
Longitudinal Kerr effect in ultrathin Fe films on Pd(100)

A. Vernes, I. Reichl, and P. Weinberger
Center for Computational Materials Science, Technical University Vienna, Gumpendorferstrasse 1a, A-1060 Vienna, Austria

L. Szunyogh
Center for Computational Materials Science, Technical University Vienna, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
and Department of Theoretical Physics, University of Technology and Economics, Budafoki út 8, H-1521 Budapest, Hungary

C. Sommers
Laboratoire de Physique des Solides, Université de Paris-Sud, F-91405 Orsay, France

(Received 4 June 2004; published 10 November 2004)

Based on Luttinger’s formulation the complex optical conductivity tensor of ultrathin films of Fe on Pd(100)
is calculated by means of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method using a
contour integration technique. For longitudinal geometry and oblique incidenceab initio Kerr spectra are then
obtained via a 232 matrix technique that takes into account all multiple reflections between layers and optical
interferences. The obtained results are in very good agreement with the available experimental data.
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I. INTRODUCTION

The interest in the dependence of magnetic properties in
case of Fe/Pds100d layered systems on the film morphology
dates back more than ten years.1,2 Presently the following
peculiarities concerning the properties of Fe ultrathin films
on Pd(100) are known from the literature:(1) different depo-
sition methods, i.e., thermal or pulse laser deposition, and
temperatures provide different magnetizations2,3 and (2)
there is a reorientation of the magnetization from out of
plane to in plane around a critical thickness of about 2.5
monolayers(ML ) of Fe,1 which is well reproduced byab
initio calculations.4 Furthermore, independent of an in- or
out-of-plane direction of the magnetization, the Curie tem-
perature increases monotonically with the Fe thickness.1

Caused by the lattice constant misfit between bcc Fe and fcc
Pd, two different growth modes are experimentally predicted
for Fe/Pds100d—namely, a layer-by-layer one5,6 and another
one in which two-dimensional islands of Fe are formed on
top of the Pd substrate.7

In the present contribution the longitudinal magneto-
optical Kerr effect (LMOKE) and magnetic properties of
Fe/Pds100d are investigated using a first-principles approach
with the Fe thicknesses ranging from the submonolayer re-
gime up to ten atomic layers as based on experimentally
determined profiles.3,8

II. OPTICAL CONDUCTIVITY TENSOR

In terms of the current-current correlation function9

S̃mnsvd =
i"

V
o
m,n

fs«md − fs«nd
«m − «n + "v + id

Jmn
m Jnm

n , s1d

with fs«d being the Fermi-Dirac distribution function,«m and
«n a pair of eigenvalues of the one-electron Hamiltonian,
Jmn

m matrix elements of the electronic current operator
sm=x,y,zd, and V the reference(crystalline) volume, the

complex optical conductivitys̃mnsvd is given by the well-
known Luttinger formula10

s̃mnsvd =
S̃mnsvd − S̃mns0d

"v + id
. s2d

In contrast to the widely used Wang-Callaway formula for
the optical conductivity,11 the Luttinger formula(2) has the
advantage that it simultaneously provides the absorptive and
the dispersive parts on the same footing without using the
Kramers-Krönig relations.9 The current-current correlation

function S̃mnsvd in Eq. (1) is evaluated by performing con-
tour integrations.12 From a numerical point of view, aside

from the Matsubara poles,S̃mnsvd depends on the number
of complex energy pointsnz considered for the energy inte-

grals and on the number ofkW points used to calculate
the scattering path operator within the spin-polarized relativ-
istic screened Korringa-Kohn-Rostoker(SKKR) method and

S̃mnsz±"v+ id ,zd for a given energyz, respectively. For this
reason two efficient schemes have been introduced to control

the accuracy of thez andkW integrations.13

III. LMOKE FOR OBLIQUE INCIDENCE

In a previous paper,14 it was shown in detail that for polar
geometry and normal incidence the 232 matrix technique
takes into account all possible reflections and optical inter-
ferences within a layered system. Therefore, in here only
those aspects of the 232 matrix technique are briefly sum-
marized which are needed for describing the Kerr effect for
oblique incidence in a longitudinal geometry—i.e., when the
magnetization is in the plane of incidence and perpendicular
to the surface normal.

A. Basic concepts

Consider a right-handed Cartesian coordinate system with
the origin at the interface, thez axis being parallel to the
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surface normal and pointing into the vacuum. If the 0yz
plane is chosen as the plane of incidence, longitudinal geom-

etry implies that the magnetizationMW p is oriented in each
layer p parallel to they axis. The numbering of layers is
assumed to start at the first layer on top of the semi-infinite
substratesp=1d such that if the system consists ofN layers,
the surface layer is labeled byp=N. Furthermore, it is con-
venient to introduce the indexp=0 for the substrate and
p=N+1 for the vacuum. The lower and upper boundaries of
a particular layerp are planes atzp and zp+1 with zp,zp+1.
The interface to the vacuum is a plane atzN+1=0, whereas
the lower boundary of the substrate is atz0=−`. From an
optical point of view each layer and therefore also the sub-
strate are assumed to be a homogeneous, linear, and aniso-
tropic conducting medium.

The harmonic plane wave for a complex electric(mag-
netic) field is of the form

EW psrW,td = EW p expfisqWprW − vtdgexps− dtd = EW p expfisqWprW − ṽtdg,

s3d

whereqWp is the complex propagation vector andṽ=v− id the
complex frequency.15 In terms of the spherical colatitude
us0øu,p /2d and longitudews0øwø2pd of the incident
beam, for a longitudinal geometry and oblique incidence(u
arbitrary andw=p /2) the propagation vectorqWp is given by

qWp = q0nWp = q0s− sinueWy + ñp cosueWzd, s4d

wherenWp is the complex refraction vector in layerp,

5ñpx = 0,

ñpy = − sinu,

ñpz= ñp cosu,
6 s5d

q0 the propagation constant in vacuum, andeWx, eWy, eWz are the
unit vectors along the coordinate axes. Here the Cartesian
components ofnWp are given by using the continuity of the
electric and magnetic fields at the boundary between adja-
cent layers and the interface,16 which implies that thex andy
components of the wave vector are the same on both sides
of a boundary—namely,ñpm= ñN+1,m; ñm for m=x,y and
∀p=1, . . . ,N+1. According to the complex propagation vec-
tor in Eq. (4), Eq. (3) can be written as

EW psrW,td = EWp expfisq0ñpzz− ṽtdg,

with EWp = EW p exps− iq0 sinuyd, s6d

i.e., refers to a harmonic plane wave propagating in a par-
ticular layer p either in the +zsIm ñpz.0d or −z direction
sIm ñpz,0d.

In the case of plane waves the layer-resolved permittivity
«̃psvd is directly related within the Gaussian system of units
to the layer-dependent conductivitys̃psvd by15

«̃psvd = I +
4pi

ṽ
s̃psvd, s7d

whereI is the 333 identity matrix. As the applied compu-
tational scheme for the conductivity tensor provides only

contributions of the types̃pqsvd, in order to preserve Eq.(7),
the interlayer and intralayer contributions to the permittivity
are given by15

«̃pqsvd = dpqI +
4pi

ṽ
s̃pqsvd for p,q = 1, . . . ,N, s8d

with dpq being the Kronecker symbol. Using the linear ma-
terial equations it was shown that the layer-resolved permit-
tivities «̃psvd can be obtained self-consistently from the con-
tributions «̃pqsvd.14 Since at least in the case of polar
geometry and normal incidence very little differences be-
tween the zeroth order for the layer-resolved permittivities,

«̃psvd = o
q=1

N

«̃pqsvd for p = 1, . . . ,N, s9d

and their self-consistent counterparts arise,14 in the following
instead of using a self-consistent procedure simply Eqs.(8)
and (9) are used.

B. Harmonic plane waves in a layer

By using the Gaussian system of units and suppressing for
matters of simplicity the frequency dependence of all quan-
tities, the propagation of a plane wave as given in Eq.(6) for
an arbitrary layerp is completely described by the Helmholtz
equation17

o
n=x,y,z

sñp
2dmn − ñpmñpn − «̃mn

p dEpn = 0 sm = x,y,zd s10d

and the curl Maxwell equation

HW p = nWp 3 EWp. s11d

For a given«̃p the normal modes of the electromagnetic
wave propagating through layerp—i.e., the nontrivial solu-
tions of Helmholtz equation—are obtained by solving the
Fresnel (characteristic) equation associated with Eq.(10),
(Ref. 18):

uñp
2dmn − ñpmñpn − «̃mn

p u = 0 sm,n = x,y,zd. s12d

For each normal modek—namely, nWp
skd—the Helmholtz

equation(10) then directly provides the componentsEWp
skd of

the electric field, which substituted into Eq.(11) finally yield

the magnetic fieldHW p
skd.19

In the case ofMW pi0y, the dielectric tensor for a cubic
system is of the form

«̃p = 1«̃xx
p 0 «̃xz

p

0 «̃yy
p 0

«̃zx
p 0 «̃zz

p 2, where«zz
p Þ 0. s13d
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It should be noted that in considering«̃zx
p Þ−«̃xz

p , the symme-
try of «̃p is lower than the form to be found in the
literature.20–22 The reason for this assumption is that in the
case of the interlayer contributions«̃pqspÞqd indeed «̃zx

pq

Þ−«̃xz
pq. Therefore is not clear at all from the beginning

which symmetry«̃p assumes by summing up all interlayer
and intralayer contributions.

For the dielectric tensor«̃p and the complex refraction
vector nWp as given by Eqs.(13) and (5), the coefficients of
the fourth-order characteristic equation(12),

ñpz
4 + añpz

2 + b = 0, s14d

are given by

a = S1 +
«̃yy

p

«̃zz
p Dsin2 u +

«̃xz
p «̃zx

p

«̃zz
p − «̃xx

p − «̃yy
p

and

b = fs«̃xx
p − sin2 uds«̃zz

p − sin2 ud − «̃zx
p «̃xz

p g
«̃yy

p

«̃zz
p .

Two of the four solutionsñpz
skdsk=1, . . . ,4d are always situated

in the lower half of the complex planesIm ñpz
skd,0d, whereas

the other two solutions are in the upper halfsIm ñpz
skd.0d of

the complex plane. The first type of solutions, denoted in the
following by ñpz

s1d and ñpz
s2d, corresponds to two plane waves

propagating downward—i.e., in the −z direction—and the
other typeñpz

s3d and ñpz
s4d refers to plane waves propagating

upward—namely, in the +z direction.
For each solutionñpz

skdsk=1, . . . ,4d of the characteristic
equation(14), the electric field satisfies the Helmholtz equa-
tion (10). Because not all of these equations are independent,
Eq. (10) can be solved only for two components of the elec-
tric field by keeping the third one arbitrary. Following the
strategy proposed by Mansuripur in Refs. 19 and 23, one
gets all fields as listed from Table I, in which

ap
skd =5

«̃zx
p ñpz

skd sinu

fñpz
skdg2«̃zz

p − «̃yy
p s«̃zz

p − sin2 ud
, for odd k,

«̃xz
p ñpz

skd sinu

hfñpz
skdg2 + sin2 u − «̃xx

p js«̃zz
p − sin2 ud + «̃xz

p «̃zx
p , for evenk,6

and

bp
skd =5

«̃zx
p h«̃yy

p − fñpz
skdg2j

fñpz
skdg2«̃zz

p − «̃yy
p s«̃zz

p − sin2 ud
, for odd k,

ñpz
skdhfñpz

skdg2 + sin2 u − «̃xx
p jsinu

hfñpz
skdg2 + sin2 u − «̃xx

p js«̃zz
p − sin2 ud + «̃xz

p «̃zx
p , for evenk.6

C. Kerr rotation and ellipticity angles

Because of the continuity of the tangential components of

EW andHW at the boundaryzp, the reflectivity matrixRp, for a
particular layerp,

SEpx
s3d

Epy
s4d D = RpSEpx

s1d

Epy
s2d D ,

is obtained in terms ofRp−1 by means of the recursion
relation19,23

Rp = − sDp−1Ap
34 − Bp

34d−1sDp−1Ap
12 − Bp

12d, s15d

where the 232 matrices are defined as

Dp−1 = sBp−1
12 Cp−1

12 + Bp−1
34 Cp−1

34 Rp−1d

3sAp−1
12 Cp−1

12 + Ap−1
34 Cp−1

34 Rp−1d−1, s16d

Ap
k,k+1 = S 1 ap

sk+1d

ap
skd 1

D ,

Bp
k,k+1 = S− bp

skd cosu − ñpz
skdap

skd − bp
sk+1d cosu − ñpz

sk+1d

ñpz
skd ñpz

sk+1dap
sk+1d D ,

s17d

and by using the lower boundaryzp as reference plane for the
four beams propagating in a layerp the propagation matrices
Cp

k,k+1 are given by

Cp
k,k+1 = Sexpf+ iq0ñpz

skddpg 0

0 expf+ iq0ñpz
sk+1ddpg

D ,

with dp=zp+1−zp.0 being the thickness of layerp. Thus one
gets the reflectivity matrix of the first layer on the top of the
substratesp=1d as
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R1 = sD0A1
34 − B1

34d−1sB1
12 − D0A1

12d,

if D0 for the substrate is known. Because the substrate is a
semi-infinite bulk without any boundaries,R0=0,19,23 and
therefore Eq.(16) immediately yields

D0 = B0
12sA0

12d−1,

where the 232 matricesA0
12 andB0

12 are of form as given in
Eq. (17). From the reflectivity matrixR1 in Eq. (15), R2 en
suite, and so on, until the reflectivity matrixRN of the sur-
face layer is obtained.

The continuity of the tangential components ofEW andHW at
the interface atzN+1=0 then yields the surface reflectivity
matrix

Rsurf = − sDN − BN+1
34 d−1sDN − BN+1

12 d = S r̃xx r̃xy

r̃yx r̃yy
D , s18d

where by taking into account that the dielectric tensor in the
vacuum is given by«̃mn

N+1=dmnsm ,n=x,y,zd,

BN+1
12 = 1 0

1

cosu

− cosu 0
2, BN+1

34 = 1 0 −
1

cosu

cosu 0
2 .

Finally for p-polarized incident light the longitudinal Kerr
rotation angleuK and Kerr ellipticity angleeK can be ob-
tained from the complex Kerr angleFK,24,25

FK = uK + ieK . −
r̃xy

r̃yy

cosu, s19d

where the complex reflectivity coefficientsr̃xy and r̃ yy follow
from Eq. (18).

IV. RESULTS AND DISCUSSIONS

A. Investigated structures

Examining the experimentally determined concentration
profiles, one immediately realizes that with the exception of
0.25 ML of Fe mainly two different situations occur: the
surface layer contains either both Fe and Pd without forming
a perfect stoichiometric binary alloy—e.g., 0.46, 1.50, and
1.97 ML of Fe (see the corresponding entries in the first
column of Tables II and III or on top of such a layer there is
an additional small amount of Fe like for 0.66, 0.89, 1.10,

TABLE I. Solution of the Helmholtz and curl Maxwell equations for longitudinal geometry and oblique incidence following Man-
suripur’s strategy.(Refs. 19 and 23.

k 1 sIm ñpz
s1d

,0d 2 sIm ñpz
s2d

,0d 3 sIm ñpz
s3d

.0d 4 sIm ñpz
s4d

.0d

Epx
skd arbitrary ap

s2dEpy
s2d arbitrary ap

s4dEpy
s4d

Epy
skd ap

s1dEpx
s1d arbitrary ap

s3dEpx
s3d arbitrary

Epz
skd bp

s1dEpx
s1d bp

s2dEpy
s2d bp

s3dEpx
s3d bp

s4dEpy
s4d

Hpx
skd −fbp

s1d sinu+ ñpz
s1dap

s1dgEpx
s1d −fbp

s2d sinu+ ñpz
s2dgEpy

s2d −fbp
s3d sinu+ ñpz

s3dap
s3dgEpx

s3d −fbp
s4d sinu+ ñpz

s4dgEpy
s4d

Hpy
skd ñpz

s1dEpx
s1d ñpz

s2dap
s2dEpy

s2d ñpz
s3dEpx

s3d ñpz
s4dap

s4dEpy
s4d

Hpz
skd Epx

s1d sinu ap
s2dEpy

s2d sinu Epx
s3d sinu ap

s4dEpy
s4d sinu

TABLE II. Concentration profiles of fcc layered systems Fe/Pds100d containing fractional numbers of Fe layers as experimentally
determined by fitting the x-ray diffraction data(Ref. 3) and the corresponding model profiles used in the calculations. Not listed are the seven
(eight) Pd buffer layers to the Pd(100) substrate on the right. Boldface subscripts in the second column mark layers containing nonstoichio-
metric binary alloys: in the third column they point out differences with respect to the experimental concentration profiles.

Fe (ML )

Experimentally determined
concentration profilesa

fcc Fe/Pds100d
Model layered system
concentration profiles I

0.25 Pd0.15/Fe0.25Pd0.75/ Pd0.00Fe0.25/Pd0.75/

0.46 Fe0.25Pd0.18/Fe0.06Pd0.94/Fe0.15Pd0.85/ Fe0.25Pd0.75/Fe0.06Pd0.94/Fe0.15Pd0.85/
sad

0.66 Fe0.04/Fe0.37Pd0.25/Fe0.10Pd0.90/Fe0.15Pd0.85/ Fe0.41Pd0.59/Fe0.10Pd0.90/Fe0.15Pd0.85/

0.89 Fe0.03/Fe0.21Pd0.64/Fe0.35Pd0.65/Fe0.30Pd0.70/ Fe0.24Pd0.78/Fe0.35Pd0.65/Fe0.30Pd0.70/

1.10 Fe0.15/Fe0.30Pd0.60/Fe0.40Pd0.60/Fe0.25Pd0.75/ Fe0.45Pd0.55/Fe0.40Pd0.60/Fe0.25Pd0.75/

1.24 Fe0.27/Fe0.26Pd0.74/Fe0.42Pd0.58/Fe0.29Pd0.71/ Fe0.27Pd0.73/Fe0.26Pd0.74/Fe0.42Pd0.58/Fe0.29Pd0.71/

1.50 Fe0.29Pd0.17/Fe0.47Pd0.53/Fe0.27Pd0.73/Fe0.47Pd0.53/ Fe0.29Pd0.71/Fe0.47Pd0.53/Fe0.27Pd0.73/Fe0.47Pd0.53/

1.97 Fe0.64Pd0.29/Fe0.57Pd0.43/Fe0.37Pd0.63/Fe0.39Pd0.61/ Fe0.64Pd0.36/Fe0.57Pd0.43/Fe0.37Pd0.63/Fe0.39Pd0.61/

aReference 3.
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and 1.24 ML of Fe. Only for 0.25 ML of Fe the surface layer
is partially filled by Pd, since in this case the top layer is
formed by a substitutional alloy PdxVac1−x, “Vac” denoting
empty atomic spheres. It should be noted whenever in Tables
II and III reference is made to a composition FexPd1−x the
corresponding calculations were performed using the(inho-
mogeneous) coherent potential approximation; see, e.g., Ref.
26.

One possibility to simulate the experimental structures is
to keep the experimental content of Fe unchanged and sim-
ply add Pd to form binary alloys of the type FexPd1−x—e.g.,
in the case of 0.46, 1.50, and 1.97 ML of Fe. In addition, by
neglecting the island structure of all surfaces that contain
0.66, 0.89, 1.10, and 1.24 ML of Fe and adding the Fe con-
tent of islands on top of the actual surface(in the immedi-
ately following layer), a first set of theoretical concentration
profiles (I) can be modeled; see Table II. A second set of
theoretical concentration profiles(II ) is obtained, when al-
lowing Fe to form stoichiometrically perfect layered binary
alloys (the cases of 0.46, 1.50, and 1.97 ML of Fe; see Table
III ). Furthermore, in order to investigate the influence of the
islands an attempt is made to simulate this kind of situation
by considering a surface of Pd0.15Vac0.85 for 0.25 ML of Fe
and FexVac1−x for 0.89, 1.10, and 1.24 ML of Fe such that
the experimentally determined Fe and Pd content is pre-
served. To get even more insight into the impact of island
formation, in the case of 0.66 ML of Fe the surface layer
consists of 0.96 at. % Pd.

Because no other surface x-ray diffraction(SXRD) data
are available than those listed in Tables II and III, a series of
theoretical structures FeN/PdN8 /Pds100d, with N+N8=0 mod
3 for N=1, . . . ,10, has also been considered.

B. Kerr angles

As can be seen from Fig. 1,uK shows pronounced
maxima between 0.00 and 2.00 ML of Fe, in size compa-

rable with the Kerr rotation angle for at least seven(com-
plete) Fe monolayers on top of Pd. This at a first glance
(experimentally observed) surprising result,3 in fact, is not
totally unexpected, because in a previous paper27 it was al-
ready predicted that the Kerr rotation angle can be increased
as compared to that of the corresponding ordered system if
parts of substrate segregates into the(magnetic) surface. In
the case of Co/Pt,27 it was shown that the high polarizability
of the paramagnetic substrate leads to a contribution of the
(substrate) buffer layers to the optical conductivity larger

TABLE III. Concentration profiles of fcc layered systems Fe/Pds100d containing fractional numbers of Fe layers as experimentally
determined by fitting the x-ray diffraction data(Ref. 3) and the corresponding model profiles used in the calculations. Not listed are the seven
(eight) Pd buffer layers to the Pd(100) substrate on the right. Boldface subscripts in the second column mark layers containing nonstoichio-
metric binary alloys: in the third column they point out differences with respect to the experimental concentration profiles. Also listed are
theoretical profiles that correspond to an experimental Fe coverage of 0.46, 1.50, and 1.97 ML and in total contain 1.00(a) and 2.04(b) ML
of Fe, respectively.

Fe (ML )

Experimentally determined
concentration profilesa

fcc Fe/Pds100d
Model layered system

concentration profiles II

0.25 Pd0.15/Fe0.25Pd0.75/ Pd0.15Vac0.85/Fe0.25Pd0.75/

0.46 Fe0.25Pd0.18/Fe0.06Pd0.94/Fe0.15Pd0.85/ Fe0.82Pd0.18/Fe0.06Pd0.94/Fe0.12Pd0.88/
sad

0.66 Fe0.04/Fe0.37Pd0.25/Fe0.10Pd0.90/Fe0.15Pd0.85/ Fe0.04Pd0.96/Fe0.37Pd0.63/Fe0.10Pd0.90/Fe0.15Pd0.85/

0.89 Fe0.03/Fe0.21Pd0.64/Fe0.35Pd0.85/Fe0.30Pd0.70/ Fe0.03Vac0.97/Fe0.21Pd0.79/Fe0.35Pd0.65/Fe0.30Pd0.70/

1.10 Fe0.15/Fe0.30Pd0.60/Fe0.40Pd0.60/Fe0.25Pd0.75/ Fe0.15Vac0.85/Fe0.30Pd0.70/Fe0.40Pd0.60/Fe0.25Pd0.75/

1.24 Fe0.27/Fe0.26Pd0.74/Fe0.42Pd0.58/Fe0.29Pd0.71/ Fe0.27Vac0.73/Fe0.26Pd0.74/Fe0.42Pd0.58/Fe0.29Pd0.71/

1.50 Fe0.29Pd0.17/Fe0.47Pd0.53/Fe0.27Pd0.73/Fe0.47Pd0.53/ Fe0.83Pd0.17/Fe0.47Pd0.53/Fe0.27Pd0.73/Fe0.47Pd0.53/
sbd

1.97 Fe0.64Pd0.29/Fe0.57Pd0.43/Fe0.37Pd0.63/Fe0.39Pd0.61/ Fe0.71Pd0.29/Fe0.57Pd0.43/Fe0.37Pd0.63/Fe0.39Pd0.61/
sbd

aReference 3.

FIG. 1. Longitudinal Kerr rotation angle for oblique incidence
su=70°d and p-polarized lights"v=1.847 654 eVd in the case of
fcc Fe/Pds100d. The calculated Kerr rotation anglesuK in mdeg
s10−3 degd corresponding to concentration profiles I(II ) are shown
as pluses(crosses) and those corresponding to the ordered layered
systems FeN/Pds100d, with NPN, as solid circles. The properly
scaled experimental Kerr signals(arbitrary units) from Ref. 3 refer
to open symbols: squares, up and down triangles denote data from
samples obtained by pulse laser deposition performed at tempera-
tures T=50–70 K, while diamonds represent data recorded from
thermal deposited probes at room temperature. Dashed lines con-
nect different experimental Kerr signal sets; the solid line follows
the regression of the calculated Kerr rotation angles for concentra-
tion profiles I and for the ordered layered systems.
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than that of the magnetic surface. This is also the case for the
system Fe/Pds100d as easily can be seen by comparing in
Fig. 1 the Kerr rotation angles for nominal 1 ML of Fe(see
in Table III the entry for Fe 0.46 ML in the column headed
by concentration profiles II) with that calculated for the ideal
system Fe1/Pd5/Pds100d.

From Fig. 1 one immediately can see that the two-peak
structure obtained for Fe thicknesses below 2.00 ML agrees
well with the experimentally observed pattern, although the
calculated minimum around 1.00 ML of Fe is more pro-
nounced than the experimental one. It is well known that
only in the polar Kerr effect28 or in a specific transverse
configuration29,30 does the Kerr angle change linearly with
respect to the magnitude of the magnetization. It is therefore
not surprising at all that for more than 2 ML of Fe both the
calculated and the experimental Kerr rotation angles in Fig. 1
depend quadratically on the number of Fe layers.

The behavior of the Kerr ellipticity angleeK as a function
of the Fe coverage(see Fig. 2) is very similar to that ofuK in

Fig. 1; i.e., several peaks show up for Fe thicknesses below
2.00 ML, whereas above 2.00 ML the Kerr ellipticity angle
changes approximately quadratically with the number of Fe
monolayers. Unfortunately, since no Kerr ellipticity angles
were measured, a comparison of the calculated data with
experimental ones cannot be made.

C. Relation to magnetic properties

There seems to be no direct correlation between the lon-
gitudinal Kerr rotation angle and the total magnetic moment.
As can be seen from Fig. 3, the total spin magnetic moment26

(for all concentration profiles in Tables II and III) is approxi-
mately a linear function of the number of Fe layers, extend-
ing even to Fe submonolayers. A comparison of the total
orbital magnetic moments26 in Fig. 4 with the Kerr rotation
anglesuK in Fig. 1 seems to suggest that the occurrence of

FIG. 2. Longitudinal Kerr ellipticity angle for oblique incidence
su=70°d and p-polarized lights"v=1.847 654 eVd in the case of
fcc Fe/Pds100d. The calculated Kerr ellipticity angleseK in mdeg
s10−3 degd corresponding to concentration profiles I(II ) are shown
as pluses(crosses) and those corresponding to the ordered layered
systems FeN/Pds100d, with NPN, as solid circles. The solid line
follows the regression of the calculated Kerr ellipticity angles for
concentration profiles I and for the ordered layered systems.

FIG. 3. Spin magnetic moments in the case of fcc Fe/Pds100d.
The calculated spin magnetic momentsmspin corresponding to con-
centration profiles I(II ) are shown as pluses(crosses). The solid
line follows the regression of the calculated spin magnetic moments
for concentration profiles I and II.

FIG. 4. Orbital magnetic moments in the case of fcc
Fe/Pds100d. The calculated orbital magnetic momentsmorb corre-
sponding to concentration profiles I(II ) are shown as pluses
(crosses) and those corresponding to ordered layered systems
Fe1s2d /Pds100d as solid circles. The solid line follows the calculated
orbital magnetic moments for concentration profiles I and
Fe1s2d /Pds100d.

FIG. 5. Band energy contribution to the magnetic anisotropy
energy in the case of fcc Fe/Pds100d. The calculated band energy
differencesDEb corresponding to concentration profiles I(II ) are
shown as pluses(crosses) and those corresponding to the ordered
layered systems FeN/Pds100d, with NPN, as solid circles in the
inset. The solid lines follow the calculated band energy differences
for concentration profiles I(II ) and for the ordered layered systems.
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peaks for both quantities has to be related to the same intrin-
sic source. Because the orbital magnetic moment depends
linearly on the strength of the spin-orbit coupling, it seems
that the sharp maxima of the longitudinal Kerr rotation angle
are mainly caused by spin-orbit coupling.

From Fig. 5 one can see that the band energy part of the
anisotropy energy(for computational details, see, e.g., Ref.
26) for ideal ordered systems with less than 3 ML Fe favors
an out-of-plane magnetization, whereas above 4 ML of Fe
the magnetization is always in plane.2,4 Since for all systems
corresponding to the model concentration profiles I and II,
DEb,0, it can safely be concluded that because of diffusion
effects, surface roughness, etc., during the deposition of Fe
on top of Pd(100) all these systems have an in-plane magne-
tization, which in turn cannot be monitored by the polar Kerr
effect.

V. SUMMARY

It has been shown that by modeling the Fe/Pds100d sys-
tem with submonolayers Fe coverage via concentration pro-
files appropriate to the experimental ones, the calculated lon-

gitudinal Kerr rotation angles are in very good agreement
with the experimental results; i.e., the observed maxima for
Fe submonolayer thicknesses and the quadratic dependence
on the Fe content above 2 ML of Fe are both well repro-
duced. It was also found that the longitudinal Kerr rotation
angle cannot be simply related to either the(spin or orbital)
magnetic moments or to the band energy part of the magnetic
anisotropy energy.
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