Partial separability and multipartite entanglement measures

Szilárd Szalay

Theoretical Solid State Physics Department, Wigner Research Centre for Physics, Budapest, Hungary.

September 24, 2015

Entanglement Day(s) 2015, Wigner FK SZFI, Budapest
info: http://indico.kfki.hu/event/315/
Outline

1. Introduction
2. Structure of multipartite entanglement
3. Quantification of multipartite entanglement
4. Summary
This talk is about... the fundamental questions of quantum entanglement theory:

- **structure** of entanglement (*classification*)
- **qualification** of entanglement (*separability criteria*)
- **quantification** of entanglement (*entanglement measures*)
- these are difficult for *mixed* states of more than two subsystems

Here I present a transparent structure of answers for these questions. I recall the *bipartite case*, I show the *tripartite case* in some details, and I refer to

for the *n-partite case*.
1 Introduction

2 Structure of multipartite entanglement

3 Quantification of multipartite entanglement

4 Summary
States of a discrete quantum system

- **state vector**: $|\psi\rangle \in \mathcal{H}$ (normalized)
- **pure state**: $\pi = |\psi\rangle\langle\psi| \in \mathcal{P}$

 we are uncertain in the measurement outcomes, pure state encodes the *probabilities* of those

- **mixed state** (of an ensemble): $\rho = \sum_j p_j \pi_j \in \mathcal{D} = \text{Conv } \mathcal{P}$

 we are uncertain even in the (pure) state

- \mathcal{D} is a convex set, moreover, $\mathcal{P} = \text{Extr } \mathcal{D}$

- decomposition is not unique
Bipartite systems and entanglement

Pure States

- $|\psi\rangle \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \quad \leadsto \quad |\psi\rangle\langle\psi| = \pi \in \mathcal{P}$

- There are uncorrelated, separable states
 $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \quad \leadsto \quad \pi = \pi_1 \otimes \pi_2 \in \mathcal{P}_{\text{sep}} \subset \mathcal{P}$

- Nonclassical: there are also correlated ones, entangled ($\mathcal{P} \setminus \mathcal{P}_{\text{sep}}$).
 Then measurement on subsystem 1 “causes” the collapse of the state of subsystem 2. (worry of EPR)

- states of subsystems (e.g., $\text{tr}_2 \pi \in \mathcal{D}_1$) are not necessarily pure

- π is entangled if (and only if) $\text{tr}_2 \pi$ and $\text{tr}_1 \pi$ are mixed

In this case, “the best possible knowledge of the whole does not involve the best possible knowledge of its parts.” (Schrödinger)
Bipartite systems and entanglement

Pure States
- $|\psi\rangle \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ $\leadsto |\psi\rangle\langle\psi| = \pi \in \mathcal{P}$
- separable: $|\psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle$ $\leadsto \pi = \pi_1 \otimes \pi_2 \in \mathcal{P}_{\text{sep}} \subset \mathcal{P}$
- else it is entangled ($\mathcal{P} \setminus \mathcal{P}_{\text{sep}}$)
- decision of separability is simple: $\pi \in \mathcal{P}_{\text{sep}} \iff \text{tr}_2 \pi \in \mathcal{P}_1$

Mixed States
- a mixed state is separable if there exists separable decomposition: $\rho = \sum_i p_i \pi_{1,i} \otimes \pi_{2,i} \in \mathcal{D}_{\text{sep}} = \text{Conv} \mathcal{P}_{\text{sep}} \subset \mathcal{D}$
- classically correlated sources produce states of this kind (Werner) can be prepared by Local Operations and Classical Communication
- else it is entangled ($\mathcal{D} \setminus \mathcal{D}_{\text{sep}}$)
- the decomposition is not unique
- decision of separability is difficult
Bipartite systems – Overview

States

- **Pure states** (closed, containing):
 \[\mathcal{P}_{\text{sep}} \subset \mathcal{P} \]

- **Mixed states** (closed, containing):
 \[\mathcal{D}_{\text{sep}} = \text{Conv} \mathcal{P}_{\text{sep}} \subset \mathcal{D} = \text{Conv} \mathcal{P} \]

- **Classes** (disjoint):
 \[\mathcal{C}_{\text{ent}} = \mathcal{D} \setminus \mathcal{D}_{\text{sep}} \quad \text{entangled} \]
 \[\mathcal{C}_{\text{sep}} = \mathcal{D}_{\text{sep}} \quad \text{separable} \]
Tripartite systems, Pure states – Partial separability

Partial separability

- $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$
- separable w.r.t. different splits (partitions):
 - all states
 $\pi \in \mathcal{P}_{123}$
 - biseparable
 $\pi = \pi_a \otimes \pi_{bc} \in \mathcal{P}_{a|bc}$
 - fully separable
 $\pi = \pi_1 \otimes \pi_2 \otimes \pi_3 \in \mathcal{P}_{1|2|3}$
- closed, containing
- classes: intersections of these (disjoint)
Tripartite systems, Mixed states – Partial separability

Partial separability

- all possible different kinds of mixtures

\[D_{123} = \text{Conv}(\mathcal{P}_{123}) \]

\[D_{1|23,2|13,3|12} = \text{Conv}(\mathcal{P}_{1|23} \cup \mathcal{P}_{2|13} \cup \mathcal{P}_{3|12}) \]

\[D_{b|ac,c|ab} = \text{Conv}(\mathcal{P}_{b|ac} \cup \mathcal{P}_{c|ab}) \]

\[D_{a|bc} = \text{Conv}(\mathcal{P}_{a|bc}) \]

\[D_{1|2|3} = \text{Conv}(\mathcal{P}_{1|2|3}) \]

- closed, containing
- classes: intersections of these (disjoint)
Tripartite systems, Mixed states – Part. Sep. Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>(C_1)</th>
<th>(C_2.1)</th>
<th>(C_{2.2.a})</th>
<th>(C_{2.3.a})</th>
<th>(C_{2.4})</th>
<th>(C_{2.5.a})</th>
<th>(C_{2.6.a})</th>
<th>(C_{2.7.a})</th>
<th>(C_{2.8})</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
<tr>
<td></td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\not\subset)</td>
<td>(\subset)</td>
</tr>
</tbody>
</table>
Tripartite systems, Mixed states – Class hierarchy
General construction

Lattice theoretic description

- **Level I**, hierarchy of *partitions*:
 \[P_I, \text{ lattice of partitions of } n \text{ elementary subsystems} \sim \mathcal{P} \ldots \]

- **Level II**, hierarchy of *partial separability properties*:
 \[P_{II} = \mathcal{O}_\downarrow(P_I) \setminus \{\emptyset\}, \text{ lattice of nonempty down-sets} \sim \mathcal{D} \ldots \]

- **Level III**, hierarchy of *partial separability classes*:
 \[P_{III} = \mathcal{O}_\uparrow(P_{II}) \setminus \{\emptyset\}, \text{ lattice of nonempty up-sets} \sim \mathcal{C} \ldots \]

Local Operations and Classical Communication:

- **LOCC closedness** (Level II): \(\mathcal{D} \ldots \) are closed under LOCC

- **LOCC convertibility** (Level III): if a state from a class can be mapped into another one by the use of LOCC
 \[\implies \text{ that class can be found higher in the hierarchy.} \]

- conjecture: the above is “\(\iff \)”
Introduction

Structure of multipartite entanglement

Quantification of multipartite entanglement

Summary
Characterization of quantum states

Measure of mixedness

- von Neumann entropy: \(S(\varrho) = - \text{tr} \varrho \ln \varrho \)
- concave, nonnegative, vanishes iff \(\varrho \) pure (indicator)
- Schur-concavity: entropy = mixedness
 Schumacher’s noiseless coding thm:
 \(\textit{von Neumann entropy} = \text{quantum information content} \)

Measure of distinguishability

- (Umegaki’s) quantum relative entropy: \(D(\varrho\|\omega) = \text{tr} \varrho (\ln \varrho - \ln \omega) \)
- jointly convex, nonnegative, vanishes iff \(\varrho = \omega \) (indicator)
- quantum Stein’s lemma: \(\textit{relative entropy} = \textit{distinguishability} \)
 (rate of decaying of the probability of confusing in hypothesis testing, Hiai & Petz)
Bipartite systems and entanglement – Pure states

Pure States

- **separable**: \(\pi = \pi_1 \otimes \pi_2 \in \mathcal{P}_{\text{sep}} \subset \mathcal{P} \)
- else it is **entangled** \((\mathcal{P} \setminus \mathcal{P}_{\text{sep}}) \)
- decision of separability is simple: \(\pi \in \mathcal{P}_{\text{sep}} \iff \text{tr}_2 \pi \in \mathcal{P}_1 \)

Measure of entanglement

- the **mixedness of the subsys.** \(E(\pi) = S(\text{tr}_2 \pi) \) (entanglement entropy)
- is a good **measure of entanglement** (entanglement monotone)
 (non-increasing on average under pure LOCC.
 Vidal: isometry-invariant concave function of \(\text{tr}_2 \pi \))
- vanishes exactly for separable states (indicator function)
Bipartite systems and entanglement – Mixed states

Mixed States
- separable: $\rho = \sum_i p_i \pi_{1,i} \otimes \pi_{2,i} \in \mathcal{D}_{\text{sep}} = \text{Conv} \mathcal{P}_{\text{sep}} \subset \mathcal{D}$
- else it is entangled ($\mathcal{D} \setminus \mathcal{D}_{\text{sep}}$)

Measure of entanglement
- the average entanglement of the optimal decomposition (convex roof extension of ent. entropy, entanglement of formation)
 \[E(\pi) = S(\text{tr}_2 \pi) \]
 \[\tilde{E}(\rho) = \min_{\rho = \sum_i p_i \pi_i} \sum_i p_i E(\pi_i) \]
- is a good measure of entanglement (entanglement monotone)
- vanishes exactly for separable states (indicator function)
Bipartite systems – Overview

States

- Pure states (closed, containing):
 \[\mathcal{P}_{\text{sep}} \subset \mathcal{P} \]

- Mixed states (closed, containing):
 \[\mathcal{D}_{\text{sep}} = \text{Conv } \mathcal{P}_{\text{sep}} \subset \mathcal{D} = \text{Conv } \mathcal{P} \]

- Classes (disjoint):
 \[\mathcal{C}_{\text{ent}} = \mathcal{D} \setminus \mathcal{D}_{\text{sep}} \] entangled
 \[\mathcal{C}_{\text{sep}} = \mathcal{D}_{\text{sep}} \] separable

Entanglement monotonic indicator functions:

\[\pi \in \mathcal{P}_{\text{sep}} \iff E(\pi) = 0 \]
\[\rho \in \mathcal{D}_{\text{sep}} \iff E^U(\rho) = 0 \]
Quantification of multipartite entanglement

Tripartite systems, Mixed states – Class hierarchy

\[P_I \Rightarrow P_{II} = \mathcal{O}_\downarrow(P_I) \setminus \{\emptyset\} \Rightarrow P_{III} = \mathcal{O}_\uparrow(P_{II}) \setminus \{\emptyset\} \]

Szilárd Szalay

(MTA Wigner FK, SZFI)
Partial separability

- all possible different kinds of mixtures

\[\mathcal{D}_{123} = \text{Conv} (\mathcal{P}_{123}) \]

\[\mathcal{D}_{1|23,2|13,3|12} = \text{Conv} (\mathcal{P}_{1|23} \cup \mathcal{P}_{2|13} \cup \mathcal{P}_{3|12}) \]

\[\mathcal{D}_{b|ac,c|ab} = \text{Conv} (\mathcal{P}_{b|ac} \cup \mathcal{P}_{c|ab}) \]

\[\mathcal{D}_{a|bc} = \text{Conv} (\mathcal{P}_{a|bc}) \]

\[\mathcal{D}_{1|2|3} = \text{Conv} (\mathcal{P}_{1|2|3}) \]

- closed, containing
- classes: intersections of these (disjoint)
Quantification of multipartite entanglement

Tripartite systems, Pure states – Entanglement measures

Multipartite entanglement entropy

\[E_{1|23,2|13,3|12}(\pi) := \min \{ E_{1|23}(\pi), E_{2|13}(\pi), E_{3|12}(\pi) \} \]

\[E_{b|ac,c|ab}(\pi) := \min \{ E_{b|ac}(\pi), E_{c|ab}(\pi) \} \]

\[E_{a|bc}(\pi) := \frac{1}{2} (S(\pi_a) + S(\pi_{bc})) \equiv S(\pi_a) \]

\[E_{1|2|3}(\pi) := \frac{1}{2} (S(\pi_1) + S(\pi_2) + S(\pi_3)) \]

- Indicator functions: appropriate vanishing props. ✓
- Entanglement monotone: entanglement measure ✓
- Multipartite monotone: quantity high in the hier. takes lower value ✓
- Meaning: by an information-geometric measure of correlation ✓

\[\min_{\omega_a,\omega_{bc}} D(\varrho || \omega_a \otimes \omega_{bc}) = D(\varrho || \varrho_a \otimes \varrho_{bc}) = S(\varrho_a) + S(\varrho_{bc}) - S(\varrho) \]

\[\min_{\omega_1,\omega_2,\omega_3} D(\varrho || \omega_1 \otimes \omega_2 \otimes \omega_3) = D(\varrho || \varrho_1 \otimes \varrho_2 \otimes \varrho_3) \]

\[= S(\varrho_1) + S(\varrho_2) + S(\varrho_3) - S(\varrho) \]

Minimal distinguishability from (any) given uncorrelated states
Multipartite entanglement entropy (pure states)

\[E_{1|23,2|13,3|12}(\pi) := \min \{ E_{1|23}(\pi), E_{2|13}(\pi), E_{3|12}(\pi) \} \]

\[E_{b|ac,c|ab}(\pi) := \min \{ E_{b|ac}(\pi), E_{c|ab}(\pi) \} \]

\[E_{a|bc}(\pi) := 1/2(S(\pi_a) + S(\pi_{bc})) \equiv S(\pi_a) \]

\[E_{1|2|3}(\pi) := 1/2(S(\pi_1) + S(\pi_2) + S(\pi_3)) \]

Multipartite entanglement of formation (mixed states)

convex roof extensions of the above:

\[E^{\text{OF}}(\varrho) := E^{\text{U}}(\varrho) \]

- indicator functions ✓
- entanglement monotone ✓
- multipartite monotone ✓
- meaning: average multipartite entanglement of the optimal decomposition ✓
General construction

Multipartite monotonicity

- Level II (hierarchy of partial separability properties): we characterize all partial entanglement properties of a given state by the elements of a set of multipartite entanglement measures.

- Multipartite monotonicity: the property of this set of measures, by which we attempt to grasp the hierarchy of multipartite entanglement with the measures.

This seems to make the entanglement measures contained in this set measure the different manifestations of a "unified" notion of entanglement.
Quantification of multipartite entanglement

General construction

Construction (parallel to the classification)

- Level I (hierarchy of partitions):
 we form the sum of entropies of disjoint subsystems (for pure states)
- Level II (hierarchy of partial separability properties):
 we take the minimum of the Level I measures (for pure states)
 then convex roof extension (for mixed states)

Principles (why ent. entropy is the proper measure for bipart. pure states)

- entanglement is a resource, and for bipartite pure states
 ent.cost = dist.ent. = ent.entropy needs max. ent. state
- a bipartite state is entangled iff subsystems are mixed, then
 “the more mixed the marginals is the more entangled the state is”
- classical pure states are always uncorrelated,
 entanglement = correlation in pure states works for multipart.
 correlation measures applied to pure quantum states are
 pure entanglement measures (then extend to mixed states)
 (ent. monotonicity does not seem to be fulfilled automatically)
Summary

Questions

- **structure** of multipartite entanglement (classification)
- **qualification** of multipartite entanglement (separability criteria)
- **quantification** of multipartite entanglement (entanglement measures)

Answers

- classification: for arbitrary number of subsystems, finite, hierarchic
- structure of classification is complicated, but classes can be merged
- qualification: indicator functions (necessary and sufficient criteria)
- quantification: meaningful entanglement monotones
- drawback: hard optimization task (as always)
- entanglement measures have a transparent structure, reflecting the hierarchic structure of the classification
- multipartite monotonicity: hierarchy of measures
Thank you for your attention!

This project was supported by
the New Széchenyi Plan of Hungary (project ID: TÁMOP-4.2.2.B-10/1–2010-9),
the Hungarian Scientific Research Fund (project ID: OTKA-K100908) and
the “Lendület” program of the Hungarian Academy of Sciences (project ID: 81010-00).