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Abstract
The magnetocrystalline anisotropy (MCA) of bulk and thick films of FePt is
calculated from a ‘first-principles’ theory. The starting point is a description
from electronic density functional theory for systems of interacting electrons
moving in lattices of ions. Relativistic effects such as spin–orbit coupling are
included. FePt readily transforms into a CuAu-type (L10) ordered phase and
this coincides with the material’s high anisotropy. Here we describe how to
calculate the MCA of a partially ordered alloy and to extract its dependence
on the long range chemical order parameter η. We present calculations of
the MCA of FePt as a function of η and find excellent agreement with the
experimental data of Okamoto et al (2002 Phys. Rev. B 66 024413) and others
with respect to the magnetic easy axis, the magnitude of the MCA and its
trend with decreasing η. We also study the paramagnetic phase of the ordered
alloy using the ‘disordered local moment’ picture of metallic magnetism at
finite temperatures. We calculate a Curie temperature of 935 K in reasonable
agreement with experiment (710 K) and find the easy axis for the onset of
ferromagnetic order to coincide with the magnetic easy axis found at low
temperatures.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

For many years alloys comprised of approximately equal amounts of iron and platinum have
attracted much attention owing to their relatively high magnetocrystalline anisotropies (MCA).
Films of these alloys are easy to manufacture and are found to be chemically stable so that
their potential for high density [1] and magneto-optic recording [2] applications is being
vigorously investigated [3]. When annealed at appropriate temperatures, the equiatomic
FePt system undergoes a transformation from the high-temperature disordered fcc γ phase,
observed clearly at T > 1300 ◦C, to the ordered face-centred tetragonal (fct) L10 phase.
The phase is ferromagnetically ordered below a Curie temperature of 710 K and acquires
a saturation magnetization per iron atom of roughly 3 µB and possesses one of the highest
uniaxial anisotropy constants Ku, up to ∼108 erg cm−3 (0.88 meV/FePt pair) [4]. The easy
axis is perpendicular to the iron/platinum layer stacking of the L10 structure. Ku depends
strongly on the extent of the tetragonal L10 ordering whereas the disordered fcc γ solid
solution, when quenched to low temperatures, is magnetically soft owing to its inherent cubic
structure.

Much work has focused on the growth and microstructure of FePt thin films. Whereas the
as-deposited FePt films are magnetically soft due to many imperfections, after annealing the
L10 structure develops with a consequent high coercivity of ∼3–4 kOe [5]. The annealed films
consist of anisotropic FePt nanoparticles within a non-magnetic matrix [6] with grain sizes as
small as 3 nm making the films promising for high-density magnetic recording applications.
The extent of the all-important L10 long-range chemical order depends on the preparation of
these nano-composite films. Recently Okamoto et al [7] carried out Hall effect measurements
on a set of FePt L10 films with different long-range order parameters, η. They find a significant
drop of the first order uniaxial magnetic anisotropy constant as the size of the order parameter
diminishes.

The chemical stability of thick FePt alloy films makes them easy to manufacture. Thick
FePt films adopt the structure and magnetic properties of the bulk system and when the magnetic
surface anisotropy becomes negligible, the measured anisotropy constant Ku relates directly
to the bulk MCA term, which owes its origin to the spin–orbit coupling (SOC) of the electrons
in the material. This MCA can be calculated within the tenets of relativistic density functional
theory [8–12]. In this paper we explore how the MCA of a partially ordered alloy can be
calculated from this ‘first principles’ theory. We obtain the MCA as a function of the long-
range order parameter of the L10 FePt phase and carry out, to our knowledge, the first such
calculation of this effect. The magnetic anisotropy also varies strongly with temperature. We
therefore also examine the paramagnetic phase of the ordered alloy and determine the easy
axis for the onset of magnetic order in this system.

In ordered magnetic binary alloys, the MCA can reach values of the order of meV per unit
cell which is several orders of magnitude larger than those of the 3d ferromagnetic transition
metals and their alloy solid solutions. Using perturbative approaches for SOC, there have
been some theoretical attempts to calculate the MCA of ordered FePt [13]. These calculations
readily find the easy axis perpendicular to the layering as found experimentally but the values
reported are typically somewhat larger than empirical values. In an earlier work [14] we
used the spin-polarized fully relativistic Korringa–Kohn–Rostokerelectronic structure method
within the coherent-potential approximation (SPR-KKR-CPA) [15] to describe the MCA of
the compositionally disordered FePt solid solution. The SPR-KKR-CPA has also been applied
to give rather realistic estimates of the MCA of (FecPt1−c)n/Pt superstructures [16]. We also
calculated [14] the enhancement of the MCA of the alloy when significant atomic short-range
order (ASRO) is present [17]. Similar studies had already been made of Fe0.5Co0.5, Co0.5Pt0.5
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and Fe0.5Pd0.5 alloys [18]. In this paper we follow the MCA into the long-range ordered L10

FePt phase and monitor its increase with that of the order parameter.
In the next section we describe briefly how to model the partially ordered L10 FePt alloy

and in the following section detail how to calculate the MCA of such a system. We also outline
how the temperature dependence of the MCA can be modelled culminating with a calculation
of the easy axis for the onset of magnetic order in FePt alloys at high temperatures. We then
present our results for the dependence of the MCA of FePt alloys on the long-range order
parameter. We complete the paper with a short summary.

2. Compositional order

Ordering in alloys can be succinctly classified in terms of static concentration waves [19].
In a binary alloy AcB1−c the A and B atoms occupy a regular array of lattice sites. At high
temperatures the solid solution has each of its sites occupied by either an A- or B-type atom
with probabilities c and (1− c), respectively, i.e. a uniform concentration profile. In terms of a
set of site-occupation variables {ξi }, (with ξi = 1(0) when the i th site in the lattice is occupied
by an A(B)-type atom) the thermodynamic average, 〈ξi 〉, of the site-occupation variable is the
concentration ci at that site and for the solid solution ci = c for all sites. Below some transition
temperature, T0, the system orders (or phase separates) so that a compositionally ordered
alloy forms, and ci varies from site to site tracing out a superposition of static concentration
waves [19, 20], i.e.

ci = c + 1
2

∑
q

[
cqeiq·Ri + c∗

qe−iq·Ri
]
, (2.1)

where cq are the amplitudes of the concentration waves with wavevectors q and Ri are the
lattice positions. Usually only a few concentration waves are needed to describe a particular
ordered structure. For example, the CuAu-like L10 tetragonal ordered structure in an alloy
with c = 0.5 is set up by a single concentration wave with cq = 1

2 and q = (0, 0, 1) (q is in
units of 2π/a, a being the lattice parameter). The L10 long-range order parameter η is equal
to twice c(0,0,1), 0 in the disordered phase ranging up to unity for the completely ordered phase.

Elsewhere [20–22] there are detailed discussions on how to describe theoretically the
atomic short range order in the compositionally disordered phase in terms of a quantity S(2)

i j

S(2)
jk = −∂2�({ci})

∂c j∂ck

∣∣∣∣{ci=c}
, (2.2)

i.e. a second derivative with respect to concentration of the grand potential (from density
functional theory) describing the interacting electron system which constitutes the alloy. S(2)

i j ,
formally a direct pair correlation function, can loosely be pictured as an effective atom–atom
interchange energy and when set by the electronic structure of the disordered phase, ci = c, it
leads to the atomic short-range order parameter, αi j = β[〈ξiξ j〉−〈ξi 〉〈ξ j 〉]. The lattice Fourier
transform α(q, T ) can be measured by diffuse scattering experiments and is connected directly
to S(2)

i j by α(q, T ) = βc(1 − c)/(1 − βc(1 − c)S(2)(q)) where S(2)(q) is the lattice Fourier

transform of S(2)
i j . The spinodal transition temperature T0, below which the alloy orders into

a structure characterized by the concentration wavevector qmax, is determined by S(2)(qmax),
where qmax is the value at which S(2)(q) is maximal (qmax = (0, 0, 1) for L10 order). We
can write [20, 22], T0 = c(1 − c)S(2)(qmax)/kB. Calculations of S(2)(q) then can provide a
quantitative description of the propensity of an alloy to order when thermally annealed.

As shown elsewhere [22–24] the electronic origins of S(2)(q) describe how the state
of magnetic order present at the ageing temperature can affect this propensity. In the
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ferromagnetic state the electronic bands are spin-polarized. As the temperature of a metallic
magnet is raised, spin fluctuations are excited which eventually destroy the long-range magnetic
order and, hence, the overall spin polarization of the system’s electronic structure. In many
materials a simple model of ‘local moments’, which produce local magnetic fields on the
lattice sites, effectively describes this phenomenon. The moments are assumed to vary their
orientations slowly on the timescale of the electronic motions [25] and to be self-consistently
maintained by them. The average over the local moments’ orientations produces zero overall
magnetization in the paramagnetic state.

This ‘disordered local moment’ (DLM) picture has been formulated so that the magnetic
fluctuations are dealt with using KKR-CPA techniques. It is one of very few fully
first-principles approach to the problem of the onset of ferro- and antiferromagnetism in
metals [26, 27]. At no stage does it map the many-electron problem onto an effective
Heisenberg model, and yet it deals, qualitatively, with both the ground state and the demise
of magnetic long-range order at the Curie temperature in a material-specific, parameter-free
manner. It is based on the combination of constrained density-functional theory (DFT) with
the first-principles, spin-polarized multiple scattering (KKR-CPA) description of electrons in
states with random orientation of local moments. Among its many successes are the prediction
of the experimentally observed local exchange splitting in bulk Fe and the onset of magnetic
order in Fe and Co alloys as well as in ultra-thin Fe and Co films [28]. Using this theory for
ordered FePt we find a Curie temperature of 930 K. This estimate from a mean field theory
compares reasonably well with the experimental value [29] of 710 K and shows that the energy
scale of the magnetic fluctuations is produced adequately by the local moment picture. The
easy axis for the onset of magnetic order can also be found from this DLM picture which we
now discuss.

In the DLM scenario, for times, τ � h̄/w, (h̄/w is electronic hopping time) but τ < τsf

(τsf is typical spin fluctuation time), the spin orientations of the electrons leaving an atomic
site are sufficiently correlated with those arriving that the magnetization integrated over a unit
cell and averaged over τ is non-zero. The probability of having a particular arrangements of
local moments with orientations {êi} is given by

P({êi }) = exp[−β�({êi})]∏
j

∫
dê j exp[−β�({êi})]

where �({êi}) is the ‘generalized’ electronic grand potential from SDFT and β = (kBT )−1.
�({êi}) plays the part of a classical ‘spin’ or ‘local moment’ Hamiltonian. A tractable theory
is produced by a suitable choice of a ‘reference’ Hamiltonian �0{êi} and use of the Feynman
inequality [27] F � F0 + 〈� − �0〉0 with

F0 = −(1/β) ln
∏

i

∫
dêi exp(−β�0) (2.3)

and

〈X〉0 =
∏

i

∫
dêi X exp(−β�0)

/ ∏
i

∫
dêi exp(−β�0) =

∏
i

∫
dei P0{êi }X{êi}

with �0 in the form

�0 =
∑

i

ω
(1)
i (êi ) (2.4)

and a ‘first-principles’ mean field theory is set up where the averaging is performed using
techniques adapted from theory of the electronic structure of disordered alloys (SCF-KKR-
CPA).
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By including relativistic effects on the electronic structure we can develop the DLM theory
to find the temperature dependence of the MCA. For a ferromagnetic metal magnetized along
a direction n̂ at temperature T and using the ‘reference local moment Hamiltonian’ of the form
�

(n̂)

0 = ∑
i h(n̂)

i n̂ · êi , the free energy of the system at T is given by

F (n̂) = 〈�(n̂)〉 +
1

β

∑
i

∫
P(n̂)

i (êi ) ln P(n̂)
i (êi ) dêi

where P(n̂)
i (êi) = exp(−βh(n̂)

i n̂ · êi)/
∫

exp(−βh(n̂)
i n̂ · êi ) dêi and the Weiss field h(n̂)

i =
3

4π

∫ 〈�(n̂){êl}〉êi n̂ · êi dêi . The magnetization M = Mn̂ is given by M = ∫
P(n̂)

i (êi)n̂ · êi dêi .
The magnetic anisotropy is found by taking the difference between the energies for different
magnetization directions. Full details of this approach will be given elsewhere [30].

By considering the response of the paramagnetic DLM state to the addition of a small
external magnetic field, a mean field estimate can be made of the temperature below which a
magnetization will spontaneously form in the direction of the applied field. For a infinitesimal
field in the (0, 0, 1) direction we have calculated a Curie temperature of 935 K, whereas if we
consider the external field to be oriented parallel to the Fe and Pt layers of the L10 structure, Tc

is 922 K. This shows that the easy axis for the onset of magnetic order in this system is along
the c-axis, the same direction as the easy axis found at low temperatures.

In alloys the electronic interactions, which support such thermal, local-moment, spin
fluctuations at high temperatures in the paramagnetic state,are also responsible for determining
the nature of compositional ordering there. In a separate paper [14] we have calculated S(2)(q)

for both ferromagnetic and paramagnetic (DLM) phases of the Fe0.5Pt0.5 solid solution and our
calculations provide an explanation for the experimental observation that the atomic ordering
set up in Fe0.5Pt0.5 annealed at a temperature above Tc is similar to that in samples aged below
in the ferromagnetically ordered state. We find FePt in both paramagnetic and ferromagnetic
states to be unstable to L10-type compositional ordering modulations (qmax = (0, 0, 1)) below
temperatures of 1450 and 1575 K, respectively. These ab initio values also compare well
with what is observed experimentally, namely L10-type order below temperatures of roughly
1600 K. In the next section we calculate the effect of this ordering upon the uniaxial magnetic
anisotropy of ordering the alloy.

3. Magnetocrystalline anisotropy

The magnetic anisotropy of a partially ordered alloy (omitting the finite temperature spin
fluctuation effects) can be found together with its dependence on the long-range order parameter
η. The MAE K (η) of such an alloy can be written as the difference in the electronic grand-
potential of the system magnetized along two directions n1 and n2. Thus,

K (η) = �(η; n1) − �(η; n2). (3.1)

We assume that the double-counting correction �DC(η; n) is generally unaffected by the
change in the magnetization direction [15], and therefore K (η) is given as the difference
between the sum over effective single electron energies K (η) = ∫

dε f (ε, ν1)εn(η, ε, n1) −∫
dε f (ε1ν2)εn(η, ε, n2) where f (ε, ν) is the Fermi–Dirac function and n(η, ε, n) the

electronic density of states of the partially ordered material magnetized along n. Integrating
by parts gives [15]

K (η) = −
∫ ∞

−∞
dε f (ε, ν1) [N(η, ε; n1) − N(η, ε; n2)] + O(ν1 − ν2)

2,

where N(η, ε; n) is the integrated density of states and ν1 and ν2 are the chemical potentials
of the system when the magnetization is along the n1 and n2 directions, respectively. The
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change in the chemical potential originates from a redistribution of the occupied energy states
as the magnetization direction is changed. Note that the effect, the second term in the equation
above, on K (η) is second order in (ν1 − ν2), and can be shown to be very small compared
to the first term [15]. In the following we use spin-polarized, relativistic, multiple-scattering
theory and the Lloyd formula [31] for N(η, ε; n).

A partially ordered L10-FePt alloy is comprised of four interpenetrating simple cubic
(or tetragonal) lattices and each site of a given sub-lattice n has the probability cn of being
occupied by a Fe atom. For an alloy with long-range order parameter η, the sites of two of
the sublattices have the probability (1 + η)/2 of being occupied by an Fe atom whilst the
other two have the probability (1 − η)/2. For η = 1, two sublattices are entirely Fe-occupied
whilst the other two are wholly platinum. The coherent-potential approximation adapted for
a multi-sublattice system [32–34] is used to deal with the averaging over disorder for η �= 1.
We choose n1 = (0, 0, 1), and n2 = (1, 0, 0) and the uniaxial magnetic anisotropy constant
of L10-FePt as a function of the order parameter η is

Ku(η) ≈ −
∫ ∞

−∞
dε f (ε, ν(0,0,1)) [N(η, ε; (0, 0, 1)) − N(η, ε; (1, 0, 0))] (3.2)

and N(η, ε; n) is the multi-sublattice generalization of the expression for the integrated density
of states of a disordered alloy [15].

N(η, ε; n) = N0(ε) − (Im /π)

∫
BZ

dk log ‖t−1
c

− G(k, ε)‖

− (Im /π)

4∑
n=1

(cn log |1 + (t−1
Fe − t−1

c,n)τ
c,nn|

+ (1 − cn) log |1 + (t−1
Pt − t−1

c,n)τ
c,nn|)

where t
c

is the scattering t-matrix for the effective CPA medium which is a matrix with
elements labelled by sublattice n and orbital (l, m) and spin (s) angular momentum quantum
numbers. It is diagonal with respect to n. G(k, ε) is the structure constant matrix with elements

Gn,n′
l,m;l′ ,m′δs,s′(k, ε). The integral of the first term is over the Brillouin zone of the simple cubic

(c/a = 1) or tetragonal lattice. tFe and tPt are the single site t-matrices describing scattering
from Fe and Pt sites, respectively. τ c,nn is the site diagonal scattering path operator describing
scattering from and to a site on the nth sublattice. It is given by an integral over the Brillouin
zone

τ c,nn =
∫

dk (t−1
c

− G(k, ε))−1
n,n (3.3)

and the CPA condition which sets t
c

and τ c,nn is

τ c,nn = cn((τ
c,nn)−1 + (t−1

Fe − t−1
c,n))

−1 + (1 − cn)((τ
c,nn)−1 + (t−1

Pt − t−1
c,n))

−1. (3.4)

4. Results and discussion

The first step in calculating the MCA from equation (3.2) is to generate self-consistently the
appropriate one-electron Fe and Pt potentials for partially ordered FePt alloys [33, 34]. Two
sets of calculations were carried out. The first for crystal structures with the unit-cell volume
fixed at the experimental volume and c/a = 0.981 and secondly, for the same unit cell volume
but c/a set equal to one. Values of the average magnetic moments per iron and platinum sites
are shown as a function of η (η = 2S − 1) in figure 1. The moments of the iron sites are
rather independent of the extent of ordering of the alloy until nearly complete order (η > 0.8,
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Figure 1. Total average and site-projected average spin magnetic moments of Fe and Pt in L10-
FePt with c/a = 0.98 and 1 as calculated by the SPR-KKR-CPA for a range of long-range order
parameters, S = (1 + η)/2.
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Figure 2. The MCA of L10-FePt with c/a = 0.98 and 1, calculated as a function of order-parameter
S = (1 + η)/2. Experimental data [7] are also shown for comparison.

S > 0.9) when µFe drops slightly from 2.93 to 2.88 µB. As η increases from 0 to 0.8, the
moments on the Pt sites increase very slightly from 0.20 to 0.22 µB. Thereafter there is a climb
to 0.3 µB for complete order. These trends can be understood along the same lines as described
by Brown et al [35] for their calculations of the magnetic properties of partially ordered FePt
alloys. The overall average magnetic moment per site is shown in the upper panel of figure 1.
Our results are in good agreement with experimental findings [7].

Figure 2 shows the main results of the paper. The value of the uniaxial magnetic anisotropy
constant, Ku(η) is shown as a function of long range order parameter η (=2S − 1). The
measurements of Okamoto et al [7] are also shown for comparison. There is excellent
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agreement with the experimental data with the easy axis, the magnitude of the anisotropy
and its trend with the order parameter.

These results highlight the potential of this method for finding ways of designing materials
based on FePt in which the magnetic properties are optimized for applications.

5. Conclusions

The high magnetocrystalline anisotropy of equiatomic FePt makes this material suitable for
many magnetic applications. The L10 ordered phase of alternating Fe and Pt planes is a key
factor for its significant MCA. In this paper we have shown how the MCA of a partially ordered
alloy can be calculated from ‘first-principles’ relativistic density functional theory. The first
application of this approach has been for FePt. The calculated MCA of completely ordered
FePt is in excellent agreement with experimental values and its sharp drop with diminishing
long-range chemical order parameter is also very well described. We have also studied the
paramagnetic phase of the ordered alloy, using a model of ‘disordered local moments’ for the
magnetic fluctuations and determined its Curie temperature and also the easy axis for the onset
of ferromagnetic order. This coincides with the magnetic easy axis found at low temperatures.
Future work will involve the study of the DLM picture in the ferromagnetic phase where we
shall calculate the temperature dependence of the magnetic anisotropy constants [30].
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