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By employing a real-space formulation of the Kubo-Greenwood equation based on a Green’s function
embedding technique combined with the fully relativistic spin-polarized Korringa-Kohn-Rostoker method a
detailed investigation of the electrical transport through atomic-scaled contacts between two Au(001) semi-
infinite systems is presented. Following a careful numerical test of the method the conductance of Au nano-
contacts with different geometries is calculated and, in turn, correlated with the thickness of the constriction.
Particular emphasis is paid to the influence of transition metal impurities(Pd, Fe, and Co) placed on various
positions near the center of a particular contact. We found that the conductance is very sensitive to the position
of the magnetic impurities and that the mechanism for the occurring relative changes can mainly be attributed
to the impurities’ minorityd-band inducing resonant line shapes in thes-like density of states at the center of
the contact.
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I. INTRODUCTION

The number of theoretical and experimental investigations
of electronic structure and transport properties of atomic-
sized conductors has greatly been increased over the last de-
cade. The increasing interest for investigating atomic-sized
conductors is driven by the possibility of using such systems
in future nanoelectronic technologies. Widely applied meth-
ods for fabricating nanocontacts between macroscopic elec-
trodes are the mechanically controllable break junction
technique1–4 and scanning tunneling microscopy(STM)5–7

by pushing the tip intentionally into the surface. The crucial
problems for both methods are the presence of contaminants
and the mechanical stability. For a comprehensive review of
the field of atomic-sized conductors, see Ref. 8. Nanocon-
tacts made of gold are presumably the most studied systems
in the literature both theoretically and experimentally. A
dominant peak very close to the conductance quantum,
1 G0=2e2/h, has been reported for gold(and other noble
metals) in the conductance histogram,2,7 attributed to the
highly transmittingsp channel across a linear chain connect-
ing the two electrodes. It was also found that the chain for-
mation is in close connection with surface reconstruction
phenomena.3

Recently, electric transport through point contacts made
from alloys have intensively been investigated.9,10 Such ex-
periments can provide information either on the sensitivity of
the conductivity with respect to the concentration dependent
electronic structure(Fermi surface) of the bulk alloy9 or the
atomic (compositional) arrangement in the contact wire.10

From conductance histograms of atomic point contacts made
from noble-transition-metal alloys Heemskerket al.10 con-
cluded that the composition of the point contact changed
with bias voltage.

In order to understand the mechanism of nanocontact for-
mation, electronic structure, and transport, different theoret-
ical methods have been developed. Some theoretical studies
use tight-binding methods,11,12 others are based onab initio

density functional theory.13–15 Most of the transport studies
rely on the Landauer-Büttiker approach,16,17 although
Baranger and Stone adopted the more sophisticated Kubo-
Greenwood formula18–21 for calculating the conductance be-
tween free electron leads.22 By using this approach a recent
study14 focused on the effect of transition metal imperfec-
tions inserted into an infinite Cu wire showing that the con-
ductance of the wire decreased due to the different conduc-
tance for the two spin channels(spin-filter effect).

The fully relativistic screened Korringa-Kohn-Rostoker
(SKKR) Green’s function method proved to be an effective
method to calculate electronic structure and magnetic prop-
erties of layered systems.23,24 Combined with an embedding
technique based on multiple scattering theory, calculations
have been performed for magnetic clusters on surfaces.25–27

Employing the Kubo-Greenwood formula within this method
permits one to investigate transport properties of atomic
sized structures.28 In this paper we report on calculations of
transport properties of gold nanocontacts. We first briefly re-
view the theoretical background of the applied method and
give numerical evidence of its reliability. We then calculate
and analyze the conductance for different atomic arrange-
ments between semi-infinite Au(001) systems and investigate
the effect of transition metal impurities on the conductance.
We find a qualitatively satisfactory explanation of the ob-
served changes in the conductance in terms of changes in the
s-like local density of states(LDOS) at the center of the
point contact caused by interactions with thed-like states of
the impurity.

II. THEORETICAL APPROACH

A. Expression of the conductivity

The static limit of the optical conductivity tensor is given
by the Kubo-Luttinger formula18,20 as
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whereV is the volume of the system,fs«d is the Fermi-Dirac
distribution function,Jm is themth component(m=x,y, or z)
of the current density operator,G±s«d are the corresponding
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which has the meaning of a zero-temperature, energy depen-
dent conductivity. ForT=0, smn is obviously given by
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A numerically tractable formula can be obtained only for the
diagonal elementsof the conductivity tensor, namely,
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yielding the widely used Kubo-Greenwood formula19,21 of
the dc conductivity at finite temperatures
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On the other hand, Eq.(1) can be reformulated as follows:
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namely, in terms of an equation which is similar to the for-
mulation of Baranger and Stone22 but clearly can be cast into
a relativistic form.

B. Expression of the conductance

Linear response theory applies to an arbitrary choice for
the perturbating electric field because the response function
is obtained in the zero limit of perturbation. Let us assume,
therefore, that a constant electric fieldEz

J, pointing along the
z axis, i.e., normal to the planes, is applied in all cells of
layer J. Denoting thez component of current density aver-
aged over celli in layer I by jz

iI , the microscopic Ohm’s law
reads as

jz
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j
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whereVat is the volume of the unit cell in layerI. Note, that
in neglecting lattice relaxations,Vat is uniform in the whole
system. According to the Kubo-Greenwood formula, Eq.(6),
the zz component of the nonlocal conductivity tensor,szz

iI ,jJ

can be written at zero temperature as
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Here the integration is carried out over theith unit cell in
layer I, ViI , and thej th unit cell in layerJ, V jJ, while Tr
denotes a trace over four-component spinors. The total cur-
rent flowing through layerI can be written as

I tot = Aio
i

j z
iI = gU, s10d

where the applied voltageU is

U = Ez
Jd', s11d

andAi andd' denote the area of the two-dimensional(2D)
unit cell and the interlayer spacing, respectivelysVat

=Aid'd. Combining Eqs.(8), (10), and (11) results in an
expression for the conductance,
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where the summations should, in principle, be carried out
over all the cells in layersI andJ. An alternative choice of
the nonlocal conductivity tensor is given by Eq.(7). This
leads to a huge simplification for the conductance because,
as shown by Baranger and Stone22 for free electron leads, the
second term appearing in Eq.(7) becomes identically zero
when integrated over the layers,I ÞJ. It should be noted that
recently Mavropouloset al.29 rederived this result by assum-
ing Bloch boundary conditions for the leads. The conduc-
tance can thus be written as
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It has to be emphasized that because of the use of linear
response and current conservation, the choice of layersI and
J is arbitrary in the above formula. The numerical test of the
method will clearly demonstrate this feature(see Sec. III).
On the other hand, as shown in Ref. 29, when the layersI
and J are asymptotically far from each other, the present
formalism naturally recovers the Landauer-Büttiker
approach.16,17

C. Computational details

Using the embedding technique of multiple scattering the
matrix representation of the scattering path operator(SPO)
of a given cluster,t=cluss«d=htI i js«dj=htQQ8

i j s«dj, with i and j
denoting sites in the cluster,Q andQ8 indexing angular mo-
mentum quantum numbers, can be expressed as25

t=cluss«d = t=hosts«dfI= − st=host
−1 s«d − t=clus

−1 s«ddt=hosts«dg−1, s14d

wheret=hosts«d, t=cluss«d stand for the corresponding single-site
t matrices of the host medium and the cluster, andt=hosts«d for
the host SPO. For a two-dimensional(2D) translational in-
variant host medium, the latter one is calculated by

tIhost
iI ,jJs«d =

1
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E
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IJ s«,k id, s15d

where T i and T j are 2D lattice vectors and the integral is
performed over the 2D Brillouin zone of areaVBZ.

The self-consistent calculations for both the host and the
finite clusters were performed within the local spin-density
approximation,30 by using the atomic sphere approximation
and lmax=2 for the angular momentum expansion. The semi-
infinite host system was evaluated in terms of the screened
Korringa-Kohn-Rostoker method(SKKR)23,24 by sampling
45 ki points in the irreducibles1/8d part of the fcc(001) Bril-
louin zone, see Eq.(15), and 16 energy points along a semi-
circular contour in the upper complex energy semi-plane.
The latter setup also applied for the self-consistent cluster
calculations, whereby a sufficiently large number of atoms
from the neighboring host(including sites in the vacuum)
was taken into account in order to serve as a buffer for

charge fluctuations. In the case of magnetic impurities, the
orientation of magnetization was chosen to be normal to the
fcc(001) planes(direction z). Additional calculations of the
magnetic anisotropy energy confirmed this choice.

In terms of the SPO the conductance in Eq.(13) can be
calculated as
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whereJIz
iIs« ,«8d stands for the relativistic angular momentum

representation of the current density operator in celli of
layer I (see, e.g., in Ref. 28), and, correspondingly, the trace
is performed in angular momentum space. Inherent to the
SKKR method, a finite imaginary partd of the Fermi energy
has to be applied,«F

± =«F± id, which, however, has to be
continued to zero in order to ensure current conservation.
Concomitantly, the number ofki points taken in Eq.(15) has
to be considerably increased. All results presented in the next
section for the conductance refer tod=1mRyd.

In the present work no geometry optimization has been
carried out, that means all of the considered sites(both Au,
vacuum, and impurity sites) correspond to the positions of an
ideal fcc(001) structure of gold with a lattice constant of
a3D=7.68 a.u. A schematic view of a typical contact is dis-
played in Fig. 1. As follows from the above, atomic sites
refer to layers for which we use the notation:C the central
layer, C−1 andC+1 the layers below and above, etc. For the
contact shown in Fig. 2(a), e.g., the central layer contains 1
Au atom (the rest is built up from empty spheres), layersC
−1 andC+1 contain four Au atoms, layersC−2 andC+2
contain 9 Au atoms and, though not shown, all layersC−n
and C+n snù3d are completely filled with Au atoms and
will be denoted by full layers.

III. RESULTS AND DISCUSSION

A. Numerical tests on different gold contacts

As mentioned in Sec. II a finite Fermi level broadeningd
has to be used for the conductance calculations. As an ex-

FIG. 1. Schematic side view of a point contact between two
semi-infinite leads. The layers are labeled byC, C±1, etc.

AB INITIO STUDY OF THE ELECTRIC TRANSPORT… PHYSICAL REVIEW B 70, 134421(2004)

134421-3



ample, for the point contact depicted in Fig. 2(a), we inves-
tigated the dependence of the conductance ond. The sum-
mation in Eq.(16) was carried out up to convergence for the
first two (symmetric) full layers (I =C−3, J=C+3). As can
be seen from Fig. 3, the calculated conductances depend
strongly but nearly linear ond. A straight line fitted ford
ù1.5 mRyd intersects the vertical axis at 2.38G0. Assur-
ingly enough, a calculation withd=1 mRyd resulted ing
=2.40G0. Although the nearly linear dependence of the con-
ductance with respect tod enables an easy extrapolation to
d=0, as what follows all the calculations refer tod
=1 mRyd.

For the same type of contact we investigated the conver-
gence of the summation in Eq.(16) over the layersI andJ,
whereby we chose different symmetric pairs of full layers.
The convergence with respect to the number of atoms in the
layers is shown in Fig. 4. Convergence for about 20 atoms
can be obtained for the first two full layers(I =C−3, J=C
+3), whereas the number of sites needed to get convergent
sums gradually increases if one takes layers farther away
from the center of the contact. This kind of convergence
property is qualitatively understandable since the current
flows from the contact within a cone of some opening angle

that cuts out sheets of increasing area from the corresponding
layers. As all the calculations were performed withd
=1 mRyd, current conservation has to be expected. Conse-
quently the calculated conductance ought to be independent
with respect to the layers chosen for the summation in Eq.
(16). As can be seen from Fig. 4 this is satisfied within a
relative error of less then 10%. It should be noted, however,
that for the pairs of layers,I =C−n, J=C+n, nù6 conver-
gence was not achieved within this accuracy: By taking more
sites in the summations even a better coincidence of the cal-
culated conductance values for different pairs of layers can
be expected. Figure 4 also implies that an application of the
Landauer-Büttiker approach to calculate the conductance of
nanocontacts is numerically more tedious than the present
one, since, in principle, two layers situated infinitely far from
each other have to be taken in order to represent the leads.

Although only one Au atom is placed in the center of the
point contact considered above, see Fig. 2(a), the calculated
conductance is more than twice as large as the conductance
unit. This is easy to understand since the planesC−1 and
C+1, each containing four Au atoms, are relatively close to
each other and, therefore, tunneling contributes quite a lot to
the conductance through the contact. In order to obtain a
conductance around 1G0, detected in the experiments, a lin-
ear chain has to be considered. The existence of such linear
chains is obvious from the long plateau of the corresponding
conductance trace with respect to the piezo voltage in the
break-junction experiments. Since, as mentioned in Sec. II,
our method at present can only handle geometrical structures
confined to three-dimensional translational invariant simple
bulk parent lattices, as the simplest model of such a contact
we considered a slanted linear chain as shown in Fig. 2(b). In
here, the middle layersCd and the adjacent layerssC±1d
contain only one Au atom, layersC±2 andC±3 4 and 9 Au
atoms, respectively, while layersC±4 refer to the first two
full layers. The sum in Eq.(16) was carried out for two pairs
of layers, namely forI =C−4, J=C+4 (full layers) and for
I =C−2, J=C+2 (not full layers). The convergence with re-
spect to the number of atoms in the chosen layers can be seen
from Fig. 5. The respective converged values are 1.10G0
and 1.17G0. In the case ofI =C−2, J=C+2 we observed

FIG. 2. Perspective view of some contacts between two fcc(001)
semi-infinite leads. Only the partially filled layers are shown.(a)
Point contact,(b) slanted linear finite chain, and(c) 232 finite
chain.

FIG. 3. Calculated conductance as a function of the Fermi level
broadeningd for the Au contact shown in Fig. 2(a). The dashed
straight line is a linear fit to the values ford=1.5, 2.0, 2.5, and
3.0 mRyd.

FIG. 4. Conductance versus the number of sites included in the
sum in Eq.(16) for the contact in Fig. 2(a). The different curves
show conductances as calculated between different pairs of layers.
For a definition of the layer numbering see Fig. 1.
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that the contribution coming from the vacuum sites is nearly
zero: considering only four Au atoms in the summation al-
ready gave a value for the conductance close to the con-
verged one. The small difference between the two calculated
values 0.07G0 can most likely be attributed to an error
caused by the ASA. Nevertheless, as expected, the calculated
conductance is very near to the ideal value of 1G0.

Another interesting structure is the 232 chain described
in Ref. 14. Here we considered a finite length of this struc-
ture sandwiched between two semi-infinite systems, see Fig.
2(c). The conductance was calculated by performing the
summation for 100 atoms from each of the first two full
layers. As a result we obtained a conductance of 2.58G0.
Papanikolaouet al.14 got a conductance of 3G0 for an infi-
nite Cu wire to be associated with three conducting channels
within the Landauer approach. For an infinite wire the trans-
mission probability is unity for all states, therefore, the con-
ductance is just the number of bands crossing the Fermi
level. For the present case of a finite chain, the transmission
probability is less than unity for all the conducting states.
This qualitatively explains the reduced conductance with re-
spect to an infinite wire.

Finally, we studied the dependence of the conductance on
the thickness of the nanocontacts. All the investigated struc-
tures haveC4v symmetry and the central layer of the systems

is a plane of reflection symmetry. The set-up of the structures
is summarized in Table I. Contact 0 refers to a broken con-
tact, while the others have different thicknesses from 1 up to
9 Au atoms in the central layer. In Fig. 6 the calculated
conductances are displayed as performed by taking nearly
100 atoms from each of the first two full layers:I =C−4, J
=C+4 for the broken contact andI =C−3, J=C+3 for all the
other cases, see Table I. It can be seen that the conductance is
nearly proportional to the number of Au atoms in the central
layer. This finding can qualitatively be compared with the
result of model calculations for the conductance of a three-
dimensional electron gas through a connective neck as a
function of its area in the limit ofq0=90° for the opening
angle.31 In the case of the broken contact, the nonzero con-
ductance can again be attributed to tunneling of electrons.

B. Gold contact with an impurity

In recent break junction experiments9 remarkable changes
of the conductance histograms of nanocontacts formed by
AuPd alloys have been observed when varying the Pd con-
centration. Studying the effect of impurities placed into the
nanocontact is, in that context, at least relevant for dilute
alloys. The interesting question is whether the presence of
impurities can be observed in the measured conductance. For
that reason we investigated transition metal impurities such
as Pd, Fe, and Co placed at various positions of the point
contact as shown in Fig. 2(a). For the notation of the impu-
rity positions see Fig. 7. The calculated spin and orbital mo-
ments of the magnetic impurities are listed in Table II. AsTABLE I. Set-up of various nanocontacts. The table shows the

number of Au atoms in the layers as labeled by C, C±1, etc., in Fig.
1. Contact 1 refers to Fig. 2(a).

Layer
position

Contact

0 1 4 5 9

C±4 Full Full Full Full Full

C±3 9 Full Full Full Full

C±2 4 9 16 21 25

C±1 1 4 9 12 16

C 0 1 4 5 9

FIG. 5. Conductance versus the number of sites included in the
sum in Eq.(16) for the slanted wire shown in Fig. 2(b). Full circles
are the results of summing in layersI =C−4 andJ=C+4 (first full
layers), while squares refer to a summation in layersI =C−2 and
J=C+2 (layers containing four Au atoms).

FIG. 6. Conductance versus the number of Au atoms in the
central layer for the Au contacts described in Table I.

FIG. 7. Impurity positions(light gray spheres) in a Au point
contact, see Fig. 2(a).
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usual for magnetic impurities with reduced coordination
number,25 both for Fe and Co we obtained remarkably high
spin moments, and in all positions of a Co impurity large
orbital moments. In particular, the magnitude of the orbital
moments is very sensitive to the position of the impurity.
This is most obvious in the case of Fe, where at positions B
and C the orbital moment is relatively small, but at position
A a surprisingly high value of 0.47mB was obtained.

The summation over 116 atoms from each of the first two
full layers(I =C−3, J=C+3) in Eq. (16) has been carried out
in order to evaluate the conductance. The calculated values
are summarized in Table III. A Pd impurity(independent of
position) reduces only little of the conductance as compared
to a pure Au point contact. This qualitatively can be under-
stood from the local density of states(LDOS) of the Pd im-
purity (calculated by using an imaginary part of the energy of
d=1 mRyd). In Fig. 8 we plotted the corresponding LDOS at
positions A and C. Clearly, the change of the coordination
number(8 at position A and 12 at position C), i.e., different
hybridization between the Pd and Aud bands, results into
different widths for the Pdd-like LDOS. In both cases, how-
ever, the Pdd states are completely filled and no remarkable
change in the LDOS at Fermi level(conducting states) hap-
pens.

The case of the magnetic impurities seems to be more
interesting. As can be inferred from Table III impurities at
position B change only a little the conductance. Being placed
at position A, however, Fe and Co atoms increase the con-
ductance by 11% and 24%, while at position C they decrease
the conductance by 19% and 27%, respectively. In Ref. 14 it
was found that single Fe, Co(and also Ni) defects in a 2
32 infinite Cu wire decreased the conductance. By analyz-
ing the DOS it was concluded that the observed reduction of
the conductance is due to a depletion of thes states in the

minority band. The above situation is very similar to the case
of an Fe or Co impurity in position C of the point contact
considered, even the calculated drop of the conductance
(,−20% for Fe and,−28% for Co) agrees quantitatively
well with our present result. Our result, namely, that Fe and
Co impurities at position A increase the conductance can,
however, not be related to the results of Ref. 14. In order to
understand this feature we have to carefully investigate the
LDOS calculated for the point contact.

In Fig. 9 we plotted the minorityd-like LDOS of the Fe
and Co impurities in positions A and C as resolved according
to the canonical orbitalsdx2−y2, dxy, dxz, dxy, andd3z2−r2. We
have to stress that this kind of partial decomposition, usually
referred to as thes, ,m,sd representation of the LDOS, is not
unique within a relativistic formalism, since due to the spin-
orbit interaction the different spin and orbital components are
mixed. However, due to the large spin splitting of Fe and Co
the mixing of the majority and minority spin states can be
neglected. As can be seen from Fig. 9, the LDOS of an
impurity in position A is much narrower than in position C.
This is an obvious consequence of the difference in the co-
ordination numbers(8 for position A and 12 for positions C).
Thus an impurity in position A hybridizes less with the
neighboring Au atoms and, as implied by the LDOS, the
correspondingd states are fairly localized. Also to be seen is
a spin-orbit induced splitting of about 8 mRyds,0.1 eVd in
the very narrowdx2−y2-dxy states of the impurities in position
A. The difference of the band filling for the two kinds of
impurities shows up in a clear downward shift of the LDOS
of Co with respect to that of Fe.

In explaining the change of the conductance through the
point contact caused by the impurities in positions A and C,
thes-like DOS at the center site, i.e., at the narrowest section
of the contact, is plotted in the top half of Fig. 10. As a
comparison the corresponding very flats-like DOS is shown
for a pure Au contact. For contacts with impurities thiss-like
DOS shows a very interesting shape which can indeed be
correlated with the correspondingd3z2−r2-like DOS at the im-
purity site, see bottom half of Fig. 10. Clearly, the center
positions and the widths of thed3z2−r2-like DOS peaks and
those of the respective(anti-)resonants-like DOS shapes co-
incide well with each other. This kind of behavior in the

TABLE II. Calculated spin and orbital moments of magnetic
impurities placed at different positions in a Au point contact, see
Fig. 7.

Position

SzfmBg LzfmBg

Fe Co Fe Co

A 3.36 2.01 0.47 0.38

B 3.46 2.17 0.04 0.61

C 3.42 2.14 0.07 0.22

TABLE III. Calculated conductances of a Au point contact with
impurities on different positions, see Fig. 7.

Impurity
position

ConductancefG0g

Pd Fe Co

A 2.22 2.67 2.97

B 2.24 2.40 2.26

C 2.36 1.95 1.75

Pure Au 2.40

FIG. 8. Local density of states of a Pd impurity in position A
(solid line) and in position C(dashed line) of a Au point contact, see
Fig. 7.
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DOS resembles the case studied by Fano for a continuum
band and a discrete energy level in the presence of configu-
ration interaction(hybridization).32 Apparently, by keeping
this analogy, in the point contact thes-like states play the
role of a continuum and thed3z2−r2-like state of the impurity
acts as the discrete energy level. Since the two kinds of states
share the same cylindrical symmetry, interactions between
them can occur due to backscattering effects. It should be
noted that similar resonant line shapes in the STM I-V char-
acteristics have been observed for Kondo impurities at
surfaces33,34 and explained theoretically.35

Inspecting Fig. 10, the enhanceds-like DOS at the Fermi
level at the center of the point contact provides a nice inter-

pretation to the enhancement of the conductance when the Fe
and Co impurity is placed at position A. As the peak position
of thed3z2−r2-like states of Fe is shifted upward by more than
0.01 Ryd with respect to that of Co, the corresponding reso-
nance of thes-like states is also shifted and thes-like DOS at
the Fermi level is decreased. This is also in agreement with
the calculated conductances. In the case of impurities at po-
sition C, i.e., in a position bya=7.63 a.u. away from the
center of the contact, the resonant line shape of thes-like
states is reversed in sign, therefore, we observe a decreased
s-like DOS at the Fermi level, explaining in this case the
decreased conductance, see Table III. Since, however, the
s-like DOS for the case of a Co impurity is larger than for an

FIG. 9. Minority-spin orbital-
resolved d-like local density of
states of Fe and Co impurities in
position A (upper panels) and in
position C(lower panels) of a Au
point contact, see Fig. 7.

FIG. 10. Top left: minority-
spin s-like local density of states
at the center site of an Au point
contact with an impurity at posi-
tion A, see Fig. 7(solid line: Co,
dashed line: Fe). Top right: the
same as before, but with an impu-
ritiy at position C. As a compari-
son, in both figures the corre-
sponding LDOS for the pure Au
contact is plotted by dotted lines.
The solid vertical lines highlight
the position of the Fermi energy.
Bottom: minority-spind3z2−r2 lo-
cal density of states of the impuri-
ties (solid line: Co, dashed line:
Fe) at positions A (left) and C
(right). Vertical dashed lines mark
the center positions of the
d3z2−r2-LDOS peaks.
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Fe impurity, this simple picture cannot account correctly for
the opposite relationship we obtained for the corresponding
conductances.

IV. SUMMARY

By using a Green’s function technique based on the em-
bedding scheme of the multiple scattering theory and the
Kubo-Greenwood linear response theory as formulated by
Baranger and Stone22 we studied the conductance of gold
nanocontacts depending on the contact geometry and transi-
tion metal impurities placed at various positions. We per-
formed several numerical tests that proved the efficiency of
our method. In good agreement with experiments and other
calculations we obtained a conductance of 1.1G0 for a finite
linear chain connecting two semi-infinite Au leads. The cal-
culated conductance for a thicker 232 wire, 2.58G0, can be
related to a recent result for an infinite 232 chains3 G0d.14

Also in agreement with quantum mechanical model
calculations31 we found a nearly linear dependence of the
conductance on the “thickness” of the contact. By embed-
ding magnetic transition metal impurities into a point contact
we found both enhancement and reduction of the conduc-

tance depending on the position of the impurities. On ana-
lyzing the local density of states we concluded that the effect
of the impurity is mainly controlled by the interaction of the
minority d-like ands-like states giving rise to a resonant line
shape(Fano resonance) in the s-like DOS at the center of
contact. We suggest that this line shape should also be ob-
served inI-V conductance characteristics providing thus an
“experimental” tool to detect magnetic impurities(even their
position) in a noble metal point contact.
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