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Abstract

The optical properties of bulk Au and a (100) free surface of Au are deter-
mined by solving the Helmholtz–Fresnel equations for a geometry reflecting
layered systems. This approach is based on the use of the microscopical conduc-
tivity tensor evaluated fully relativistically and, for later purposes, does include
the option of choosing an arbitrary uniform direction of a possibly present
magnetization. It will be shown that, while so-called experimental bulk data
agree reasonably well with their theoretically obtained counterparts, in the case
of free surfaces of Au (semi-infinite systems) they not only disagree substantially
in size between different experiments but also with the theoretical values.
The shapes of the curves for the real and the imaginary parts of the diagonal
permittivity tensor elements "xx and "zz, however, are rather similar.

} 1. Introduction

There is no question that optical measurements, and in particular magneto-
optical investigations based on the Kerr effect are of great importance not only
in academic research but also on the industrial level (see for example the review
article by Weller (1995)). A theoretical description of such experiments and
techniques, however, has to deal with two important aspects, namely with a descrip-
tion of the actual optical phenomenon, which of course belongs to classical physics
(Mansuripur 2002) and the underlying microscopic origin in terms of a quantum-
mechanically defined optical conductivity tensor. This distinction between macro-
scopic and microscopic quantities becomes especially important in dealing with
multilayer systems such as magnetically coated metals serving as a suitable substrate.
Furthermore, since any kind of optical measurement has to be carried out from the
‘outside’ of the system to be investigated, that is it refers to a realistic system with
a defined surface, a surface near region and a buried interior, theoretical means have
to reflect properly the condition of being adequately realistic.
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In the present paper the main emphasis is put on the optical part of determining
permittivities. For this reason a system is chosen which very often serves as a
substrate for various kinds of magnetic multilayer system, namely pure Au.
Although this appears to be an easy example it will be shown that any sort of
comparison with experimental data has to be made with great care; depending
on the methods applied to produce experimentally suitable samples, substantial
differences in the optical properties can be found in the literature. In the following
a method is described to deal with all reflections and interferences of a system caused
by incident light parallel to the surface normal, but keeping the orientation of a
possibly present magnetization general, that is not restricting the magnetization to
point along the surface normal.

} 2. Optical properties of a layered system

The optical properties of a material can be described by the well-known
Helmholtz equation

n2E � eE � nEEð Þn ¼ 0,

where e is the permittivity tensor, n the refraction vector and E the electric field.
Since in thin-film systems the permittivity varies with the distance to the surface, this
equation has to be reformulated such that it can be expressed in layer-resolved
quantities. In the following, first the solutions of the Fresnel equation are discussed
in a single layer and then boundary conditions will be introduced in order to join up
the layer-resolved quantities.

2.1. The solution of the Helmholtz equation in one layer
Consider a solid magnetized homogeneously in an arbitrary direction, and let

the incident light be parallel to the surface normal (z axis, normal to the x–y plane).
The layer-resolved permittivity tensor e p and refraction vector np are then of the
form

e p¼

" p
xx " p

xy " p
xz

" p
yx " p

yy " p
yz

" p
zx " p

zy " p
zz

0B@
1CA, np ¼

0

0

np

0B@
1CA:

It should be noted that, in contrast with the work of Vernes et al. (2002a, b), in
this paper this form of e p corresponds to a general orientation of the magnetization
of the surface.

In order to determine np the Fresnel equation

det n2p��� � " p
�� � np,�np, �

� �
¼ 0, �, � 2 fx, y, zg,

has to be solved. Since in this equation only even powers of np occur, the correspond-
ing solutions fnðkÞp g, k ¼ 1, . . . , 4, have the property that

n 1ð Þ
p ¼ �n 3ð Þ

p , n 2ð Þ
p ¼ �n 4ð Þ

p ,

which in turn implies that these four solutions yield only two different systems
of equations and therefore only two linear independent solutions can be obtained
for the time-independent part of the electric field vector EðkÞ

p .
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The components of each wave can be expressed in terms of one component,
for example

EðkÞ
p ¼

EðkÞ
p, x

EðkÞ
p, yðE

ðkÞ
p, xÞ

EðkÞ
p, zðE

ðkÞ
p, xÞ

0BB@
1CCA, k ¼ 1, 3:

Describing multiple reflections of light at normal incidence, it is therefore sufficient
to take only the x and the y components into account. The monochromatic,
homogeneous and harmonic plane waves are then given by

EðkÞ
p ðz, tÞ ¼ EðkÞ

p exp ið ~qqpz� ~!!tÞ
� �

, ~qqp ¼ q0n
ðkÞ
p , ~!! ¼ !� i�, ð1Þ

where q0, given by

q0 ¼
!

c
,

is the propagation constant in vacuum, ! is the photon frequency and � is the lifetime
broadening parameter (Szunyogh and Weinberger 1999, Vernes et al. 2002a, c). For
later purposes it is necessary to identify the incident and the reflected waves at each
interface. It is convenient to define waves with nð1Þp and nð2Þp (Im ðnðkÞp Þ < 0, k ¼ 1, 2)
as incident waves and waves with nð3Þp and nð4Þp (Im ðnðkÞp Þ > 0, k ¼ 3, 4) as reflected
waves.

The total incident wave (indicated by the superscript inc) is a linear combination
of Eð1Þ

p and Eð2Þ
p , which by introducing a 2� 2 matrix can be written as a function of

the x component of Eð1Þ
p and the y component of Eð2Þ

p :

Einc
p, x

Einc
p, y

 !
¼ Ap

E 1ð Þ
p, x

E 2ð Þ
p, y

 !
, ð2Þ

where

Ap ¼

1
E 2ð Þ
p, xðE

ð2Þ
p, yÞ

E
ð2Þ
p, y

E 1ð Þ
p, yðE

ð1Þ
p, xÞ

E
1ð Þ
p, x

1

0BBBB@
1CCCCA:

It is easy to find the matrix A
0
p which connects the reflected wave to Eð3Þ

p and Eð4Þ
p .

The waves EðkÞ
p and Eðkþ2Þ

p , k ¼ 1, 2, differ only by a phase factor such that

Eð3Þ
p, x

E
ð3Þ
p, y

¼
Eð1Þ
p, x

E
ð1Þ
p, y

,
Eð4Þ
p, x

E
ð4Þ
p, y

¼
Eð2Þ
p, x

E
ð2Þ
p, y

,

which in turn implies that A0
p � Ap.

Defining now a general 2� 2 reflection matrix Rp which transforms the x and y
components of the incident waves, Eð1Þ and Eð2Þ, into their reflected counterparts
(indicated by the superscript ref), Eð3Þ and Eð4Þ, the total reflected wave is given by

Eref
p, x

Eref
p, y

 !
¼ ApRp

Eð1Þ
p, x

Eð2Þ
p, y

 !
: ð3Þ
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As for each solution nðkÞp (the superscript ðkÞ numbers the solutions) the magnetic
field vector H ðkÞ

p is given by

H ðkÞ
p ¼ nðkÞp � EðkÞ

p , k ¼ 1, . . . , 4,

and the above 2� 2 matrix formalism yields

H inc
p, x

H inc
p, y

0@ 1A ¼ Np

Eð1Þ
p, x

Eð2Þ
p, y

0@ 1A, ð4Þ

Href
p, x

Href
p, y

0@ 1A ¼ �NpRp

Eð1Þ
p, x

Eð2Þ
p, y

0@ 1A, ð5Þ

where Np is given by

Np ¼

�nð1Þp Eð1Þ
p, yðE

ð1Þ
p, xÞ

E
ð1Þ
p, x

�nð2Þp

nð1Þp

nð2Þp Eð2Þ
p, xðE

ð2Þ
p, yÞ

E
ð2Þ
p, y

0BBBB@
1CCCCA: ð6Þ

2.2. Boundary conditions
Between different layers the electric and the magnetic fields have to be matched

at each boundary zp (figure 1). The wave with the subscript zþp is supposed to be the
solution in the pth layer at the lower boundary zþp ; the wave with the subscript z�p is
the solution in the ð p� 1Þth layer at the upper boundary z�p . At zþp the sum of the

Vacuum

p -1

p+1
p

1
2

4

NN -1
N - 2

N - 3

zp

zp -1

zN+1

zN -1

zp+ 2

z1

z3

zp+1 - z dp p=

zN - 2

zN - 3

zN

z4

z5

z2
Bulk

0

3

zp+1

Figure 1. Layers are numbered from 1 to N; for the bulk regime the index 0 applies. Each
layer p has a lower boundary zp and an upper boundary zpþ1.
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incident and the reflected wave applies (see equations (2)–(5)):

ðEpÞzþp �
Ep;x

Ep, y

 !
zþp

¼ Ap 1þ Rp

� � E 1ð Þ
p;x

Eð2Þ
p, y

 !
; ð7Þ

ðHpÞzþp �
Hp;x

Hp, y

 !
zþp

¼ Np 1� Rp

� � E 1ð Þ
p;x

Eð2Þ
p, y

 !
; ð8Þ

where 1 is the 2� 2 unit matrix.
Because of the finite thickness dp�1 of layer p� 1 the total wave at the lower

boundary z�p is augmented by a phase shift ’ðkÞp�1 with respect to zþp�1:

’ðkÞp�1 ¼ n
ðkÞ
p�1q0dp�1:

For k¼ 1 or k¼ 3 the matrix C
k, kþ1ð Þ

p�1 given by

C
k, kþ1ð Þ

p�1 ¼
exp i’ kð Þ

p�1

� �
0

0 exp i’ kþ1ð Þ

p�1

� �0@ 1A ð9Þ

describes the wave propagation in layer p� 1 from zþp�1 to z�p :

ðEpÞz�p �
Ep;x

Ep, y

 !
z�p

¼ Ap�1 C
1;2ð Þ

p�1 þ C
3;4ð Þ

p�1Rp�1

� � E
1ð Þ

p�1;x

E
2ð Þ

p�1;y

 !
; ð10Þ

ðHpÞz�p �
Hp;x

Hp;y

 !
z�p

¼ Np�1 C
1;2ð Þ

p�1 � C
3;4ð Þ

p�1Rp�1

� � E
1ð Þ

p�1;x

E
2ð Þ

p�1;y

 !
: ð11Þ

The boundary conditions, namely the continuity of the tangential components at zp,

ðEpÞzþp ¼ ðEp�1Þz�p ,

ðHpÞzþp ¼ ðHp�1Þz�p ,

lead then to a set of equations for ðE 1ð Þ
p, x,E

2ð Þ
p, yÞ and ðE

1ð Þ

p�1,x,E
2ð Þ

p�1, yÞ. After elimination
of these pseudovectors an explicit expression for Rp is obtained:

Rp ¼ Np þDp�1Ap

� ��1
Np �Dp�1Ap

� �
, ð12Þ

where Dp�1 is defined by

Dp�1 ¼ Np�1 C
1, 2ð Þ

p�1 � C
3, 4ð Þ

p�1 Rp�1

� �
C

1, 2ð Þ

p�1 þ C
3, 4ð Þ

p�1 Rp�1

� ��1

A
�1
p�1: ð13Þ

Equations (12) and (13) have to be solved recursively starting with p¼ 1, namely the
boundary between the substrate and the first layer. For p ¼ N þ 1 the corresponding
reflectivity matrix Rsurf is the surface reflectivity matrix.

2.3. Recursive algorithm

2.3.1. Initial step
Applying equations (12) and (13) for the boundary between the substrate

and first layer, N0 can be determined using the refractive indices of the bulk system.
Since in an ideal bulk system there are no boundaries and therefore no reflections,
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the corresponding reflectivity matrix R0 can be assumed to be zero and thus

D0 ¼ N0A
�1
0 , ð14Þ

R1 ¼ ðN0A
�1
0 A1 þN1Þ

�1
ðN1 �N0A

�1
0 A1Þ: ð15Þ

2.3.2. Last step
Taking into account that there are only two solutions in the vacuum, namely

one incident and one reflected wave, the reflectivity matrix at the vacuum interface
(usually termed the surface reflectivity matrix) is given by

Rsurf ¼
rxx rxy

ryx ryy

 !
:

Furthermore, the material properties in vacuum are obtained when setting nð1Þp and
n��ð2Þp to unity, that is

Nvac ¼
0 1
�1 0

� �
:

At zþNþ1 the total fields are therefore given by

½Evac�zþ
Nþ1

¼ ð1þ Rsurf ÞE
ðincÞ
vac ,

½Hvac�zþ
Nþ1

¼ Nvacð1� Rsurf ÞH
ðincÞ
vac ,

while at z�Nþ1 they are of the form ( p¼N)

Evac, x

Evac, y

 !
z�
Nþ1

¼ AN C
12
N þ C

34
N RN

� � E
ð1Þ
N, x

E
ð2Þ
N, y

0@ 1A;
Hvac, x

Hvac, y

 !
z�
Nþ1

¼ NN C
12
N � C

34
NRN

� � E
ð1Þ
N, x

E
ð2Þ
N, y

0@ 1A:
Demanding continuity at the surface for both fields leads to

Rsurf ¼ Nvac þDNð Þ
�1

Nvac �DNð Þ; ð16Þ

DN ¼ NN C
1;2ð Þ

N � C
ð3;4Þ
N RN

� �
C

ð1;2Þ
N þ C

ð3;4Þ
N RN

� ��1

A
�1
N : ð17Þ

Equations (16) and (17) are the corresponding equations for the vacuum-surface
interface which are needed to determine Rsurf .

} 3. AB INITIO determination of the permittivity tensor

3.1. Recursive determination of e p

It was shown by Vernes et al. (2002a) that the (macroscopic) permittivity
tensor epq can be related to the (microscopic) conductivity tensor rpq in terms of
the following mapping:

"pqij !ð Þ ¼ �pqij þ
4pie!! �pq

ij !ð Þ, p, q ¼ 1, . . . ,N, �pqij ¼ �ij�pq,
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where N is the total number of (atomic) layers and i, j 2 fx, y, zg. In order to obtain
a layer-resolved reduced permittivity e p, the implicit equation

e p !ð ÞEp ¼
XN
q¼1

epq !ð ÞEq, p ¼ 1, . . . ,N, ð18Þ

has to be solved such that, when for example " p
yy ¼ " p

xx and " p
yx ¼ � " p

xy,

" p
xx " p

xy

" p
yx " p

yy

 !
Ep, x

Ep, y

 !
¼
XN
q¼1

"pqxx "pqxy

"pqyx "pqyy

 !
Eq, x

Eq, y

 !
, p ¼ 1, . . . ,N: ð19Þ

Shifting the index p in equation (10) to pþ 1,

Epþ1, x

Epþ1, y

 !
z�
pþ1

¼ Ap C
ð1, 2Þ
p þ C

ð3, 4Þ
p Rp

� � Eð1Þ
p, x

Eð2Þ
p, y

 !
, ð20Þ

the pseudovector ðEð1Þ
p, x,E

ð2Þ
p, yÞ can be expressed in terms of equation (20) and inserted

into equation (7) to yield

Ep,x

Ep, y

 !
zþp

¼ Ap 1þ Rp

� �
C

ð1, 2Þ
p þ C

ð3, 4Þ
p Rp

� ��1

A
�1
p

Epþ1, x

Epþ1, y

 !
z�
pþ1

: ð21Þ

ðEpÞzþp describes a wave at the boundary between layer p� 1 and layer p. At half-
distance between zp and zpþ1 this wave accumulates a phase shift which can be
taken into account using a factor ðC

ðk, kþ1Þ
p Þ

1=2, k ¼ 1, 3, such that each partial
wave is multiplied automatically by the correct phase factor,

Ep, x

Ep, y

 !
zþp þdp=2

¼ Ap C
ð1, 2Þ
p

� �1=2
þ C

ð3, 4Þ
p

� �1=2
Rp

	 

Eð1Þ
p, x

Eð2Þ
p, y

 !
: ð22Þ

By replacing ðEð1Þ
p, x,E

ð2Þ
p, yÞ in equation (22) with equation (20) and recursively inserting

equation (21) into equation (22) ðEpÞzþp þdp=2
can finally be written as a function

of ENð Þz�
N
:

Ep, x

Ep, y

 !
zþp þdp=2

¼
YN
k¼p

Wk

EN, x

EN, y

 !
z�
N

¼
YN�p

k¼0

Wkþp

EN, x

EN, y

 !
z�
N

, ð23Þ

where the matrices Wkþp are defined in the following way:

Wpþk ¼ Ap C
ð1, 2Þ
p

� �1=2
þ C

ð3, 4Þ
p

� �1=2
Rp

	 

C

ð1, 2Þ
p þ C

ð3, 4Þ
p Rp

h i�1

A
�1
p ; k ¼ 0;

Wpþk ¼ Apþk 1þ Rpþk

� �
C

ð1, 2Þ
pþk þ C

ð3, 4Þ
pþk Rpþk

� ��1

A
�1
pþk; k > 0:

The reduced permittivity e
p is obtained by inserting the expansion in equation (23)

into equation (18):

e p !ð Þ ¼
XN
q¼1

epq !ð ÞWpq,

Wpq ¼
YN�q

k¼0

Wkþq

 ! YN�p

k¼0

Wkþp

 !�1

: ð24Þ
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This system of equations for e p !ð Þ (see equation (18)) has to be solved iteratively
(figure 2), starting with

W
ð0Þ
p ¼ 1, ð25Þ

implying that

e p !ð Þ
ð0Þ
¼
XN
q¼1

epq !ð Þ:

Vacuum
R

ec
ur

si
on

ε and n
from a symmetrized

bulk calculation

Bulk

p
Ite

ra
tio

n:
 n

ew
 ε

Figure 2. Recursive algorithm. Firstly, the bulk properties eð!Þ and nð!Þ serving as the
starting values for a layer recursion have to be known from a separate bulk calcula-
tion. Secondly, the 2� 2 matrix technique starts at the boundary between the bulk and
the first layer considered. Subsequently all reflections, transmissions and interferences
at all boundaries between different layers are taken into account. Thirdly, the obtained
layer-resolved permittivities epð!Þ serve as input for the next iteration. This recursive
approach is repeated until the desired accuracy for the permittivities epð!Þ is obtained.
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As a criterion for the accuracy of this iterative procedure the below inequality can
be used

e p !ð Þ
ðnÞ
�e p !ð Þ

ðnþ1Þ
��� ��� < e p !ð Þ

threshold: ð26Þ

3.2. Bulk systems
As described above, the recursive algorithm starts at the interface between

the substrate and first layer and ends at the interface between the last layer and
the vacuum. In order to obtain the necessary bulk quantities A0 and N0 as starting
values, the bulk properties ebulk and nbulk, have to be investigated. By definition in
a bulk system (‘infinite system’, with three-dimensional periodicity) all physical
properties have to be the same in all unit cells. For a simple lattice (one atom per
unit cell) this implies that all physical quantities have to be the same in all (atomic)
layers. As in the above algorithm the total number (N) of atomic layers necessarily
has to be finite, in the case of a bulk system a kind of symmetric extension of the
layered system such that jp� qj4N � 1 with respect to a particular p can be applied
by which the corresponding " p

ij , i, j 2 fx, y, zg, are obtained as

e p ¼
X0

q¼p�Nþ1

W
N;N�jp�qjeN;N�jp�qj

þ
XN
q¼1

W
p;q ep;q þ

XpþN�1

q¼N

W
1;1þjp�qj e1;1þjp�qj; ð27Þ

namely as the original sum plus the extensions to the left and to the right.

} 4. Results

Figure 3 shows schematically the types of calculation that have to be carried out.
As a first step the effective scattering potentials for bulk Au and a free surface of
Au along the (100) surface normal were calculated using the fully relativistic screened
Korringa–Kohn–Rostoker method (Szunyogh et al. 1994, 1995, Újfalussy et al.
1995) and the local density functional parametrization by Vosko et al. (1980).

Figure 3. Computational scheme for an ab initio calculation of optical properties.
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Next, the (complex layer-resolved) conductivity matrices r��ð!Þ are evaluated using
the Kubo–Greenwood equation fully relativistically (Vernes et al. 2002c). Only then,
as a third step, can the above-described calculation of the optical properties of Au be
performed. In using this scheme the permittivities eð!Þ for bulk Au and a free surface
of Au along (100) were calculated for photon energies p! varying from 1:5 to 4 eV.

Let D"ðNÞ be the difference between the in-plane and out-of-plane components
of the permittivity:

D"ðNÞ ¼ j"xxðNÞ � "zzðNÞj,

where N is the total number of layers considered. Since in a bulk cubic system
characterized by three-dimensional periodicity these two components have to be
the same, that is

lim
N!1

½D"ðNÞ� ¼ 0,

D"ðNÞ can serve as a numerical criterion for the calculated bulk permittivities.
In figure 4, D"ðNÞ is shown with respect to N together with the relative differences
2D"ðNÞ=j"xxðNÞ þ "zzðNÞj, D"ðNÞ=j"xxðNÞj and D"ðNÞ=j"zzðNÞj.

For bulk Au the present theoretical results compare reasonably well with
the experimental data obtained by Hagemann et al. (1975) and Weaver et al.
(1981). The principal shapes of the curves look alike; for small photon energies,
eð!Þ assumes quite large values (figure 5) owing to the finite lifetime broadening �
(see equation (1)).

Figure 4. Convergence of the Au calculation to ‘bulk’ with respect to the number of Au
layers sandwiched between two semi-infinite systems of Au, where the layer quantities
are bulk like if the difference between the out-of-plane ("zz) and the in-plane compo-
nents ("xx and "yy) of the permittivity vanishes: (.), Re ðD"Þ (ordinate is the left y axis);
(�), Im ðD"Þ (ordinate is the left y axis); (^), j2D"j=j"xx þ "zzj; (i), jD"j=j"xxj;
(œ) jD"j=j"zzj. For the relative differences the ordinate to the right applies.
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Using now the results of the bulk calculation as initial values in equations (14)
and (15), eð!Þ was investigated for an Au(100) surface. It turns out that the order of
magnitude of the theoretical permittivity differs considerably from the experimental
data obtained by Bader et al. (2000) and by Truong et al. (2003), which in turn
differ considerably from each other. In order to take into account these differences in
figures 6–9, showing the real and imaginary parts of "xx and "zz, the experimental
data are shifted and therefore different ordinates apply.

It should be mentioned that Au surfaces usually suffer somewhat from surface
reconstruction. In the experiments of Bader et al. (2000) the surface was produced
by depositing Au nanoparticles in a solvent on to a glass plate and evaporating
the solvent afterwards. In the experiments of Truong et al. (2003), Au was evapo-
rated onto glass substrates and annealed for 2 h. Thus, depending on the method of
preparation, fundamental differences in the surface structure of Au can exist. Quite
clearly the present calculations refer to a perfect single-crystal surface. Besides
the fact that the experimental ambiguities affect the absolute size of the permittivity,
all surface investigations (both experimental work (Bader et al. 2000, Truong
et al. 2003) and the present theoretical study) detect one common feature, namely
an anomalous adsorption at the surface, an effect which is not present for bulk Au.
It is indeed reassuring that in all three studies the photon energies at which the peak
in the permittivity occurs have rather similar values.

Figure 5. Permittivity for bulk Au: (——), experimental Re ð"xxÞ values (Weaver et al. 1981);
(- - - -) experimental values Im ð"xxÞ (Weaver et al. 1981); (� � � � �), experimental Re ð"xxÞ
values (Hagemann et al. 1975); (— �—), experimental Im ð"xxÞ values (Hagemann et al.
1975); (.), theoretical Re ð"xxÞ values; (g), theoretical Im ð"xxÞ values; (�), theoretical
Re ð"zzÞ values; (œ), theoretical Im ð"zzÞ values.
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Figure 6. Reð"xxÞ for Au(100): (.), calculated values; (œ), (i), (^), experimental data for
the 3 nm, 7:5 nm and 10 nm Au films respectively used by Truong et al. (2003); (r),
experimental data of Bader et al. (2000). The left ordinate applies to the experimental
data, and the right to the calculated values.

Figure 7. Im ð"xxÞ for Au(100): (.), calculated values; (œ), (i), (^), experimental data for
the 3 nm, 7:5 nm and 10 nm Au films respectively used by Truong et al. (2003), (r),
experimental data of Bader et al. (2000). The outer right ordinate applies to the
calculated values, the inner right ordinate to the experimental data of Bader et
al. (2000), and the left to all other values.
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Figure 8. Reð"zzÞ for Au(100): (.), calculated values; (œ), (i), (^), experimental data for
the 3 nm, 7:5 nm and 10 nm Au films respectively used by Truong et al. (2003); (r),
experimental data of Bader et al. (2000). The left ordinate applies to the experimental
data, and the right to the calculated values.

Figure 9. Im ð"zzÞ for Au(100): (.), calculated values; (œ), (i), (^), experimental data for
the 3 nm, 7:5 nm and 10 nm Au films respectively used by Truong et al. (2003); (r),
experimental data of Bader et al. (2000). The right ordinate applies to the calculated
values, and the left to the experimental data.
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It should be noted that, independent of the film thickness, always only two-
dimensional rotational symmetry applies. Therefore all investigations of the permit-
tivity show different results for the "xx and the "zz components. The calculated values
of Re ð"xxÞ for Au(100), (see figure 6) have a maximum at about 1:9 eV, and a kind
of ondulation at approximately 2:4 eV, which also can be seen in the experimental
values at 2:4 eV for the thinnest film and at 2:2 eV for the thickest film. The calcu-
lated values of Re ð"zzÞ for Au(100), appear to be in reasonably good qualitative
agreement with the measured data (Truong et al. 2003), although "zzð!Þ seems to
depend strongly on the film thickness. For instance, the experimental curves for 3 nm
and 7:5 nm film thicknesses change sign at photon energies above 2:6 eV and 3:4 eV
respectively while the calculated curve and the curve measured for 10 nm do not
change sign below 3:5 eV.

} 5. Conclusion

It was shown in this paper that, by mapping the quantum-mechanically evalu-
ated conductivity tensor on to the macroscopic permittivity tensor and by applying
an appropriate scheme for taking into account all interferences and reflections,
optical properties can be studied on a truly ab initio level. The present study also
showed that, whenever realistic systems, that is systems with a surface, have to be
dealt with, a comparison with experimental data has to be carried out with extreme
care since, not only can the applied preparation technique be decisive, but also the
thickness of the prepared films enters the experimental observations. It also has to be
noted that the term ‘bulk’ in many cases can be quite misleading, not only because
any kind of measurement is carried out ‘from the outside’, that is for an at best semi-
infinite system, but also because ‘bulk’ very often only refers to a fictitious quantity,
obtained by extrapolating certain thickness parameters to infinity. In the present
study the permittivity of ‘bulk’ Au is needed as starting value for an a iterative
procedure aiming at an evaluation of the surface reflectivity. Keeping in mind
that, as mentioned in the introduction, optical measurements are of crucial impor-
tance for the characterization of magnetic properties of multilayered systems, hetero-
structures, etc., in terms of the Kerr effect a rigorous study of the optical properties
of a typical substrate is very necessary.
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