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Abstract
At the interfaces between the metallic electrodes and barrier in magnetic

tunnel junctions it is possible for localized states to form which are orthogonal
to the itinerant states for the junction, as well as resonant states that can form at
the interfaces. These states form highly conducting paths across the barrier when
their orbitals point directly into the barrier; these paths are in addition to those
formed by the itinerant states across the entire junction. Most calculations of
transport in magnetic tunnel junctions are made with the assumptions that the
transverse momentum of the tunnelling electrons is conserved, in which case the
itinerant electron states remain orthogonal to localized states. In principle it is
possible to include diffuse scattering in both the bulk of the electrodes and the
barrier so that the transverse momentum is not conserved, as well as the processes
that couple localized states at the electrode–barrier interface to the itinerant states
in the bulk of the electrodes. However, including these effects leads to lengthy
calculations. Therefore, to assess the conduction across the barrier through the
localized states that exist in parallel to the itinerant states we propose an
approximate scheme in which we calculate the conductance of only the barrier
region. While we do not take explicit account of either of the effects mentioned
above, we do calculate the tunnelling through all the states that exist at the
electrode–barrier interfaces by placing reservoirs directly across the barriers. To
calculate the current and magnetoresistance for magnetic tunnel junctions (the
junction magnetoresistance (JMR)) we have used the lattice model developed by
Caroli et al. The propagators, density of states and hopping integrals entering the
expressions for the current are determined by using the spin polarized scalar-
relativistic screened Korringa–Kohn–Rostoker method that has been adapted
to layered structures. By using vacuum as the insulating barrier we have
determined with no adjustable parameters the JMR in the linear response
region of tunnel junctions with fcc Co(100), fccNi(100) and bcc Fe(100) as
electrodes. The JMR ratios that we find for these metal/vacuum/metal
junctions are comparable with those measured with alumina as the insulating
barrier. For vacuum barriers we find that tunnelling currents have minority-
spin polarization whereas the tunnelling currents for these electrodes have been
observed to be positively (majority) polarized for alumina barriers and minority
polarized for SrTiO3 barriers. In addition to determining the JMR ratios in linear
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response we have also determined how the magnetoresistance of magnetic tunnel
junctions varies with a finite voltage bias applied across the junction. In particular
we have found how the shape of the potential barrier is altered by the applied bias
and how this affects the current. Comparisons with data as they become available
will eventually determine whether our approximate scheme or the ballistic
Landauer–Büttiker approach is better able to represent the features of the
electronic structure that control tunnelling in magnetic tunnel junctions.

} 1. Introduction
The junction magnetoresistance (JMR) refers to the fact that in a magnetic

tunnel junction (MTJ), that is ferromagnetic metal/insulator/ferromagnetic metal
junction, the current depends on the relative orientation of the magnetizations of
the two electrodes. Usually a larger current is observed when the magnetizations are
parallel than when they are antiparallel (Julliere 1975, Maekawa and Gäfvert 1982),
although recently an inverse JMR has been observed for which the current for the
antiparallel configuration of the magnetic electrodes is larger (De Teresa et al.
1999a,b). Theoretical explanations of the JMR have been mainly based on the
transfer Hamiltonian approach (Duke 1969, Maekawa and Gäfvert 1982,
Meservey and Tedrow 1994, Inoue and Maekawa 1996). Recently there has been
much interest in interpreting experimental results in terms of realistic band struc-
tures. Butler et al. (1997, 2001) and MacLaren et al. (1997, 1999) based their calcula-
tions on the Landauer (1988)–Büttiker (1988) (LB) formula. Starting from bulk
metal hopping integrals, Mathon (1997) and Mathan and Umerski (2001) discussed
changes in JMR with coupling strength in terms of a tight-binding version of the
Kubo–Greenwood formula by artificially cleaving the bulk Co metal into two sepa-
rate parts and then joining them up with hopping integrals while Tsymbal and
Pettifer (1997) studied the spin polarization of tunnelling from Co and Ni by mod-
elling the insulator as simply a gap in the band structure and the electrodes as if they
had a single band. To understand the origin of the majority spin polarization of
tunnelling currents observed across alumina barriers, Oleinik et al. (2000) have
undertaken a calculation of the density of states (DOS) inside the barrier, while
Tsymbal et al. (2000) studied the influence of an oxide monolayer on the surface
DOS of Fe.

When one thinks of conduction across a tunnel junction the first thing that comes
to mind is the transmission from the states deep in one electrode to those of the other
electrode, that is conduction across the itinerant states of the entire junction. At the
interfaces between the electrodes and the tunnelling barrier, localized states form
which can have orbitals that project into the tunnelling barrier and thereby form
another bridge for conduction across the barrier, that is a parallel path for con-
duction. These localized states are in addition to the resonant states (Butler et al.
1997, 2001, MacLaren et al. 1997, 1999) that couple to the itinerant states at the
interfaces; the itinerant states avoid the localized states and are orthogonal to them
as long as there is no scattering in the junction other than that coming from the
‘perfect’ interfaces. Underlying the ballistic approach, as it has been applied to
tunnelling in MTJs, that is conserving momentum in the plane of the layers kk, is
the assumption that the transport across the whole junction is coherent, that is no
scattering other than the specular scattering at perfect interfaces. In this limit, con-
duction across the junction is limited to the itinerant states spanning the entire
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junction. However, in the MTJs studied to date the diffuse scattering at the interfaces
between the electrodes and the barrier and within the electrodes affect tunnelling;
among other things it couples the two conduction paths (Pendry et al. 1991, Levy et
al. 2002). In principle it is possible to take account of these additional processes to
tunnelling conduction; indeed this was achieved by using a single orbital 1s tight-
binding description for disordered wires by Todorov (1996). However, the ab initio
calculations made to date are sufficiently difficult without these added complications
so that their contributions have not been considered. To determine the amount of
conduction that can take place through the parallel conduction path arising from
localized states we calculate the transport solely for the barrier region of the junction;
this is achieved by placing reservoirs directly across the interfaces of the junction. In
this way all the states at the electrode–barrier interfaces, localized as well as itinerant,
contribute to tunnelling; thereby we accent the role of the interfacial DOS in con-
trolling tunnelling. Among other things, this approach circumvents the putative
problem of how states that are localized at the interfaces contribute to tunnelling
when they are orthogonal to the itinerant states in the electrodes for a perfect junc-
tion which has only specular scattering. In this paper we compare the kk-resolved
DOS and tunnelling currents for model MTJs with vacuum barriers found with
our scheme, that is across the barrier alone, to those in the traditional LB
approach as it has been applied to MTJs in which one does not take account
of diffuse scattering or localized states. Comparisons with data as they become
available will eventually determine whether our approximation or the ballistic (kk-
conserved) LB approach is better able to represent the features of the electronic
structure that control tunnelling in MTJs.

As we are placing reservoirs directly across the barrier, that is in regions where
there is scattering, we cannot use the Landauer formalism per se, because one must
be in the asymptotic region outside the scattering region to define a transmission
matrix. Therefore as we explain in the next section we have adapted another method
introduced by Caroli et al. (1971) which defines the transport properties in terms of t
matrices and concomitantly is not restricted to placing reservoirs in scattering free
regions. Here we describe a calculation of the tunnelling current for bcc Fe(100)/
vacuum/Fe(100), for fcc Co(100)/vacuum/Co(100) and fcc Ni(100)/vacuum/Ni(100)
junctions for both parallel and antiparallel alignments of the magnetic moments of
the electrodes. The tunnelling conductance and JMR of the barrier region are cal-
culated by adapting a tight-binding version of the formula given by Todorov et al.
(1993) as discussed in the next section. We obtain ab initio band structures from the
spin polarized scalar-relativistic Screened Korringa–Kohn-Rostoker (SKKR)
method as it has been adapted for layered structures, and s, p and d electrons are
considered (Szunyogh et al. 1996, Wang 1999) and in } 3 we derive the relation
between the tight-binding description in which the conductance is written and the
SKKR method. In } 4 we present the results of these calculations, and in } 5 we
discuss the conduction in the tunnel junction as taking place through two indepen-
dent paths of conduction.

The effect of an external field on a metal surface is by and of itself an
interesting subject; for example, it enters one’s interpretation of scanning tunnel-
ling microscopy (STM) data (Papanikolaou et al. 2000, Wortmann et al. 2001). In
this paper we look at this in the context of the effect of an applied voltage bias
on the magnetotransport properties of a MTJ. As most calculations of the JMR
are currently limited to the linear response region, in this paper we push our
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effort one step further by introducing a finite voltage bias into the calculation of
the JMR. In particular we shall address the bias dependence of the tunnelling
current and JMR. One of the major obstacles when making ‘open circuit’ trans-
port calculations between two electrodes with different Fermi energies, that is for
a tunnel junction that is not part of a closed circuit, is that self-consistency
mandates that under an applied voltage there is a redistribution of electrons
between electrodes so as to re-equilibrate the Fermi levels in both electrodes.
However, what actually transpires in a junction that is part of a closed circuit
and maintains a potential drop across it in the presence of a current is that the
electron loss (gain) from an electrode is replenished (removed) by the wire com-
pleting the circuit. As we show in } 6, we are able to mimic the effects of voltage
on the junction without undoing the difference in the electrode Fermi levels. In
the last section we present our conclusions.

} 2. The tight-binding model of tunnelling
As shown by Caroli et al. (1971, 1972), Combescot (1971) and Todorov et al.

(1993) in the presence of an external voltage W , the net tunnelling current density
(current per 2D atomic area) across a tunnelling junction is

j ¼ 2pe
p

ð�þeW
�

d"Tr ½��ð"Þ½ty	��ð"Þ��ð"Þt��ð"Þ	; ð1Þ

where � and �þ eW are the Fermi levels of the left- and right-hand electrodes
respectively. In the linear response region, the tunnelling conductance reduces to

G ¼ j

W
¼ 2pe2

p
Tr ½��ð�FÞ½ty	��ð�FÞ��ð�FÞt��ð�FÞ	: ð2Þ

In these expressions t�� is the t matrix between two planes (layers) in the junction,
and �� and �� are the density of states at the Fermi level. In real junctions,

(i) there is diffuse scattering in the electrodes,
(ii) the band bottoms of the electrodes are not flat in the vicinity of the barrier

owing to charge transfer between the metallic electrodes and the insulating
barrier and

(iii) localized states form at the electrode–barrier interfaces.

To account properly for these effects on the tunnelling current density is quite
difficult in an ab initio calculation; therefore we have opted for an approach in which
we calculate the conductance of a part of the junction. That is, we propose to
calculate the conductance only across the barrier region by taking the t matrix
t��, where � and � are the electrode layers adjacent to the barrier; therefore the
physical conductor that we consider is different from that in the two-terminal
Landauer approach for the entire tunnel junction. In this approach we do not con-
sider the resistance of the electrodes at all but, from experimental data on MTJs one
knows that this is not a serious omission. Also we sidestep the problem of how the
localized states communicate with the itinerant current-carrying states in the elec-
trodes; by placing reservoirs across the layers containing these localized states (which
is what one does to specify the voltage drop across two layers) and thereby filling
them as they are depleted when they conduct, these participate in tunnelling con-
duction. The latter implies that the localized states remain in equilibrium with those

1258 K. Wang et al.



of the electrodesy, and we have justified this assumption elsewhere (Levy et al. 2002).
In other words, we are saying that it may be a better approximation to calculate the
resistance of a tunnelling junction solely across its barrier, by using equation (2) and
identifying � and � as the electrode layers that are adjacent to the barrier, than to
carry out a ballistic calculation of the entire junction in which one overlooks the
possible contribution of a parallel path of conduction through localized states at the
interfaces (Levy et al. 2002).

There are two steps in the scheme that we employ to calculate the transport in a
tunnel junction. In the first step we calculate the electronic structure and obtain the
full Green’s functions and t matrices for the actual MTJ. In this phase there are no
approximations. In the second step we make a ballistic calculation on an artificial
system, the barrier butt up against reservoirs. In other words while we made a self-
consistent determination of the layerwise electronic structure in the entireMTJ in the
first step, in the second step when it comes to calculating the conductance we con-
sider only the barrier region. In this manner we are assured that the states at the
electrode–barrier interface are filled with electrons up to the Fermi level; this would
not be the case in a ballistic calculation, kk conserved, across the entire junction. We
stress that we do not perform a calculation that includes diffusive processes; rather
we suggest that our approach, of placing reservoirs at the interfaces, simulates these
processes inasmuch as we fill states that would not be filled in a ballistic calculation
for the entire junction. While we introduce this method as a proposition, and not a
proof, that one produces the correct conductance, there is nonetheless support for it.
Datta (1995) has shown that by starting with the transfer Hamiltonian formalism,
one can write the conductance of a conductor as we propose to do.

To summarize our approach, the conductor that we consider is different from the
physical conductor. In our approach we sidestep the problem of how the localized
states communicate with the itinerant current-carrying states in the electrodes; by
placing reservoirs across the barrier region which contain these localized states
(which is what one does to specify the voltage) and thereby filling them as they
are depleted when they conduct, they participate in tunnelling conduction. In
other words, we are saying that it may be a better approximation to calculate the
resistance of just the barrier region than to carry out a ballistic calculation of
the physical junction in which one overlooks the diffuse scattering and the possible
contribution of localized states (Levy et al. 2002, Wunnicke et al. 2002).

The t matrix is defined in terms of the propagator G for the junction:

t ¼ Vþ VGV; ð3Þ

where, in a tight-binding description in which we assume that hopping occurs across
neighbouring planes, V represents in the context of our calculation the hopping
between the electrodes and the barrier at their interfaces:

Vij ¼ hijVj ji

¼ V�a	i�	 ja þ Va�	ia	 j� þ V�b	i�	 jb þ Vb�	ib	 j�:
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From the definition of t,

hijtj ji ¼ t��	i�	 j� þ t��	i�	 j�

¼ V�bGbaVa�	i�	 j� þ VaGabVb�	i�	 j�: ð4Þ

Parenthetically, this allows us to interpret the transfer matrix t�� as the product of
the bonding of, or hopping from, the last layer of the right hand electrode, V�b, on to
the first layer of the insulating barrier, the propagation across the barrier, Gba, and
the bonding of the left-hand side of the barrier to the left-hand electrode, Va�. The
coupling to more distant neighbouring planes is taken into account by using the
principal layer description (Szunyogh et al. 1994). The DOSs are defined in terms of
the Green’s functions gð�Þ for the isolated (semi-infinite) electrodes

qð�Þ ¼ g
yð�Þ 
 gð�Þ

2pi
: ð5Þ

These are different from the surface or bulk DOS inasmuch as the surface includes
the transfer of the surface charge into the barrier (vacuum), and the bulk DOS
contains hopping to the layers omitted in the definition of gð�Þ (Caroli et al. 1971,
Toderov et al. 1993). While the transport is formulated in a tight-binding description
we do not make the tight-binding parametrization; rather we obtain the hopping
integrals from our ab initio calculations as described below.

For perfectly flat interfaces, translational symmetry in the plane of interfaces
requires that the two-dimensional (2D) reciprocal-lattice vectors kk be conserved, so
that equation (2) holds for each separate kk channel and all quantities in equation (2)
are kk resolved. In this case we rewrite it as

G ¼ j

W

¼ 2pe2

p
Tr ½��ð�F; kkÞ½ty	��ð�F;kkÞ��ð�F; kkÞt��ð�F; kkÞ	: ð6Þ

To obtain the total conductance it is necessary to sum over kk in the 2D Brillouin
zone (BZ). In the following discussions the kk argument is suppressed and all quan-
tities are kk resolved unless otherwise stated. For rough electrode–barrier interfaces
or scattering by defects there is no kk conservation, and the q, V and G matrices in
the following equation (8) are separately summed over kk before integrating over
energy (Caroli et al. 1971).

For spin-polarized systems the direction of the conduction electron’s spin is
conserved as we have not considered any spin-flip scattering processes. Therefore,
equation (6) holds for each spin channel, and the JMR ratio is defined as

JMR ¼
G"" þ G## 
 G"# 
 G#"

G"" þ G##
; ð7Þ

where G
;
0 is the conductance for one spin channel when the moments of the two
electrodes are aligned parallel or antiparallel to one another. In the following dis-
cussions spin indices are also suppressed.

An equivalent expression for the conductance is found by inserting equation (4)
into equation (2) and we have
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G ¼ 4p2e2

h
Tr ½��V�aðGyÞabVb���V�bGbaVa�	; ð8Þ

where now all the quantities in the parentheses are 9� 9 matrices with angular
momentum indices; the latter arises as follows. To incorporate the results of ab initio
SKKR calculations into the tight-binding formalism for the conductance, an appro-
priate discrete basis set jiLi has to be employed; here i denotes the layer index and
L � ðlmÞ are angular momentum indices. As we consider s; p and d states we have
nine states altogether.

There are two ways of proceeding: either by finding the t matrix directly and
using equation (2) or by finding the hopping integrals V�a and propagator Gab and
using equation (8). As we have the full Green’s functions for the entire junction from
ab initio calculations we obtain the t matrix t�� from Dyson’s equation
G ¼ gþ gVG ¼ gþ gtg. As there is little to no coupling across the layers � and �,
that is the barrier, in the unperturbed (isolated) system the unperturbed propagator
g�� is zero, and

G�� ¼
X
�0;�0

g��
0
t�
0�0g�

0�: ð9Þ

As it stands this expression is not easily inverted to find the t matrix; however, if we
assume that the tight-binding description is a reasonable albeit uncontrolled
approximation for G�� we find in our calculations that we can use equation (4) to
reduce equation (9) to

G�� ¼ g��t��g��: ð10Þ
Now t�� can be obtained by inversion:

t�� ¼ ðg��Þ
1G��ðg��Þ
1: ð11Þ
By placing this into equation (2), we obtain the following expression for the tunnel-
ling conductance:

G ¼ 4p2e2

h
Tr ½��ðgy��Þ
1ðGyÞ��ðgy��Þ
1

� ��ðg��Þ
1G��ðg��Þ
1	: ð12Þ

The hopping integrals do not appear here, because all the coupling and barrier
information is contained in G��. The other method of evaluating the conductance
via equation (8) is discussed in detail in appendix A. Equation (12) is more amenable
to numerical calculations as long as one can calculate G�� directly because the
reduced numerical matrix manipulations (as opposed to the other approach)
means higher accuracy. In concluding this discussion of equation (6), we point out
that, when it is applied to calculating the conductance of a barrier one does take into
account in t�� how it couples to the states in the electrodes. In this manner, as well as
through �� and ��, the influence of spin polarization in the electrodes enters the
conductance of an otherwise spin-unpolarized barrier.

} 3. Defining the Green’s functions
The SKKR method generates the Green’s function in continuous space as fol-

lows:
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Gðr; r0; �Þ ¼
X
LL0
½Zi

lð�; riÞYlm
* ðr̂riÞ� ijLL0 ð�ÞZ

j
l 0 ð�; r

0
jÞYl0m0 ðr̂r 0jÞ


 	ij	LL0Z
i
lð�; r<ÞYlmðr̂r<ÞJi

l ð�; r>ÞYlm
* ð̂rr>Þ	

where r is located in atomic cell i, r0 is located in atomic cell j; r ¼ Ri þ ri,
r0 ¼ R j þ r 0j, and Ri and R j are Bravais lattice vectors; r> (r<) refers to the larger
(smaller) of ri and r0j; J

i
l ð�; rÞ is an irregular solution to the Kohn–Sham equation.

To incorporate these continuous real-space Green’s functions into the conduc-
tance formula which was derived in a tight binding description, we need to find an
appropriate layer-dependent basis set. Because conductance is a trace over all pos-
sible indices, in principle it should not depend on which base one chooses to express
the Green’s functions, as long as it is orthonormal, complete and relatively localized;
however, in reality, different choices of basis set lead to slightly different results,
because only the nearest neighbours are included in our calculations, albeit in a
principal layer description. The basis that we find most natural and convenient to
use is the normalized muffin-tin part of the scattering solutions from the Korringu–
Kohn–Rostoker calculation, which is the regular solution to the Schrödinger equa-
tion within an atomic cell i of radius Rs in the atomic sphere approximation (ASA)
sense (Weinberger 1990) and zero outside:

hrjiLi ¼ �i
lðrÞYlmðr̂rÞ ¼ CZi

lðrÞYlmðr̂rÞ�ðRs 
 rÞ; ð13Þ

which is defined within atomic cell i. Here C is a normalization constant for each cell;
in terms of this basis set, for i 6¼ j we have

Gij
LL0 ¼ hiLjGj jL

0i

¼
ð
Oi

dr

ð
O j

dr0 hiLjriGðr; r0Þhr0j jL0i

¼
ð
Oi

dr

ð
O j

dr0 �i�
l ðrÞYlm

* ðr̂rÞ� j
l0 ðr
0ÞYl0m0 ðr̂r 0Þ

�
X
QQ0

Zi
qðrÞYqmq

ðr̂rÞ� ijQQ0Z
j
q0 ðr
0ÞYq0m0q

* ðr̂r 0Þ

¼
ð
Oi

�i�
l ðrÞZi

lðrÞr2 dr � ijlm;l0m0

�
ð
O j

Z j
l0 ðr
0Þ� j

l0 ðr
0Þr02 dr0

while, for i ¼ j, there is a second term



ð
Oi

�i�
l ðrÞZi

lðrÞr2 dr

ð
Oi

J j
l ðr
0Þ� j

l ðr
0Þr 02 dr0

� 	ij	LL0�ðr0 
 rÞ þ ðZ ! JÞ: ð14Þ

Here � ij is the so-called scattering path operator, and J j
l ðrÞ is the irregular solution to

the Schrödinger equation in atomic cell j. Clearly ImGii
LL ¼ Im ½

Ð
Oi
GLLðr; rÞ dr	.

From a SKKR calculation we only find the Green’s functions for the entire
coupled junction; to obtain the isolated electrode Green’s functions g�� and g�� as
well as coupling matrices (hopping integrals) required in the conductance calcula-
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tion, we can make use of Dyson’s equation applied to sites across an interface under
the assumption of nearest-neighbour (within a principal layer description) hopping:

G�� ¼ g�� þ g��V�aGa�;

Gaa ¼ gaa þ gaaVa�G�a;

G�a ¼ g��V�aGaa;

Ga� ¼ gaaVa�G��:

ð15Þ

These equations can be solved to find the g and V components as follows:

g�� ¼ G�� 
 G�aðGaaÞ
1Ga�;

V�a ¼ ½g��	
1G�a½Gaa	
1;

gaa ¼ Gaa 
 Ga�½G��	
1G�a;

Va� ¼ ½gaa	
1Ga�½G��	
1:

ð16Þ

We reiterate that, in all the discussions above, we have assumed that only the
nearest-neighbour coupling is included across the interfaces, that is the tight-binding
description; in principle the whole formalism is also valid if more distant neighbours
are also included. This is accomplished by using principal layers with the desired
number of atomic layers in each principal layer (Mathon 1997, Mathon and Umerski
2001). As interactions with more distant neighbours are included, the calculations
become increasingly cumbersome; therefore we have limited our consideration to
interactions only between nearest-neighbour principal layers.

} 4. Calculations and results
Calculations were made for bcc Fe(100)/vacuum/Fe(100), for fcc Co(100)/

vacuum/Co(100) and fcc Ni(100)/vacuum/Ni(100) tunnel junctions. The band
structures were obtained from spin-polarized scalar-relativistic SKKR calculations,
and the ASA is used. The lattice parameters for Fe, Co and Ni are 5.27, 6.55 and
6.56 au respectively, and the screening potential is set to 2Ry inside each atomic cell.
While three atomic layers are included in each principal layer in the screened con-
figuration, in conductance calculations only two atomic layers are included in a
principal layer when coupling to the second-nearest neighbour is considered. The
Gunnarsson–Lundqvist (1976) exchange–correlation potential is used, and energy
integration is performed by means of Gaussian quadrature with 16 points on a
semicircle in the upper half of the complex energy plane. For self-consistent calcula-
tions of the bulk metal, the free metal surface and the metal/vacuum/metal interface
potentials, 45 kk points are used in the irreducible wedge of the first 2D BZ, which
enables the Fermi level to be converged up to 10
7 Ry. For more details on this
method, see Szunyogh et al. (1994).

In calculating the Green’s functions and conductances, 90 000, 40 000 and 57 600
kk points in the whole 2D BZ are used for the minority-spin channel, respectively for
the majority-spin channel and for the antiparallel alignment of the moments of the
electrodes. A larger number of points were used for the minority channel calculation
because the k-space distribution of the Green’s functions and hence of the integrand
in equation (6) is much more sharply peaked for this channel than for the other
cases. Convergence is tested by comparing these results with the results using 115 600
kk points; we found that differences for each channel were well within 1%. One
should use the smallest possible value for the imaginary part of the complex energy,
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	; however, if it is too small, both the number of iterations required to make the
structure constants converge and the number of kk points required to make physical
quantities converge are too large for us to perform. In our calculation a value of
5� 10
4 Ry is used. This may not be small enough for all the conductance calcula-
tions; however, when we compare our results for bulk metal as discussed below with
those found by using 	 ¼ 10
3 Ry the conductance is essentially unchanged. For
tunnelling conductance an increase of about 10% with the smaller 	 is observed
for the minority-spin channel, while increases for the majority-spin and antiparallel
conductances are much smaller. These differences diminish for thicker barriers, so
that JMR values obtained here should be regarded as lower limits of the JMR for
each barrier thickness considered. In all the conductance calculations, couplings up
to second nearest neighbours across the interfaces are included.

4.1. Bulk metal ballistic conductance
To test our methods for defining the Green’s functions and deriving the isolated

electrode Green’s functions and hopping integrals that enter the conductance
formula as shown in }} 2 and 3, we calculated the ballistic conductance of bulk Co
for energies around the Fermi level. To implement the Caroli et al. formalism we
made an artificial cut through the bulk metal and derived g and V across this cut by
using equations (16); then equation (6) is used to calculate the conductance. The
results are shown in figure 1 (d), together with the variation with energy of the spin-
polarized DOSs for bulk Co, the free surface layer of Co and the isolated surface
layer of Co electrode. Again by an isolated surface we mean one terminated so that
there is no electron transfer from the surface (Pollmann and Pantelides 1978); this
can also be achieved for example by setting the hopping integrals across the interface
to zero. For a free surface, electrons escape from the metallic electrode into the
vacuum; in figure 2 we compare the three types of kk resolved DOS at the Fermi
level. The values for the conductance agree reasonably well with the Co conductance
calculation by Mathon et al. (1997) in the whole energy range we have investigated;
for example, with two atomic layers in each principal layer, their conductance values
for the majority and minority at the Fermi level are around 0.7 and 1.9 compared
with our values of 0.71 and 1.97 in units of e2=h.

We also calculated the ballistic conductances for bulk Ni and bcc Fe at the Fermi
level; numerical results are shown in table 1, together with the DOS at the Fermi
level for the bulk metal, a free surface layer, an isolated surface layer of the electrode
and the first vacuum layer. In figure 3 we compare the three types of kk-resolved
DOS at the Fermi level for Fe. The corresponding plots for Ni are similar to those
for Co; so we shall not repeat them here. The DOS for the isolated electrode layers
resembles the free surface DOS much more than the bulk DOS. This is to be
expected, since the surface of an isolated electrode is just a special way of terminating
or defining a surface. This point is especially apparent for Fe, where a reversal is
obtained in the spin polarization for the d-electron DOS at the Fermi level for both
free and isolated surfaces compared with the bulk value. As shown in these plots, the
majority channel DOS is smooth and the minority channel DOS is extremely spiky
for Co for all three kinds of layer, while for Fe this difference is less distinctive; for
example, the majority DOS is more spiky than the minority DOS for the bulk in
contrast with the situation in the two kinds of surface layer. For Fe, the isolated
surface DOS is less (negatively) polarized than that of the free surface, while for Co
and Ni they are more polarized than those of the free surfaces.
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We have not been able to achieve convergence for the bulk conductance with
respect to the number of nearest neighbours included in all our calculations. In
calculations where we included third-nearest neighbours, the bulk conductances in
each spin channel increased by about 20% for Co and Ni, while for Fe it remained
essentially unchanged. These changes can be understood by assuming that the coup-
ling across the artificial cut in the metal goes beyond nearest neighbours. For Fe,
because of the reversal of the polarization of DOS in the surface layer, the inclusion
of more layers tends to reduce the influence of this reversal and hence to stabilize the
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Figure 1. (a) Bulk Co DOS, (b) free surface Co layer DOS, (c) isolated electrode surface Co
layer DOS and (d) ballistic conductance of bulk Co around the Fermi level. The units
for the DOSs are states atom
1 eV
1 and the units for conductance are e2=h. The DOS
plots for the s electrons are enlarged 15 times so that one can see them on the same plot
as the DOS plots for the d electrons.



results while, for Co and Ni, there are no radical differences between surface and
inner layers; thus including more inner layers will only increase the conductance
values, especially for the parallel configuration. Nevertheless, the inclusion of second
nearest neighbours should give a reasonable approximation, especially for tunnelling
across a finite barrier where the coupling between the electrodes and the barrier is
even shorter ranged.

Parenthetically, by using the Caroli et al. formalism to calculate the conductance
of a metallic structure we encounter difficulties arising from current driven charge
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Figure 2. kk-resolved (partial) DOSs in units of states atom
1 eV
1 of fcc Co(100) plotted
in the first 2D BZ. The left-hand column is for the majority-spin channel and the
right-hand column is for the minority-spin channel. From top to bottom, the DOSs
for a bulk Co layer, a free surface Co layer and the isolated electrode surface Co
layer are shown. Colour contour plots of these figures can be viewed at http://
physics.nyu.edu/�pl2/.
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and spin accumulation that are not present in tunnelling junctions (for example
Weinberger et al. (2001)). Therefore it is not useful to draw too many conclusions
about the applicability of our formalism for calculating the conductance of tunnel
junctions from these tests on bulk metals.

4.2. Density of states
To make our analysis of the JMR calculation results in the next section clearer,

we first discuss our results on the spin-polarized DOS of the Fe(6)–vacuum(6) and
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Figure 3. kk-resolved (partial) DOSs in units of states atom
1 eV
1 of bcc Fe(100) plotted
in the first 2D BZ. The left-hand column is for the majority-spin channel and the
right-hand column is for the minority-spin channel. From top to bottom, the DOSs
for a bulk Fe layer, a free surface Fe layer and the isolated electrode surface Fe
layer are shown. Colour contour plots of these figures can be viewed at http://
physics.nyu.edu/�pl2/.



Co(6)–vacuum(6) interfaces for two layers on either side of the interface, which have
been decomposed into angular momentum components: s, p and d. While this
decomposition is reasonable for the metal layers, it is less so for the vacuum layers
as there is no positive charge at the centre of the cells to attract the electrons;
therefore for the vacuum layers we only show the total DOS. We do not show the
DOS of the Ni(6)–vacuum(6) interface because it has a similar structure to that of
Co. We have calculated the DOS for free surfaces of Fe, Co and Ni in the highly
symmetric (100), (110) and (111) crystallographic directions.

In figure 4 the DOSs around the Fermi level in the metal layers and vacuum
(empty cell) layers near the bcc Fe free metal surface in these three directions are
plotted. For convenience of visualization, for the metal layers only the s and d partial
DOSs are plotted while, for the vacuum layers, only the total DOSs are plotted for
the reasons mentioned above. For metal layers, the d DOS is much larger than the s
DOS while, in the vacuum layers, although not shown, the difference is very small
and usually the s DOS dominates. In the inner metal layers, that is bulk, of Fe both s
and d DOSs are positively polarized (and of course, for bulk metal layers, there
should be no directional dependence of DOS); as we approach the surface, a direc-
tional dependence shows up as one would expect from the fact that different surface
directions have different 2D lattice structures and therefore different electron dis-
tributions and different work functions.

In the (100) direction for Fe, the s DOS is positively polarized in all metal layers
because of the strong s–d mixing, and the Fermi level is inside both majority and
minority d bands. The d-band DOS, while positively polarized in the bulk of Fe, is
negatively polarized in the surface layer. In the vacuum layers, because of the influ-
ence of the surface metal layer, that is leakage of electrons from the surface of the
metal into the vacuum, the DOS at the Fermi level is negatively polarized for both s
and d bands and therefore also for the total. The peaks in the DOS, although small,
are particular to the (100) and (111) surfaces of bcc Fe metal and have been used to
explain some anomalous STM experiment results (Krans and van Rutenbeek 2002).
The sign of the polarization does change when one places a layer of O on top of the
Fe surface (Nguyen-Manh et al. 1998, Tsymbal et al. 2000).

The (111) direction shows a similar DOS and polarization profile as the (100)
direction, while the (110) direction shows a somewhat different profile from these
two directions in that in the surface metal layers, both s and d DOSs are essentially
unpolarized, and the charge transfer to the vacuum is much smaller than in the other
two directions. These differences can be understood by noting the varying interlayer
distances. For Fe, the cubic lattice constant is 5.27 au; the layer-to-layer distance in
the (111) directions is 1.52 au (2D hexagonal lattice), in the (100) direction it is
2.64 au (square lattice) and in the (110) direction it is 3.73 au (centred rectangular
lattice). So we see that a (111) surface has the smallest distance between layers in the
growth direction, and therefore more overlap between primitive cell atomic wave-
functions in this direction; hence more electrons are transferred to the vacuum layers.
A (110) surface has just the opposite behaviour. The consequences of the differences
in surface lattice structure lies in every aspect of the charge and magnetic moment
distribution. For instance, the work functions also show clearly the differences: for a
(110) surface, it is 0.40 Ry, for a (100) surface, it is 0.37 Ry while, for a (111) surface,
it is only 0.32 Ry.

In figure 5 we show the same plots for fcc Co surfaces in the three directions.
Here the directional dependence in the metal layers is not significant and from bulk
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layers to surface layers the change in DOS and polarization is very small, mainly
because the Fermi level always lies above the majority d bands but within the
minority d channel. The s-band DOS is always positively polarized while the d-
band DOS is always negatively polarized in the metal layers. Again, in the vacuum
layers, because of the negative spin polarization in the metal layers, polarization is
negative, and the strong directional dependence can be explained by the large differ-
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Figure 4. Angular-momentum-resolved DOSs around the Fermi level of a bcc Fe surface in
the (100), (110) and (111) directions. From top to bottom the DOSs are shown for the
next-to-surface Fe layer, the surface Fe layer, the first vacuum layer and the second
vacuum layer. In the Fe layers the s component is enlarged 15 times.



ences in the surface (2D) lattice structures and the different interlayer distances. Here
the (110) direction has the shortest interlayer distance (2.31 au) and hence the largest
transfer of electrons. The (111) direction has the largest interlayer distance (3.27 au,
close to the one for the (100) direction) and hence the smallest transfer.

As we discuss below, the conductance values for thick barriers, although not
directly proportional to the product of the surface DOS of the two electrodes, do
seem to be positively correlated to them. For thinner barriers, the situation is more
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Figure 5. Angular-momentum-resolved DOS around the Fermi level of a bcc Co surface in
the (100), (110) and (111) directions. From top to bottom the DOSs are shown for the
next-to-surface Co layer, the surface Co layer, the first vacuum layer and the second
vacuum layer. In the Co layers the s component is enlarged 15 times.



complicated and such a conclusion cannot be drawn; because of the strong direct
coupling between the two electrodes (wavefunction overlap), the barrier is signifi-
cantly modified.

4.3. Tunnelling conductance and magnetoresistance
Calculations of tunnelling conductance for the barrier region alone were made for

bcc Fe(100)/vacuum/Fe(100) for fcc Co(100)/vacuum/Co(100) and fcc Ni(100)/
vacuum/Ni(100) tunnel junctions. Convergence tests with the number of nearest
neighbours show that, in the tunnelling calculations, inclusion of the second-nearest
neighbour suffices; this indicates that hopping across the metal–vacuum interface
indeed is quite short ranged.

In figure 6(a), (b) and (c), we show the distribution of tunnelling conductance in
the first 2D BZ for majority-spin, minority-spin and antiparallel configurations
respectively in a Co junction when the thickness of the vacuum is six atomic layers.
Although in conductance calculations we used an energy imaginary part of
	 ¼ 0:5mRy, an imaginary part of 5mRy for the energy is used in these plots so
that they will not appear too spiky, particularly in the minority channel. The dis-
tribution for majority spin conductance resembles that of free electron tunnelling
across a constant potential barrier (Butler et al. 1997, 2001, MacLaren et al. 1997,
1999) and is dominated by tunnelling states in the centre of the 2D BZ. The minority-
spin channel conductance has a more complex structure; it is dominated by only a
few kk states. These same features also appear in tunnelling across insulators (for
example Butler et al. (1997, 2001) and MacLaren et al. (1997, 1999)); only here the
minority-spin channel for our vacuum barrier has a much higher conductance
whereas one finds that for junctions with Al2O3 the majority channel has higher
conductance. From table 1 we see that, in the vacuum layer adjacent to the metal
surface, the total DOS for minority electrons is about three times that for majority
electrons. This is in sharp contrast with DOS results for alumina barriers in contact
with ferromagnetic metals (Nguyen-Manh et al. 1998, Tsymbal et al. 2000), where
majority electrons have a larger DOS around the Fermi level than minority
electrons in the barrier layers near the metal surface. Also more recent studies by
Oleinik et al. (2000) have found that the DOS at the Fermi level inside an alumina
barrier for Co/Al2O3/Co junctions gradually change sign as one goes to the central
layer; they thereby infer that the tunnelling current will have majority-spin polariza-
tion for alumina barriers thicker than 10–12 monolayers (ML).

Plots of the changes in the JMR ratio with the number of vacuum layers are
shown in figure 7 for the three tunnel junctions. Changes in JMR with the barrier
thickness are the result of the combined effect of the barrier band structure and the
coupling of the various bands of the metal into the vacuum barrier (which owing to
charge transfer also leads to the vacuum barrier electronic structure). For vacuum
barriers with only a few layers, the JMR is strongly influenced by the spill-over of
charge from the metal; as a result for Co there is a dip around two atomic layers. For
thicker barriers, as we mentioned, the vacuum barrier is for the most part a potential
plateau and the changes in JMR with the vacuum thickness is mainly the result of the
different couplings of the metal s, p and d bands, that is the states at the electrode–
barrier interface, into the barrier bands. Whether the JMR increases or decreases
with the vacuum barrier thickness depends on the multiband structures of the bar-
rier. For Co/vacuum/Co junctions it is a decreasing function of barrier thickness. At
12 atomic layers, the JMR is about 18%. Recent studies by Butler et al. (2001)
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Figure 6. kk-resolved (partial) tunnelling conductance of the barrier region of a Co junction
in the first 2D BZ when the magnetizations of the two electrodes are aligned (a) in
parallel for the majority-spin channel, (b) in parallel for the minority-spin channel and
(c) antiparallel. The vacuum barrier is six atomic layers thick. Colour contour plots of
these figures can be view at http://physics.nyu.edu/�pl2/.



indicated that, by using the ASA for the vacuum layers, one does not obtain a
realistic assessment of the decay of states with different orbital character in the
barrier. For this reason some of the details of the above results may be artefacts
of our having used the ASA for the vacuum.

Changes in JMR with the vacuum barrier thickness for the Ni junction are very
similar to those for the Co junction because fcc Ni and Co have very similar band
structures. The work function of Ni is 5.8 eV, very close to that of Co, and the
conductances also decay at a rate similar to that of Co junction. The dip structure
in the JMR versus thickness relation is also similar to that of Co junction but, after
the dip, the JMR slowly increases instead of decreasing with barrier thickness. At 12
atomic layers the JMR approaches 19%.

The same calculation for the bcc Fe junction shows some different results as
would be expected from the DOS results. For small barrier thicknesses the direct
overlap of the wavefunctions has the conductance for the majority-spin channel
about twice that in the minority-spin channel (see table 1). At about two atomic
layers there is a crossover in the conductance, which leads to a dip in the JMR curve
at around three atomic layers, after which the minority channel dominates and, at
barrier thicknesses larger than six atomic layers, the JMR essentially approaches a
saturated value around 80%; this is much higher than corresponding results for Co
and Ni junctions. As we mentioned above, some of these features may be artefacts of
the ASA that we used for the vacuum. Recent studies by Nguyen-Manh et al. (1998)
and Tsymbal et al. (2000) of the DOS for 1 ML of O on the (100) surface of Fe show
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Figure 7. JMR ratio change with the barrier (vacuum) thickness in fcc Co(100), fcc Ni(100)
and bcc Fe(100) tunnel junctions when calculating the conductances only for the
barrier regions.



that it is majority spin polarized even though the spin polarization of the Fe (100) is
minority dominated; they concluded that the bonding (hopping integrals) at these
interfaces is such as to always produce a majority-dominated tunnelling current.

As we have used vacuum as the barrier, our calculations are closely related to
STM and field emission (FE) experiments. In STM, experiments on spin-polarized
tunnelling involving ferromagnetic metals have been carried out by Alvarado and
Renaud (1992), Alvarado (1994, 1995) and Bode et al. (1998, 1999) who found that
the spin polarizations of tunnelling current from Ni tips into a non-magnetic
material are negative in some lattice directions. In FE studies, mixed results were
observed, often with strong directional dependences. Although it is hard to link a FE
experiment, which involves much higher fields and final states that are quite different
from those for tunnelling across vacuum barriers, to our present calculations, the
very fact that FE measurements did not yield the almost ubiquitous positive current
polarization observed in tunnelling across alumina indicates that the barrier and the
coupling are very important factors in tunnelling.

} 5. Paths of conduction across a junction
The results for the conductance that we have presented were calculated for the

barrier region alone. As this is physically a different system from coherent transport
across an entire junction as seen in a ballistic calculation, we can anticipate that the
results are quite different (Levy et al. 2002). Specifically one has, in addition to the
considerations above, the problem of matching the states at the electrode–barrier
interface to those in the bulk of the electrodes (Butler et al. 2001). Therefore we have
repeated our above calculations for a bcc Fe(100)/vacuum(10)/Fe(100) tunnel
junction with the electrodes at an energy of 0.05 eV below the Fermi energy; we
have states localized at the Fe(100)–vacuum interface which form an independent
conduction path at this energy (Levy et al. 2002), while far away from the barrier the
electronic structure reverts to the bulk (frozen, not self-consistently determined)
metal potentials. In figures 8 (a) and (b) we show the kk-resolved conductance
found in this manner plotted across the 2D BZ for the barrier region alone and
for the entire junction respectively. Noteworthy differences between the two
approaches are as follows.

(i) The symmetry of the kk resolved conductance plots are quite different. While
the calculation for the barrier alone picks up states localized at the interface
along the �–X direction, the entire junction ballistic calculation picks up
only the resonant states along �–M (Butler et al. 1997, 2001, MacLaren et
al. 1997, 1999). In coherent transport across the entire junction the JMR is
controlled by these resonances, whereas in our calculations we include the
conduction through states localized at the electrode–barrier interfaces.

(ii) The average of the conductance over the 2D BZ is much lower when we
assume coherent transport across the entire structure than that for the
barrier region alone, for example 0:16� 10
7 for the former and
0:43� 10
7 for the latter in units of e2=h. Our calculations are not conclusive
on this difference in magnitudes because the imaginary part of the energy
that we use in our propagators acts differently on the itinerant states in the
bulk of the electrodes from the localized states at the electrode–barrier
interface; also one cannot be sure of the convergence for the number of k
points that we have taken. None the less, this difference is reasonable as one
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has two paths of conduction when one uses the localized states, as well as the
itinerant states in the electrodes.

These figures are plotted with a very small number (3600) of kk points that
already show the difference between the two cases. Test calculations using 90 000
points in the whole 2D BZ show that the same conclusions still hold. From other
convergence test calculations with both the number of kk points and with the number
of nearest neighbours as mentioned earlier, we conclude that these differences are
real and well above the numerical error range.
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Figure 8. kk-resolved (partial) tunnelling conductance of bcc Fe(100) vacuum(10)/Fe(100)
tunnel junction at an energy 0.05 eV below the Fermi level (a) only for the barrier
region and (b) for the entire junction. Colour contour plots of these figures can be
viewed at http//physics.nyu.edu/�pl2/.



} 6. Bias dependence of tunnelling currents and magnetoresistance
Based on the same technique we can push our effort one step further by intro-

ducing a finite voltage bias into these calculations. As in the previous calculations we
calculate the resistance arising solely from the barrier and its interfaces with the
electrodes. One of the major obstacles when making ‘open circuit’ transport
calculations between two electrodes with different Fermi energies, that is for a tunnel
junction that is not part of a closed circuit, is that self-consistency mandates that
under an applied voltage there is a redistribution of electrons between electrodes so
as to re-equilibrate the Fermi levels in both electrodes. However, what actually
transpires in a junction that is part of a closed circuit and maintains a potential
drop across it in the presence of a current is that the electron loss (gain) from an
electrode is replenished (removed) by the wire completing the circuit. We are able to
mimic the effects of voltage on the junction without undoing the difference in the
electrode Fermi levels as follows. We first calculated the surface properties of a
perfect ferromagnetic bcc Fe(100) surface in a constant external field; from this we
calculate the JMR of a Fe/vacuum/Fe tunnel junction. The effect of a constant
external field on the Fe/vacuum surface is simulated in SKKR either by shifting
the work function or equivalently by adding a fixed layer of charge in the vacuum.
By matching two Fe/vacuum surface systems calculated under equal but opposite
external fields we obtain a Fe/vacuum/Fe MTJ under a voltage bias. In figure 9 we
show the atomic potentials in the vacuum layers for Fe/vacuum(11)/Fe for zero bias
and two applied biases that results from matching the two surface calculations. The
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Figure 9. Average atomic potentials in all the vacuum barrier layers in a Fe/vacuum(11)/Fe
tunnel junction resulted from matching two surface calculations. Values for three
different voltage biases (0.00, 2.95 and 5.91V) are plotted.



resulting potentials deviate from the trapezoidal barrier that is conventionally used;
the negative potentials for the two vacuum layers adjacent to the Fe electrodes
indicate that there is a finite density of electrons at the Fermi level for these layers.
The density of states for majority and minority electrons at the surface of the Fe
electrodes and one layer in from the surface are shown in figure 10. In the presence of
a bias the DOS of one electrode has to be shifted relative to the other; in figure 11 we
show these for parallel and antiparallel configurations of the electrode for the surface
layers. The striking difference between zero and finite bias is the disparity between
the DOSs of the same spin for the two electrodes even when they are parallel.

The tunnelling current densities and JMR of such a tunnel junction are then
calculated using the same technique as for the linear response region. In figure 12 we
show the spin-polarized tunnelling current density j for all four different combina-
tions of the electrode spins as functions of the voltage bias. The notable difference
from zero bias is the different current densities in the antiparallel configuration
between the majority channel in the left-hand electrode and the minority channel
in the right-hand electrode, and also between the minority channel in the left and the
majority channel in the right; for zero bias they are identical. The channels with the
minority spin on the right-hand side dominate the others. Current densities from
channels with the majority-spin channel on the left-hand side (shown as open circles)
present exponential-like behaviour in all the bias range, with virtually no fine struc-
ture, while those from channels with the minority spin channel on the left-hand side
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Figure 10. Spin-resolved DOSs around the Fermi level for the surface layer (elec.ð�ÞÞ of the
isolated electrode (——), the next-to-surface layer (elec.ð�
 1ÞÞ layer of the electrode
(– – –) and a bulk Fe layer (� � � � � �Þ. Positive values are for the majority spin channel
and negative values are for the minority spin channel.



(shown as crosses) demonstrate a little more intricate fine structure in the bias range
from 0 to 1:5V; they peak around a bias value of 0.3 V and then gradually decline
and dip in the range 1:2–1:5 V. After that they also approach a behaviour reminis-
cent of tunnelling across a barrier with no features from the DOS. The exponential-
like increases in the current densities are indicators that the bias is such that electrons
at the Fermi level of the forward-biased electrode have a reduced barrier height and
width.

From the current densities we calculated the JMR ratio as a function of the
voltage bias. At zero bias, the JMR is 88%. This value drops to zero for approxi-
mately 0.6 V when the two dominating current density lines cross each other in
figure 12 and continues to drop all the way down to 
374% for a bias of about
1.5 V if we maintain the same definition of the JMR ratio (equation (7)). The
aberrantly large negative value arises because the conductance of the parallel con-
figuration becomes smaller than that for the antiparallel configuration when the ratio
becomes negative and the denominator in the ratio is small. Therefore, to keep JMR
ratios that are less than one, we use the larger conductance of the antiparallel con-
figuration in the denominator of the JMR ratio when it is negative. In figure 13 we
plot the JMR ratios for this revised definition of the negative JMR. After 1.5 V, as
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Figure 11. Spin-resolved DOSs around the left-hand electrode surface layer (layer �) and of
the right-hand electrode surface layer (layer �) plotted at the same energy in a Fe/
vacuum(11)/Fe tunnel junction under a voltage bias of 2.91V for (a) the parallel
configuration and (b) the antiparallel configuration. These plots are obtained from
figure 10 by shifting the DOS of the right-hand electrode up by 2.91 eV.
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Figure 12. Spin-resolved tunnelling current density of Fe/vacuum(11)/Fe at different voltage
biases for both the parallel configuration and the antiparallel configuration. The
values for two of the curves at higher bias values are truncated to show the fine
structure.

Figure 13. JMR ratio versus bias for a Fe/vacuum(11)/Fe tunnel junction according to the
revised definition of the JMR in which the numerator is always the difference between
parallel and antiparallel conductances but the denominator is the larger of these two
values: (*), calculated values; (——), guide to the eye.



the exponential-like behaviour of the current densities set in, the JMR ratio quickly
increases and approaches zero at higher biases.

To understand better which features of the bias dependence of the tunnelling
current density and magnetoresistance depend on the details of the DOS of the
electrodes and the potential profile of the barrier, we have made an exact calculation
of the tunnelling current density by numerically solving the Schrödinger equation for
a model of the junction with a trapezoidal barrier whose slope is given by the bias
and in which the electrodes are represented by spin-split free-electron bands. In
figures 14 and 15 we show the results for the tunnelling current densities and mag-
netoresistance. The parameters are chosen in such a way as to best reproduce the
JMR curve in figure 13. While the magnitudes are quite different, the overall trend is
captured by this simple model. By altering the relative depths of the majority and
minority channels, one can considerably vary the magnitude of the JMR at zero bias
and, by changing the barrier height, the bias dependence of the JMR. However, it is
necessary to caution that the magnitudes of the JMR predicted by these model types
of calculation are not reliable (Zhang and Levy 1998, 1999). Therefore, other than
showing that the qualitative features of the bias dependence of the JMR can be
broadly reproduced in a simple model of tunnelling in the presence of a bias, ab
initio calculations such as those presented above are vital for a more accurate
description of the non-equilibrium effects of voltage on tunnelling magnetoresis-
tance.
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Figure 14. Spin-resolved tunnelling current density versus bias for a free-electron trapezoidal
barrier model tunnel junction. The Fermi sea depth is 16 eV for the majority-spin
channel and 3 eV for the minority-spin channel. The square barrier height at zero
bias is 1 eV measured from the Fermi level.



} 7. Summary
In tunnelling from one metal electrode through an insulating barrier into another

metal electrode, the tunnelling properties depend on the electronic structures of the
electrodes and barrier, as well as on the coupling between them. In theoretical
discussions on tunnelling, it has been customary to make model calculations assum-
ing that the hopping integrals are just constants, or taking them as free or fitting
parameters, so as to show some aspects of tunnelling. In addition a square potential
is usually assumed for the barrier profile. Both of these approximations lead to
conclusions about the JMR of MTJs that are idiosyncratic (Zhang and Levy 1998,
1999). The ab initio calculations of the JMR for tunnel junctions to date have not
included the putative roles of localized states at electrode–barrier interfaces in the
conduction. To account in some measure for the influence on tunnelling of localized
states at the electrode–barrier interfaces we have calculated the conductance across
the barrier region alone; by placing reservoirs at the interfaces we are sure to fill these
localized states. We undertook ab initio calculations of the JMR for tunnel junctions
of bcc Fe(100), and for fcc Co(100) and fcc Ni(100) with various vacuum barrier
thicknesses. The continuous Green’s functions of the tunnel junction were obtained
from ab initio band structure calculations using the SKKR method; the Green’s
functions entering the conductance formula were obtained by expanding them in a
layer-resolved basis set for which the normalized scattering solutions from SKKR
calculations were used. The isolated electrode Green’s functions were derived from
the coupled system Green’s functions using Dyson’s equation.
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Figure 15. JMR ratio versus bias for the free-electron trapezoidal barrier model tunnel
junction specified in figure 14: (*), calculated values; (——), guide to the eye.



When the barrier thickness is small, the barrier region is strongly modified from a
pure vacuum by electron hopping across the metal–barrier interface; in this range,
the changes in the tunnelling conductance with barrier thickness are not exponen-
tial, and the JMR shows a dip at barrier thickness two to three atomic layers. When
the barrier thickness is large, most of the barrier is just a constant potential and, as a
result, the tunnelling conductance changes exponentially with the barrier thickness.
For all barrier thicknesses in Co and Ni junctions, and for barriers thicker than two
atomic layers in Fe junctions, negative spin polarization of tunnelling conductance
was obtained; that is, the minority-spin channel dominates. This putatively agrees
with some spin-polarized STM experimental results. Although there is no simple
proportionality between the conductance and DOS of the electrodes, they do seem
to be closely correlated, which suggests that the contribution of the d bands to tunnel
across a vacuum is not small at all. This is in sharp contrast with tunnelling through
alumina barriers where positive polarizations of tunnelling current was observed. It
has been argued that, although the d band has a much larger DOS than the s band,
because of its highly localized nature its contribution to tunnelling is negligible, that
is, only the s band contributes significantly to tunnelling. Phrased differently, a part
of the d electrons’ energy is associated with its angular momentum; this in turn
means that these electrons have lower kinetic energies. Our calculations indicate
that the metal–barrier coupling plays an important role. Changes in tunnelling
conductance and JMR with the thickness of the barrier are the results of the com-
bined effect of the barrier band structure and the different couplings of the states at
the electrode surface to the barrier. The bias dependence of the tunnelling currents in
MTJs is controlled by the alteration of the potential barrier and by the shifts in the
DOSs on the two sides of the barrier. The dip in the JMR at finite biases is remi-
niscent of that found in many studies.

Although we covered some aspects of magnetic tunnelling, our treatment is not
applicable to conventional MTJs. Because of the limitations in our band structure
calculation method, we have chosen vacuum as the tunnel barrier for its simpler
structure. In reality, most experiments are made with insulators or semiconductors as
barriers. These materials require band structure methods that can treat complex
lattices. For simplicity, only perfect metal–barrier interfaces are considered in our
calculations. While we based our calculation of the tunnelling conductance on all the
states that exist at the electrode–barrier interfaces, it remains an open question as to
the role of the interface roughness on the tunnelling properties and JMR of MTJs.
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NOTE ADDED SINCE SUBMISSION

Since we originally submitted this article a paper has appeared (Wunnich et al.
2002) which echoes some of our results, albeit through a different analysis. Indeed, it
was Professor Dederichs who first opined that our results on tunnelling conduction
could be due to the additional conduction channel through the localized states at the
electrode–barrier interfaces.

APPENDIX A
Another method of evaluating the conductance is to start from equation (8) and

to demand that all the Green’s functions are expressed by unperturbed Green’s
functions of the isolated subsystems. We can use Dyson’s equation
G ¼ gþ gVG ¼ gþGVg, where g represents the Green’s functions of the isolated
subsystems, together with the assumption of only nearest-neighbour hopping, to find
that

Gab ¼ gab þ gaaVa�G�b þ gabVb�G�b;

G�b ¼ g��V�aGab;

G�b ¼ g��V�bGbb;

Gbb ¼ gbb þ gbbVb�G�b þ gbaVa�G�b:

ðA 1Þ

Solving these equations for Gab gives

Gab ¼ ð1
 gaaSaaÞ
1gabð1
 SbbgbbÞ
1; ðA 2Þ
where Saa ¼ Va�g��V�a and Sbb ¼ Vb�g��V�b are self-energy terms on sites a and b
respectively. As shown in equation (16), the hopping integrals are found by using the
full Green’s functions G and the unperturbed Green’s functions g.

We did not use this approach in our calculations for several reasons. Firstly, the
explicit use of gab introduces more error because gab itself has to be derived from a
suitably coupled system Green’s function which again involves truncation in the
coupling range; secondly, the extra manipulation of V reduces the numerical accu-
racy of the calculation; thirdly, because of the special way in which the energy band
for a vacuum barrier is formed when coupled with a metal electrode, that is through
charge redistribution, we found that this method was not able to reproduce satis-
factorily the full Green’s function Gab as can be calculated directly in the present
case. None the less, we mention it here for the following reasons.

(i) It is more amenable to theoretical analysis and model calculations than
other formulations since in those analyses, more often than not, the unper-
turbed systems are, or are assumed to be, well known while the coupled
system is totally unknown (for example Caroli et al. (1971)).

(ii) When we discuss the dependence of tunnelling on the external voltage across
the barrier in terms of ab initio band structures, this may prove to be a very
convenient, if not the only, method since to determine the bias dependence
of tunnelling the conventional local density functional method cannot be
applied to systems out of equilibrium.

In the current method, at least for thick barriers, we do not have to make a self-
consistent calculation for the entire junction; a metal–insulator interface calculation
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incorporating external field near the interface suffices and this has been shown to be
quite feasible; see } 6.

While equation (18) holds for barriers thicker than one atomic layer, the special
cases of barriers with one- or zero layer thickness are of some interest to us. When
the barrier thickness is one atomic layer, then a ¼ b:

t�� ¼ V�aGaaVa�; ðA 3Þ

Gaa ¼ gaa þ gaaVa�G�a þ gaaVa�G�a

¼ gaa þ gaaSaaGaa þ gaaSbbGaa

¼ ð1
 gaaSaa 
 gaaSbbÞ
1gaa;

so, roughly speaking, ðGaaÞ
1 � ðgaaÞ
1 
 Saa 
 Sbb, or E � Eaa 
 Saa 
 Sbb; which
explicitly shows the meanings of Saa and Sbb as self energy terms.

When the barrier thickness is zero (i.e. � ¼ a and � ¼ b), the system is just bulk
metal (for parallel alignment of the moments on both sides), and

G�� ¼ g��V��G��; ðA 4Þ

G�� ¼ g�� þ g��V��G��: ðA 5Þ
By solving for G�� we find that

G�� ¼ g��V��ð1
 g��V��g��V��Þ
1g��; ðA 6Þ
so that

t�� ¼ V�� þ V��G��V��

¼ V��½1
 g��V��g��V��	
1: ðA 7Þ

By placing this into the conductance equation (2), we rederive equation (7) of the
paper by Mathon (1997) which was derived from the Kubo formula and used to
calculate the ballistic conductance of bulk Co.
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