anisot-
ropy constants K have been suited to 7 = 0 K only. They
treat spin-orbit coupling effects using either perturbation
theory [3] or a fully relativistic one [2,15]. Typically the
total energy, or the single-electron contribution to it, is
calculated for two or more magnetization directions 7i;
and 7i, separately and then the MCA is obtained from the
difference (often of the order of weV) [15], AE=
- fEF‘ [N(e:A;) — N(e:iiy)lde — §n(Ep, ;1) X
(Ep, — Ep,)* + O(Ef, — Ef,)?, where EJ,, E%. are the Fermi
energies when the system is magnetized along 7, and 7,
and n(e; ) and N(g; /) are the density of states (DOS) and
integrated DOS, respectively. We have used this rationale
with a fully relativistic theory to study the MCA of mag-
netically soft, compositionally disordered binary and ter-
nary component alloys [15,16] and the effect upon it of
short-range [2] and long-range chemical order [17].

Our MCA calculations use spin-polarized, relativistic
multiple scattering theory and an adaptive mesh algorithm
for Brillouin zone integrations such that the numerical

precision is to within 0.1 weV [2,15]. These attributes
are also important for the theoretical calculations of the
temperature dependence of the MCA described below. We
calculate the MCA of ordered FePt at 7 =0 K to be
1.696 meV. We start from a self-consistent field (SCF),
scalar-relativistic calculation (atomic sphere approxima-
tion) of the electronic structure and effective potentials
for the Fe and Pt sites. We then perform a further fully
relativistic electronic structure calculation, recalculate the
Fermi energies E}. and E%, and determine the MCA. There
are a number of calculated values of the MCA of com-
pletely L1j-ordered FePt at T = 0 K in the literature [18]
ranging from 1.2 to 39 meV per cell (7-22 X
107 ergs/cm?). The easy axis as in experiment [9,10] is
along the c axis, (0,0, 1), perpendicular to the Fe and Pt
layers. For ordered FePt we find that the large difference in
the DOS [n(EL; A;) — n(E%; 4,)] at the Fermi energy in-
duces a significant sensitivity of the MCA to the positions
of EL. and E%. For example, the MCA jumps from 1.696 to
2751 meV if the Ey’s are both lowered by 0.2 eV. This
sensitivity may explain, in part, the range of published
values of the MCA of FePt. We also deduce that the
magnetic anisotropy might be further enhanced by replac-
ing a few atomic percent of Pt with Ir.

In a metallic ferromagnet at 7 = 0 K the electronic
structure is spin polarized. With increasing temperature,
spin fluctuations are induced which eventually destroy the
long-range magnetic order and hence the overall spin
polarization of the system’s electronic structure. These
collective electron modes interact as 7 is raised and are
dependent upon and affect the underlying electronic struc-
ture. For many materials the magnetic excitations can be
modeled by associating local spin-polarization axes with
all lattice sites and the orientations {¢;} vary very slowly on
the time scale of the electronic motions [5]. These ‘“local
moment” degrees of freedom produce local magnetic
fields on the lattice sites which affect the electronic mo-
tions and are self-consistently maintained by them. By
taking ensemble averages over the orientational configura-
tions, the system’s magnetic properties can be determined
and, with the explicit inclusion of relativistic effects upon
the electronic structure, the temperature dependence of its
MCA obtained.

Consider this DLM picture of a ferromagnetic metal
magnetized along a direction 7 at a temperature 7. The
probability that the system’s local moments are configured
according to {&;} is P({e;}) = exp[—BQW({e;})]/Z?,
where the partition function Z@® =] ;[dé;x
exp[—BQP({e,)]. QP ({e;}) is the “generalized” elec-
tronic grand potential from SDFT [6] and 8 = (kgT) .
The thermodynamic free energy is given by F@ =
—kgT1logZ™. The role of a local moment Hamiltonian,
albeit a highly complicated one, is played by Q{é;}. Ex-
panding about a suitable reference ‘“‘spin” Hamiltonian
Qofé;} = 3™ - é; and, using the Feynman inequality
[19], gives a mean field theoretical estimate of the free
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energy [6].
FO = Q)+ (1/8)S f PO (@) InPD(&)de; (1)

where the probability distribution is

exp[—Bh Wi - &,]

PW(e;) = - 2
(@) [exp[—Bh D7 - &;]de, @
and the Weiss field at a site is given by
. 3 N
D = _— [ Qe i - é;de;, 3)
4 !

where (- - -)é,_ denotes a constrained statistical average with
the moment on site i being fixed along ¢é;. The choice of the
reference Hamiltonian ,{é;} as a sum of the interactions
of Weiss field 7”7 with local moments &; on each site
means that a mean field description of the ferromagnetic
system magnetized along 7 is constructed with no refer-
ence to an external field.

The magnetization M = M7 is given by M =
w [P(&)ii - &;dé;. p is the size of the local moment
on the site and is determined self-consistently [6]. The
DLM picture is well justified for materials in which the
sizes of the local moments, wu, remain fairly constant so
that even in the paramagnetic state where M = 0, the u’s
are roughly the same as the magnetic moment per atom in
the ferromagnetic state at 7 = 0 K. In a first-principles
implementation of the DLM picture, the averaging over the
orientational configurations of the local moments is per-
formed using techniques adopted from the theory of ran-
dom metallic alloys [6,20]. Over the past 20 years, the
paramagnetic state, the onset of magnetic order, and tran-
sition temperatures of many systems have been success-
fully described [21]. All applications to date, however,
have neglected relativistic effects and have been devoted
to the paramagnetic state where the symmetry turns the
calculation into a binary alloy-type one with half the mo-
ments oriented along a direction and the rest antiparallel.
Once relativistic effects are included and/or the ferromag-
netic state is considered, this simplicity is lost and the con-
tinuous probability distribution P%)(&;)’s must be sampled
for a fine mesh of angles and the averages with the proba-
bility distribution performed numerically. (Careful checks
have to be made to ensure that the sampling of P (¢,) is
sufficient—we use some 25 000 values.) In the ferromag-
netic state, the magnetic anisotropy is given by the dif-
ference between the free energies F for different mag-
netization directions 7, but the same magnetization M.

Once again our study of FePt starts with a SCF, scalar-
relativistic calculation, this time for the paramagnetic
(DLM) state. On the Fe sites a local moment of 2.97 up
is set up while no moment forms on the Pt sites. For the
same lattice spacings (¢ = 0.385 nm, ¢/a = 1), we found
that, for the completely ferromagnetically ordered state of
FePt at T = 0 K, the magnetization per Fe site is 2.93up

and a small magnetization of 0.29 u 5 is associated with the
Pt sites. This suggests that the thermal effects on the
magnetic properties should be well described by the
DLM picture (see the previous paragraph). Using the
self-consistent potentials and effective fields of the para-
magnetic DLM state, we proceed, using a simple trick to
avoid an iterative determination of the Weiss field [Egs. (2)
and (3)] for a given temperature 7', by picking a series of
values of A(= Bh") to set the probabilities, P (¢;) (and
magnetizations M). A calculation of <Q(ﬁ){é,})éi [Eq. (3)]
gives the Weiss field 4. The ratio of 4" to A then uniquely
determines the temperature 7 for each of the initially
chosen values of A and hence M(T). The results are shown
in Fig. 1. Although the shortcomings of the mean field
approach do not produce the spin wave 7%/2 behavior at
low temperatures, the easy axis for the onset of magnetic
order is obtained (A" > (190 a5 T — T,), and it corre-
sponds to that found at lower temperatures both experi-
mentally and in all theoretical (T = 0 K) calculations. (An
adaptation to systems such as thin films combined with
T = 0 K calculations may be useful in understanding tem-
perature induced spin reorientation transitions.) T, =
935 K, in fair agreement with the experimental value of
750 K [6]. (An Onsager cavity field technique would
improve this estimate, see [6], without affecting the quality
of the following results.)

The free energy difference, FOOD — F(1.00) je  the
MCA, K(T), is calculated using the theory and leads to
the key results of this Letter shown in Fig. 2. At T = 0 K,
the MCA has a value —1.740 meV, close to the value,
—1.696 meV, obtained by the earlier, separate calculation
for the completely ferromagnetic state. As 7 is raised the
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FIG. 1 (color online). The magnetization of FePt versus 7. The
filled squares refer to a magnetization along (0, 0, 1) and the open
circles along (1, 0, 0). T, is at 935 K with the easy axis, (0, 0, 1).
The full line shows the mean field approximation to a classical
Heisenberg model for comparison. In the inset, near T, the
lower intercept shows what T, would be with the system con-
strained to become magnetically ordered along (1, 0, 0).
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FIG. 2 (color online). The magnetic anisotropy of FePt as a
function of the square of magnetization. The filled circles show
the calculations from the ab initio theory, the full line
Ko[M(T)/M(0)]?, and the dashed line the single-ion model
function K0<g2(é)>r/<g2(é)>0 with KO = —1.835 meV.

statistical fluctuations of the orientations of the local mo-
ments, which cause the magnetization M to drop, make K
vary markedly with 7 and to be a function of M. Figure 2
shows K(T) versus [M(T)/M(0)]* together with a curve for
the single-ion classical spin model anisotropy [4] for com-
parison. Apart from 0.9 < M(T)/M(0) <1 our results
show an approximate [M(T)/M(0)]* behavior in good
agreement with experiment [12,14]. This is in marked
contrast to the model, which becomes proportional to
[M(T)/M(0)F for the larger M(T)’s.

Evidently Fig. 2 shows that at low temperatures in the
single-ion model the MCA falls off much more quickly as
the temperature is increased and the overall magnetization
is reduced. Moreover, our itinerant electron theory does
capture the behavior of the K versus magnetization relation
quantitatively. This theory assumes that there is a separa-
tion between fast and slow electronic degrees of freedom.
A picture of “local moments”” emerges naturally but with a
subtlety that their existence and behavior are determined
by the fast electronic motions. It also assumes that rigid
coupling between neighboring local moments is readily
destroyed by thermal fluctuations. For this uncorrelated
regime, considerations similar to those applied to simple
spin models by Callen and Callen [4] may suggest the basis
for the M? dependence of the MCA we find here. We
expect the MCA of the important magnetic materials
L1y,-CoPt and FePd to follow a similar variation with
magnetization since the local moments sustained on the
Co and Fe sites in the paramagnetic DLM states (1.78 up
and 2.98 up, respectively) are comparable in size to mag-
netization per site in the completely ferromagnetic states

(1.91up and 2.96 w ). Our DLM theory therefore has good
prospects in describing the variation of K with magnetiza-
tion for a range of such metallic magnets. The success of
the above relativistic DLM methodology in explaining the
unexpected behavior of L1)-FePt suggests that further
calculations for promising magnetic materials in bulk,
thin films, or in magnetic nanostructures may be valuable
for the future modeling and exploitation of their magnetic
properties.
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