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Chapter 1

Introduction

Scanning tunneling microscopy (STM) has been developed in the early 1980’s
based on the quantum-mechanical electron tunneling principle. Topographies of
(110)-oriented surface reconstructions and monoatomic steps of CaIrSn4 and Au
were first reported in atomic resolution [1]. This development revolutionized the
microscopy techniques of that time, and quickly resulted in a (half) Nobel Prize
in Physics awarded to Gerd Binnig (25%) and Heinrich Rohrer (25%) for the de-
sign of the STM in 1986. This scanning probe technique has clearly contributed
to the rapid development of nanoscience and nanotechnology in the last 35 years,
and has been actively used in many subfields of surface science to study a wide
spectrum of materials’ surfaces. Recent applications are concerning both physics
and chemistry, and are ranging from studying complex topological spin states
in magnetic surfaces and thin films with spin-polarized STM [2, 3, 4] for the
purpose of the development of energy-efficient ultra-high magnetic data storage
technologies to surface chemistry for investigating molecular and supramolecular
structures [5], and even chemical reactions in the field of catalysis [6, 7], which is
relevant for energy-efficient „green” industry-scale production of precious chem-
icals, keeping in mind the sustainability and environmental issues humanity is
facing nowadays. The role of the STM in these studies is vital.

Figure 1.0.1 illustrates the setup and basic operational principle of a typical
STM device. An atomically sharp tip attached to a piezoelectric tube is moved
above a conducting or semiconducting sample surface by piezoelectric electrodes.
If the tip apex is close enough to the surface (≤ 1 nm distance) then a tunneling
current starts to flow at a pre-set tunneling (bias) voltage. By moving the tip
adjusting the control voltages for the piezo tube, sample surfaces of interest can
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CHAPTER 1. INTRODUCTION

Figure 1.0.1: Schematic view of an STM device. Adapted from: Michael Schmid, TU Vienna,
Austria. [https://www.iap.tuwien.ac.at/www/surface/stm_gallery/stm_schematic].

be scanned, and high-resolution topographic imaging can be achieved with ∼ 1

Å lateral and ∼ 0.1 Å vertical resolution. An atomically sharp tip and vibration-
free environment are necessary for achieving a good resolution down to the atomic
scale. Depending on the operational mode, constant height (the tip is scanning in
a parallel plane above the surface) or constant current images can be recorded and
analyzed. For the latter, after a proper amplification of the tunneling current, a
feedback loop (distance control and scanning unit) is utilized to vertically move
the tip keeping the constant current value above different lateral positions of the
surface, thus the surface topography can be obtained after data processing and
display. Note that the STM can operate under ultra-high vacuum conditions and
at low temperature to capture exotic physical effects, but operation at ambient
conditions or at higher temperatures in open air or at solid-liquid interfaces is
also possible thanks to the developments of the last decades. It is important to
mention that the STM can not only image but also manipulate surface structures
with atomic precision [8, 9, 10, 11]. This latter functionality will definitely be used
in future applications, for example in the design of a class of quantum computers.

An important point is that the STM does not image the geometric structure
of the surface, but the combination of the atomic geometry of the sample and
the convolution of electron densities of states of the sample and the scanning tip.
This, together with tip-surface interactions can highly complicate the interpre-
tation of experimental STM images. For such reasons, theoretical modeling of

2



CHAPTER 1. INTRODUCTION

the STM is highly required, which is the main topic of the present dissertation.
The focus is on the development and implementation of computationally effi-
cient electron tunneling theories capable of simulating high-resolution STM based
on first-principles electronic structure methods (for example density-functional-
theory (DFT)), and the tests on various surface structures to validate the newly
developed STM methods.

The dissertation is organized as follows. Chapter 2 describes the theoretical
models of STM, starting with traditional methods (Section 2.1), followed by new
scientific results in the field (Section 2.2). During the PhD course, two differ-
ent methods have been developed (Sections 2.2.1 and 2.2.2), and corresponding
results are presented in Chapters 3 and 4, respectively, where the details of the
electronic structure calculations of each surface system (and STM tips) are de-
scribed. In particular, body centered cubic (bcc) flat metal surfaces were consid-
ered, where the electron orbitals involved in the tunneling were studied in great
details concerning the STM contrast inversion and the effect of asymmetric tips
on the STM images for the nonmagnetic W(110) surface (Section 3.1), and the
interplay of electron orbitals and spin-polarized electronic structure on the STM
contrast of the magnetic Fe(110) surface (Section 3.2). Since highly oriented py-
rolytic graphite (HOPG) is very important for the calibration of STM, its STM
contrast stability is analyzed in Section 3.3, followed by a statistical analysis tak-
ing a HOPG sample in combination with tungsten tips, where information on the
local tip apex geometry and orientation can be obtained introducing a correlation
analysis method to quantify the level of agreement between different simulation
methods and real STM experiments (Section 3.4). The presently only existing
method that can quantify tip-orbital interference contributions to the tunneling
current is introduced in Section 2.2.2, and the effect of the tip-orbital interference
and other factors (strain, tip rotation, and temperature) on the STM contrast
are investigated in two sample surface structures: nitrogen-doped graphene (Sec-
tion 4.2) and a Mn2H molecule on the Ag(111) surface (Section 4.3). Finally, a
summary of the dissertation and an outlook are given in Chapter 5, where the
thesis points are also stated summarizing the new scientific results in connection
to published works in scientific journals. The dissertation finishes with the used
list of scientific literature.
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Chapter 2

Theory of STM

In this chapter we briefly describe the basic theories of electron tunneling along
with their assumptions, limitations and extensions. The tunneling junction prob-
lem was first described by Bardeen in the early ’60s [12]. His model is based on
first order time-dependent perturbation theory and serves as the basic theory of
tunneling which was extended, modified or simplified several times through the
years. The first notable application of Bardeen’s theory was Tersoff and Hamann’s
work after the invention of STM [13, 14] explaining the atomic resolution achieved
in STM experiments. Later, Chen developed his famous derivative rule explain-
ing the unusually large corrugation of some surfaces and highlighted the crucial
role of the tip-orbital character in the tunneling process [15]. As an extension of
the popular and widely used Tersoff-Hamann model – motivated by Chen’s work
– Palotás et.al. developed the so called 3D-WKB model, which incorporates the
orbital characters of the tip and sample atoms as well [P1].

There are tunneling models that are not related to Bardeen’s work but based
on multiple electron scattering theory and capable of modelling electron transport
not only in the low conductance (tunneling) regime, but in the high conductance
(contact) regime as well [16, 17, 18]. Such theories are out of the scope of this
work, we focus only on theories that are directly or indirectly originated from
Bardeen’s theory, therefore have common limitations and using common assump-
tions. These have to be emphasized and kept in mind when any conclusion is
made based upon a simulational or theoretical work. These assumptions are the
following [19]:

1. The electron tunneling is treated as a one-particle process.

5



2.1. STANDARD AND EARLIER THEORIES CHAPTER 2. THEORY OF STM

Any interaction between electrons is neglected during tunneling.

2. The interaction of tip and sample regarding the electronic states is not taken
into account.
This means that the tip and sample electronic structure can be calculated
separately, and occupation probabilities are independent of each other. If
the tip-sample distance is large enough (e.g. larger than 3.5 - 4 Å), then
this assumption should be valid.

3. The tunneling is assumed to be elastic.
No energy loss is considered due to interaction between electrons and quasi-
particles e.g. plasmons, phonons, spin-excitations. Theories that deal with
such effects can be found in the following works: [20, 21, 22, 23, 24, 25].

To avoid surface and tip instabilities and to achieve atomic resolution, STM
experiments are usually performed at low temperature and low bias voltage with
typical tip-sample distance of 4 − 14 Å. Hence any tip-sample interaction or
multiple scattering effect can be neglected and the presented assumptions are
valid in an ordinary STM experiment.

2.1 Standard and earlier theories

2.1.1 Bardeen’s method

We introduce the basics of Bardeen’s method and some elementary formulas that
we rely on in the following chapters. Besides Bardeen’s original work [12], there
are some very detailed papers with rigorous derivations on this topic which can
be recommended, e.g. Refs. [19, 26].

Starting from two separate electrodes (S – sample and T – tip) which are
far apart, the unperturbed wavefunctions satisfy the time dependent Schrödinger
equations(

− ~2

2m
∇2 + US

)
ψ = i~

∂ψ

∂t

(
− ~2

2m
∇2 + UT

)
χ = i~

∂χ

∂t
, (2.1.1)

while the time independent parts of the wavefunctions, denoted by ψµ for the
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CHAPTER 2. THEORY OF STM 2.1. STANDARD AND EARLIER THEORIES

sample and χν for the tip, satisfy the time-independent Schrödinger equations:(
− ~2

2m
∇2 + US

)
ψµ = ES

µψµ

(
− ~2

2m
∇2 + UT

)
χν = ET

ν χν . (2.1.2)

US and UT are the potential function, ES
µ and ET

ν are the eigenenergies of sample
and the tip, respectively. When the sample is approached by the tip, the combined
system can be described with Ψ, satisfying the Schrödinger equation containing
the full potential US + UT :(

− ~2

2m
∇2 + US + UT

)
Ψ = i~

∂Ψ

∂t
(2.1.3)

The process of tunneling of an electron (from the sample to the tip) can be
interpreted as the transition from ψµ to χν with Pµν scattering rate (transitional
probability over unit time). Assuming that the sample is approached slowly, and
therefore the tip’s potential is turned on adiabatically, one can apply first order
time-dependent perturbation theory and arrive at Fermi’s Golden Rule:

Pµν =
2π

~
|Mµν |2 δ (Eµ − Eν) . (2.1.4)

Mµν =
〈
χν |UT |ψµ

〉
is the matrix element between two single electron states

involved in the tunneling, while the energy conservation is ensured by the Dirac-
delta. The contribution of this single transition to the tunneling current can
be calculated as ePµν , where e is the elementary charge. The total current is
simply the sum of all transitions between the occupied states of the sample and
the unoccupied states of the tip. The distribution of the occupied states at
finite temperature T is described by the Fermi-Dirac distribution f(E) while the
unoccupied states are described by 1 − f(E). Applying a finite bias voltage V
the Fermi level of the tip (ET

F ) is shifted by eV with respect to the Fermi level
of the sample (ES

F ). The net tunneling current is simply the difference of the
total current from the sample to the tip (IS→T ) and the current from the tip to
the sample (IT→S). Assuming spin-independent tunneling, we have to account
for the two possible spin states as well, introducing a factor of 2 in the current

7



2.1. STANDARD AND EARLIER THEORIES CHAPTER 2. THEORY OF STM

formula:

I = IS→T − IT→S = (2.1.5)

=
4πe

~
∑
µν

[
f
(
Eµ − ES

F

)
− f

(
Eν − ET

F

)]
|Mµν |2 δ (Eν − Eµ − eV ) .

In Bardeen’s approach the matrix element is approximated with an integral over
the S separation surface between the sample and the tip [12]:

Mµν = − ~2

2m

∫
S

(χ?ν∇ψµ − ψµ∇χ?ν)dS (2.1.6)

which can be interpreted as the overlap of the wavefunctions ψµ and χν .

Assuming a continuous spectrum of states for both sample and tip, the discrete
sum can be replaced by an integral introducing the density of states (DOS) of
the tip nT (E) and of the sample nS(E) :

I =
4πe

~

∫ [
f
(
ET
F + E − eV

)
− f

(
ES
F + E

)]
× (2.1.7)

× nS(ES
F + E)nT (ET

F + E − eV )
∣∣M(ES

F + E,ET
F + E − eV )

∣∣2 dE.
At low temperature the Fermi-functions become Heaviside functions and the en-
ergy integral has to be evaluated for a finite energy window determined by the
bias voltage:

I =
4πe

~

∫ eV

0

nS(ES
F + E)nT (ET

F + E − eV )
∣∣M(ES

F + E,ET
F + E − eV )

∣∣2 dE.
(2.1.8)

2.1.1.1 Spin-polarized current

If we want to extend Bardeen’s formalism to include the spin dependence and
calculate spin-polarized currents, it is necessary to describe the wavefunctions as
two-component spinors:

ψµσ =

(
ψµ↑

ψµ↓

)
χνσ =

(
χν↑

χν↓

)
. (2.1.9)

8
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The potentials are described by two-by-two matrices and both stationary wave-
functions satisfy the Pauli-Schrödinger equations:[

− ~2

2m
∇2 +

(
US
↑↑ US

↑↓

US
↓↑ US

↓↓

)](
ψµ↑

ψµ↓

)
= ES

µ

(
ψµ↑

ψµ↓

)
(2.1.10)[

− ~2

2m
∇2 +

(
UT
↑↑ UT

↑↓

UT
↓↑ UT

↓↓

)](
χν↑

χν↓

)
= ET

ν

(
χν↑

χν↓

)
(2.1.11)

The matrix elements also become spin dependent

Mµνσσ′ =
〈
χνσ′ |UT

σσ′ |ψµσ
〉
, (2.1.12)

and the tunneling current can be calculated using the previous formalism, result-
ing in

I =
2πe

~
∑
µν

∑
σσ′

[
f
(
Eµ − ES

F

)
− f

(
Eν − ET

F

)]
|Mµνσσ′ |2 δ (Eν − Eµ − eV ) .

(2.1.13)
Similarly to (2.1.8), in the low temperature limit the tunneling current is

I =
2πe

~
∑
σσ′

∫ eV

0

nSσ(ES
F + E)nTσ′(ET

F + E − eV )× (2.1.14)

×
∣∣Mσσ′(ES

F + E,ET
F + E − eV )

∣∣2 dE,
where the spin-dependent DOS of the sample nSσ and of the tip nTσ′ have been
introduced.

The method requires the exact electronic structure of tip and sample and the
explicit form of the wavefunctions as well. In principle it is possible to calculate
them for both systems independently with available ab initio methods, e.g. using
density functional theory (DFT), but STM image simulations are still considered
to be computationally heavy tasks. Besides, the tip’s geometry is generally un-
known which complicates the task of simulating the STM tip. To overcome this
drawback, several simplifications of the model has been introduced.

9



2.1. STANDARD AND EARLIER THEORIES CHAPTER 2. THEORY OF STM

2.1.2 Tersoff-Hamann model

Two years after the invention of STM, Tersoff and Hamann proposed their model
of tunneling based on Bardeen’s theory [13, 14]. The idea behind this approach
is to simplify the tip’s electronic structure and geometry as much as possible.
Therefore the STM tip is modeled as a locally spherical potential well centered at
the tip position rT . In the (2.1.6) formula of the matrix elements, the separation
surface lies between the sample an the tip, far enough from both that the tip
wavefunction satisfies the vacuum Schrödinger equation:

− ~2

2m
∇2χν = −φχν , (2.1.15)

where φ is the work function of the tip. Assuming a spherical wavefunction (s-
wave), the regular solution is given by the modified Bessel function of the second
kind:

χν(r− rT ) = Ck0(κ|r− rT |) = C
e−κ|r−rT |

κ|r− rT |
, (2.1.16)

where κ =
√

2mφ/~ is the vacuum decay and C is a normalization constant.
Substituting (2.1.16) into (2.1.6), the matrix element becomes

Mµν =
2πC~2

mκ
ψµ(rT ). (2.1.17)

Using (2.1.5) in the limit of low temperature the tunneling current at tip position
rT is:

I(rT ) =
16π3C2~3e
κ2m2

nT
∫ eV

0

nS(rT , E
S
F + E)dE. (2.1.18)

Since the tip’s electronic structure is completely featureless in this s-wave approx-
imation, nT is a constant representing the average DOS of the tip in the selected
energy window. We also introduced the local density of states (LDOS) of the
sample:

nS(rT , E) =
∑
µ

δ (Eµ − E)|ψµ(rT )|2. (2.1.19)

Although the absolute value of the current cannot be determined (since C is un-
known), the Tersoff-Hamann model became very popular in the STM community
to simulate and interpret STM images. It is a very powerful tool for interpreting
features of STM images on the characteristic scale of ∼ 10Å, but below that

10
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resolution it often fails due to the complete lack of tip electronic structure. As
we will see in the following chapters, the tip’s orbital character and orientation
can have a considerable effect on the STM image, therefore it is always neces-
sary to check the validity of the Tersoff-Hamann model in a particular tip-sample
configuration.

2.1.2.1 Spin-polarized current

Starting from Bardeen’s formula of the spin-dependent case (2.1.14) one could
derive a simple formula for the tunneling current using the assumptions of Tersoff
and Hamann [27]. In this case the tunneling current is

I(rT ) =
8π3C2~3e
κ2m2

∫ eV

0

[
nS(rT , E

S
F + E)nT (ET

F + E − eV ) +

+ mS(rT , E
S
F + E) ·mT (ET

F + E − eV )
]
dE. (2.1.20)

The LDOS of the sample is simply the sum of the spin-decomposed LDOS

nS(rT , E) = nS↑ (rT , E) + nS↓ (rT , E)=
∑
µ

∑
σ

δ (Eµ − E)|ψµσ(rT )|2, (2.1.21)

while the local magnetization DOS of the sample mS(rT , E) is given by

mS(rT , E) =
∑
µ

∑
σ

δ (Eµ − E)ψ+
µσ(rT )σψµσ(rT ). (2.1.22)

In collinear magnetic case, e.g. Fe(110) discussed in Sec. 3.2, the magnetization
DOS simplifies to

mS(rT , E) =
[
nS↑ (rT , E)− nS↓ (rT , E)

]
êS =

=
∑
µ

δ (Eµ − E)
[
|ψµ↑(rT )|2 − |ψµ↓(rT )|2

]
êS (2.1.23)

where êS is the local spin quantization axis (vector) of the sample, the up (↑)
and down (↓) components are defined with respect to that.

11
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2.1.3 Chen’s method

The first extension of the Tersoff-Hamann model was proposed by Chen in the
early ’90s. He considered the general solutions of the Schrödinger equation al-
lowing the tip having more complex character and derived the famous derivative
rule [15]. With his elegant model it was possible to explain the extremely large
corrugation and corrugation reversal phenomena observed on several surfaces [28].

tip state Mµν ∝ value at rT

s ψµ

py
∂ψµ
∂y

pz
∂ψµ
∂z

px
∂ψµ
∂x

dxy
∂2ψµ
∂x∂y

dyz
∂2ψµ
∂y∂z

d3z2−r2
∂2ψµ
∂z2
− 1

3
κ2νψµ

dxz
∂2ψµ
∂x∂z

dx2−y2
∂2ψµ
∂x2
− ∂2ψµ

∂y2

Table 2.1.1: tunneling matrix elements for different tip states according to Chen [15].

Chen’s approach is based on the expansion of the tip wave function into spher-
ical harmonic components on and beyond the separation surface:

χν (r) =
∑
lm

Cν,lmkl (κνr)Ylm (ϑ, ϕ), (2.1.24)

where r = |r− rT |, kl is the spherical modified Bessel function of the second kind,
Ylm is the spherical harmonic function depending on the azimuthal (ϑ) and polar
(ϕ) angles, and κν is the vacuum decay of the tip wavefunction. Coefficient Cν,lm
has to determined from first principle calculations. By selecting one component
of the decomposed wavefunction and using the Green’s-function method, Chen
derived the so called derivative rule. The matrix elements Mµν (see Bardeen’s

12
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formula in Eq. 2.1.6) are proportional to different derivatives of the sample
wavefunction (ψµ) evaluated at the tip position (rT ). These matrix elements are
listed in Tab. 2.1.1 for different tip states.

2.1.4 Atom superposition method

Recently, Palotás et al. developed an atom superposition approach for simulating
spin-polarized STM (SP-STM) [29] and spin-polarized STS (SP-STS) [30] based
on previous theories [31, 27, 32, 33, 34]. In the model it is assumed that electrons
tunnel through one tip apex atom, and contributions from individual transitions
between this apex atom and each of the surface atoms are summed up assuming
the one-dimensional (1D) Wentzel-Kramers-Brillouin (WKB) approximation (see
subsection 2.1.4.1) for electron tunneling processes. Assuming that the wave-
functions decay exponentially to the vacuum with a vacuum decay constant κ,
the atom superposition method approximates the LDOS as the superposition of
atom-projected DOS (PDOS) weighted with these exponential factors:

n(r, E) =
∑
i

e−2κ|rT−ri|ñ(ri, E), (2.1.25)

where ñ(ri, E) is the PDOS of the ith atom located at ri position. The atom-
projected DOS is determined from ab initio electronic structure calculations as
the average LDOS in the Wigner-Seitz sphere of the ith atom:

ñ(ri, E) =
∑
µ

δ (Eµ − E)
1

V(WS)i

∫
(WS)i

|ψµ(r′)|2dr′3, (2.1.26)

with ri being the center of the Wigner-Seitz sphere, i.e. the position of the
ith atom. The integral is normalized by the volume of the Wigner-Seitz sphere,
V(WS)i .

The model accounts for the tip’s electronic structure as well, exceeding the
Tersoff-Hamann model. The PDOS of the tip and the sample explicitly appears
in the tunneling current formula:

I(rT ) =
2e2

h
η
∑
i

∫ eV

0

e−2κ|rT−ri|ñS(ri, E
S
F + E)ñT (rT , E

T
F + E − eV )dE.

(2.1.27)
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The factor η is introduced to ensure the correct dimensions after separating the
conductance quantum 2e2/h. The value of η has to be determined from compar-
ison to other methods, e.g. to the Bardeen method, but the specific value does
not affect the qualitative features of the simulated STM image.

2.1.4.1 Electrostatics of the transition

The vacuum decay constant denoted by κ can be calculated applying the Wentzel-
Kramers-Brillouin approximation for finding the solution of the 1D Schrödinger
equation:

− ~2

2m
∇2ψ(x) + φ(x)ψ(x) = Eψ(x). (2.1.28)

When the potential energy is greater than the total energy the approximate so-
lution is

ψ(x) =
Ce
−
∫ x
0

√
2m
~2 (φ(x′)−E)dx′

4

√
2m
~2 (φ(x)− E)

= ψ0(x)e−κ(E)x. (2.1.29)

We can identify the vacuum decay as an integral depending on the potential
function:

κ(E) =
1

x

∫ x

0

√
2m

~2
(φ(x′)− E)dx′. (2.1.30)

If we want to apply this formula to the electron tunneling in an STM setup some
further approximations are needed, since the local potential is affected by the
presence of the tip and also by the applied bias voltage. The simplest way is to
assume a constant effective potential barrier between the sample and the tip that
is determined by the work function of the sample (φS), the work function of the
tip (φT ) and the bias voltage (V ): φeff = φS+φT+eV

2
. Using this effective potential

function in Eq. (2.1.30) the vacuum decay is:

κ(E, V ) =

√
2m

~2

[
φS + φT + eV

2
− (E − ES

F )

]
. (2.1.31)

The schematic diagram of the potential function and the effective barrier is shown
in Fig. 2.1.1

Assuming a linear potential function in the vacuum region we could apply
(2.1.30) directly with φ(x) = φS + φT+eV−φS

d
x. After performing the integration

14
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Figure 2.1.1: Schematic diagram of the potential function and the effective rectangular barrier
(dotted line). The work functions are denoted by φS and φT for the sample and the tip,
respectively. The applied bias voltage (V ) shifts the Fermi level of the tip (ETF ) with respect
to the Fermi level of the sample (ESF ).

the vacuum decay is:

κ(E, V ) =
2
√

2m

3~

(
φT + eV − (E − ES

F )
) 3

2 −
(
φS − (E − ES

F )
) 3

2

φT − φS + eV
. (2.1.32)

We should emphasize that for different tip and sample materials the difference
of the work functions is generally small compared to their absolute values and
to the applied bias voltage as well (φS ≈ φT � eV ). In this case the effective
rectangular potential barrier is a good approximation, and the two formulas give
similar results.

The work functions can be calculated from the local electrostatic potential
data obtained from the electronic structure calculations. For a single atom it is
simply the difference between the Fermi energy and the maximum of the elec-
trostatic potential Φ (which corresponds to the potential of the free electron).
Therefore the work function of the tip is:

φT = max
z
{Φ(xT , yT , z)} − ET

F , (2.1.33)

where the position of the tip apex is rT = (xT , yT , zT ). We restricted the maxi-
mum search to the z-axis which is perpendicular to the sample surface. For the
sample we can calculate the maximum value above fine Nx×Ny grid and use the
average value as the work function:

φS = max
z

{
1

NxNy

∑
x,y

Φ(x, y, z)

}
− ES

F . (2.1.34)
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2.1.4.2 Spin-polarized current

The spin-polarized case can be treated similarly to the Tersoff-Hamann method.
We can apply the atom superposition method to the local magnetic DOS as well:

m(r, E) =
∑
i

e−2κ|rT−ri|m̃(ri, E), (2.1.35)

where m̃(ri, E) is the atom-projected magnetic DOS of the ith atom, calculated
as the average local magnetic DOS in the Wigner-Seitz sphere:

m̃(ri, E) =
∑
µ

δ (Eµ − E)
1

V(WS)i

∫
(WS)i

ψ+
µσ(r′)σψµσ(r′)dr′

3
. (2.1.36)

Combining the magnetic and non-magnetic contributions we get the formula of
the tunneling current in the spin-polarized case:

I(rT ) =
2e2

h
η
∑
i

∫ eV

0

e−2κ|rT−ri|
[
ñS(ri, E

S
F + E)ñT (rT , E

T
F + E − eV )+

+m̃S(ri, E
S
F + E) · m̃T (rT , E

T
F + E − eV )

]
dE. (2.1.37)

2.2 New developments

2.2.1 Orbital-dependent 3D-WKB

The main advantage of the 3D-WKB method over the Tersoff-Hamann model
is the inclusion of the tip’s electronic structure. However, since it is originated
from the Tersoff-Hamann model, it still lacks the consideration of the orbital
characteristics of the tip and assumes a spherical tip wavefunction. We extend
the tunneling model by taking advantage of the orbital decomposition of the
electronic structure data and the real-space shape of the electron orbitals. We
used the extended model to investigate corrugation inversion phenomena, tip-
rotational and magnetic effects for various systems. The corresponding results
are discussed in Chapter 3.

The PDOS and magnetic PDOS of the sample surface atoms and the tip apex
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can be decomposed according to orbital symmetries (β), as

ñS/T (ri, E) =
∑
β

ñ
S/T
β (ri, E), (2.2.1)

m̃S/T (ri, E) =
∑
β

m̃
S/T
β (ri, E).

Similar decomposition of the Green functions has been employed in the linear
combination of atomic orbitals (LCAO) scheme by Refs. [16] and [17]. Using
the decomposition described in (2.2.1) we can generalize the atom superposi-
tion formulas (2.1.25) and (2.1.35). Generally, the decay of the wavefunctions is
orientation dependent and described by the real spherical harmonics Yβ(ϑ, ϕ):

ψβ(r) = e−κ|r−r0|Yβ(ϑ, ϕ)ψβ(r0). (2.2.2)

ϑ and ϕ are the azimuthal and polar angles describing the orientation of the r−r0
vector pointing from the center of the atom (r0) to an arbitrary position r. Using
this modified decay (2.2.2) and the decomposition of the charge and magnetic
PDOS functions (2.2.1) the atom superposition formulas take the following form:

nS/T (r, E) =
∑
i

∑
β

e−2κ|rT−ri||Yβ(ϑ, ϕ)|2ñS/Tβ (ri, E), (2.2.3)

mS/T (r, E) =
∑
i

∑
β

e−2κ|rT−ri||Yβ(ϑ, ϕ)|2m̃S/T
β (ri, E).

Now we can generalize the tunneling current formula to account for different
orbital characters:

I(rT ) =
2e2

h
η
∑
i

∑
β,γ

∫ eV

0

Tβγ(κ, rT − ri)×

×
[
ñSβ(ri, E

S
F + E)ñTγ (rT , E

S
F + E − eV )+

+ m̃S
β(ri, E

S
F + E) · m̃T

γ (rT , E
S
F + E − eV )

]
dE (2.2.4)

Here, we introduced the transmission coefficient Tβγ(κ, rT − ri) which gives the
electron tunneling probability from the tip apex γ orbital to the β orbital of the
ith surface atom at positive bias voltage (V > 0), and from the β orbital of
the ith surface atom to the tip apex γ orbital at negative bias (V < 0). In the
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orbital independent case the transmission coefficient is simply the exponential
factor Tβγ(κ, rT − ri) = e−2κ|rT−ri| for every β ↔ γ transition, while in the orbital
dependent case it is weighted according to the orbital symmetries:

Tβγ(κ, rT − ri) = e−2κ|rT−ri||Yβ(ϑi, ϕi)|2|Yγ(ϑ′i, ϕ′i)|2 = e−2κ|rT−ri|tβγ. (2.2.5)

We separated the geometrical factor |Yβ(ϑi, ϕi)|2|Yγ(ϑ′i, ϕ′i)|2 and denote it as tβγ.
The angular dependence of the wavefunctions (as a function of the azimuthal
(ϑ) and polar (ϕ) angles) is defined in a local coordinate system, located at the
center of the corresponding (ith surface or tip apex) atom. Therefore the rT − ri

vector is given with the polar coordinates (di, ϑi, ϕi) in the sample’s reference
frame, and with (di, ϑ

′
i, ϕ
′
i) = (di, π − ϑi, π + ϕi) in the tip’s reference frame,

where di = |rT − ri| is the distance between the tip apex and the ith sample
surface atom. The geometry of a general tip-sample setup can be seen in Fig.
2.2.1. In (2.2.2) and (2.2.5) the real spherical harmonics can be be normalized

Figure 2.2.1: General tip-sample geometry. Adapted from Ref. [P1].

in such a way, that 0 ≤ |Yβ(ϑ, ϕ)|2 ≤ 1, therefore the transmission coefficient
Tβγ(κ, rT − ri) can be represented as transmission probability for a given β ↔ γ

transition. The maximum probability is obtained if the angular distributions of
the electron density according to the given orbital symmetries around both the
sample surface atom and the tip apex have maxima along the line of the tunneling
direction. This is always the case for the s−s type of tunneling irrespective of the
relative position of the tip apex and sample surface atoms; i.e., we observe perfect
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spherical exponential decay between tip and sample s orbitals. The s, p and d

orbitals, the corresponding spherical harmonic functions and the normalized real
spherical harmonic functions are summarized in Table 2.2.1 .

orbital (β) definition angular dependence

s Y 0
0 1

py Y 1
1 − Y −11 sin(ϑ) sin(ϕ)

pz Y 0
1 cos(ϑ)

px Y 1
1 + Y −11 sin(ϑ) cos(ϕ)

dxy Y 2
2 − Y −22 sin2(ϑ) sin(2ϕ)

dyz Y 1
2 − Y −12 sin(2ϑ) sin(ϕ)

d3z2−r2 Y 0
2

1
2

(3 cos2(ϑ)− 1)

dxz Y 1
2 + Y −12 sin(2ϑ) cos(ϕ)

dx2−y2 Y 2
2 + Y −22 sin2(ϑ) cos(2ϕ)

Table 2.2.1: Real-space orbitals, their definition from spherical harmonics Y ml (ϑ, ϕ), and the
angular dependence of their wave functions. Adapted from Ref. [P1].

As we mentioned in Sec. 2.1.4, the value of η does not affect the qualitative
features of simulated STM images, or any of the conclusions made by using this
orbital-dependent 3D-WKB method. Thus, we used η = 1 eV2m6 for all simula-
tion presented in Chapter 3, which gives comparable current values for W(110)
(see Sec. 3.1.5).

2.2.1.1 Tip rotations

If the symmetry of the tip orbitals has a considerable effect on the STM image,
it follows naturally that so does the tip orientation. All simulation methods re-
quire a well-defined tip geometry and orientation. Usually a simple geometry
is chosen, e.g. a pyramid-shaped tip apex, but the local tip geometry at the
apex and the relative orientation of the sample and the tip are unknown and
hardly controllable in experiments. In separate electronic structure calculations
of the sample and the tip their local coordinate systems are usually set up in such
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a way that they represent the corresponding crystallographic symmetries. The
electronic structure data are defined in the given local coordinate systems and
used in the STM simulations. Thus, the relative orientation of the tip and the
sample is fixed and it usually corresponds to a very symmetrical setup, which is
unlikely in experiments. Hagelaar et al. studied a wide range of tip geometries
and spatial orientations in the imaging of the NO adsorption on Rh(111) in com-
bination with STM experiments [35] and their analysis is quite unique among the
published STM simulations. The inclusion of the orbital symmetries in the 3D-
WKB method gives us the opportunity to account for arbitrary tip orientation
and investigate its effect on the STM image.

An arbitrary tip orientation corresponds to a rotated local tip coordinate
system with respect to the coordinate system of the sample surface, and thus the
ith surface atom. We have to distinguish between these two coordinate systems
(as we did previously in Fig. 2.2.1), so that the coordinates of a given vector are
denoted with primes (′) if they are defined in the (rotated) coordinate system of
the tip: (x′, y′, z′) or (r′, ϑ′, ϕ′), and without primes if defined in the coordinate
system of the sample (x, y, z) or (r, ϑ, ϕ). The rotation of the axes of these
two coordinate systems with respect to each other is given by the Euler angles
(ϑ0, ϕ0, ψ0) shown in Fig. 2.2.2. The transformation of local coordinates , which
eventually defines the geometrical factor in the transmission coefficient (2.2.5) via
ϑ′ and ϕ′, can be described by the rotation matrix R: x′

y′

z′

 = R

 x

y

z

 , (2.2.6)

where the rotation matrix has the following form:

R =


cosϕ0 cosψ0−

sinϕ0 sinψ0 cosϑ0

cosϕ0 sinψ0+

sinϕ0 cosψ0 cosϑ0

sinϕ0 sinϑ0

− sinϕ0 cosψ0−
cosϕ0 sinψ0 cosϑ0

− sinϕ0 sinψ0+

cosϕ0 cosψ0 cosϑ0

cosϕ0 sinϑ0

sinψ0 sinϑ0 − cosψ0 sinϑ0 cosϑ0

 . (2.2.7)

The angular dependence of the rotated tip orbitals then can be expressed
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Figure 2.2.2: Geometry of a general tip–sample setup. The rotation of the tip coordinate
system is described by the Euler angles . Adapted from Ref. [P1].

using the definitions in Table (2.2.1). with the modified ϑ′i and ϕ′i angles:

ϑ′i = arccos

(
z′i
di

)
(2.2.8)

ϕ′i = arccos

(
x′i

di sinϑ′i

)
di =

√
x′2i + y′2i + z′2i ,

where di = |ri − rT | is the distance between the tip apex and the ith sample
surface atom and ri − rT = (x′i, y

′
i, z
′
i).

The effect of tip rotation is discussed in Chapter 3.1 for W(110), and in
Chapters 3.3 and 3.4 for HOPG.

2.2.2 Revised Chen’s method

The expansion of the tip wavefunction (Eq. 2.1.24) can also be done according
to the orbital characters if we introduce the composite index β = (l,m) and the
real spherical harmonics (Yβ):
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χν (r) =
∑
β

Cν,βkβ (κνr)Yβ (ϑ, ϕ). (2.2.9)

Using this expansion of the tip wavefunction and the calculated matrix elements
from Table 2.1.1 the derivative rule can be formulated in a more compact form:

|Mµν |2 =
4π2~4

κ2νm
2

∣∣∣∣∣∑
β

Cν,β∂̂βψµ(rT )

∣∣∣∣∣
2

. (2.2.10)

The differential operator ∂̂β acts on the sample wavefunction and has to be eval-
uated at the tip apex position (rT ). Note that ∂̂β contains a factor κ−lν (l is the
angular quantum number), hence it is dimensionless. The differential operators
for the given orbital characters are summarized in Table 2.2.2.

orbital character (β) ∂̂νβ

s 1

py
1
κν

∂
∂y

pz
1
κν

∂
∂z

px
1
κν

∂
∂x

dxy
1
κ2ν

∂2

∂x∂y

dyz
1
κ2ν

∂2

∂y∂z

d3z2−r2
3
κ2ν

∂2

∂z2
− 1

dxz
1
κ2ν

∂2

∂x∂z

dx2−y2
1
κ2ν

( ∂2

∂x2
− ∂2

∂y2
)

Table 2.2.2: Differential operators ∂̂νβ for given orbital symmetries (β). Adapted from Ref.
[P6]

The applicability of the model depends on whether one could calculate the
coefficients explicitly or not. In the later case, it is possible to use simplified tip
models with a specific orbital character, i.e. using the same set of coefficients{Cβ}
regardless of the energy. In the study of Gross et al. CO-functionalized tips with s
and p orbitals were considered, although the interference terms were neglected[36].
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Siegert et al. calculated the tunneling current using the reduced density matrix
formalism, which accounts for the interference, but using a simplified tip model:
the linear combinations of s and p orbitals were still energy independent [37].
Another possible case is when the coefficients are not known explicitly, but we
have some information on the tip electronic structure, e.g. the atom projected
density of states (PDOS) decomposed according to orbital symmetries. In this
Section we will show how Chen’s method can be combined with ab initio electronic
structure calculations to give a powerful tool for simulating STM images and
also investigating tip interference and orientational effects. The new theoretical
developments - presented in this section 2.2.2 - were implemented in the bSKAN
code [38, 39]. The corresponding simulational results are presented in Chapter 4.

2.2.2.1 Tip orbital interference

Introducing a new notation, Mµνβ = Cνβ∂̂νβψµ(rT ) - that corresponds to the
tunneling matrix element of a given orbital symmetry (β) - we can rewrite the
formula of the matrix elements in (2.2.10):

|Mµν |2 =
4π2~4

κ2νm
2

∑
β

∑
β′

M?
µνβMµνβ′ = (2.2.11)

=
4π2~4

κ2νm
2

[∑
β

|Mµνβ|2 +
∑
β 6=β′

2Re{M?
µνβMµνβ′}

]

By decomposing the tip wavefunction and matrix elements according to orbital
symmetries we are also able to investigate different contributions to the tunneling
current separately. Contributions of “pure” orbitals (β = β′) are always positive,
hence increase the tunneling current, while the cross-terms (β 6= β′) combined
with their complex conjugates can cause destructive interference. The analysis of
the ratios and polarities of these contributions could lead to a better understand-
ing of the tunneling process. The effect of tip orbital interference is investigated
in Chapter 4. Note that in (2.2.10) the sample wavefunction ψµ can be expanded
according to the spherical harmonics, similarly to (2.2.9). This way the inter-
ference of the sample orbitals and also the interference between sample and tip
orbitals can be investigated. A similar decomposition of matrix elements was
used by Jurczyszyn [40, 41] and Mingo [16].
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2.2.2.2 Plane-wave expansion

There are many DFT codes which use a plane wave basis set, e.g., VASP [42],
ABINIT [43] and Quantum-Espresso [44] to name a few popular ones. The plane-
wave expansion makes it relatively easy to implement Chen’s derivative rule since
the calculation of spatial derivatives (see Table 2.2.2) of the sample wavefunction
is straightforward. The presented forms of the spatial derivatives can be po-
tentially useful for implementing the revised method into other STM simulation
codes as well. Let us assume that the single electron wavefunctions of the sample
surface are given in the vacuum at position vector r on a two-dimensional (2D)
Fourier-grid as

ψµ(r) = ψnSkS‖ σS(r) =
∑
G‖

AnSkS‖ σS(G‖, z) exp
[
i(kS‖ + G‖)r‖

]
, (2.2.12)

where µ = (nSkS‖σ
S) is the composite index for single electron states of the sample

with kS‖ = (kSx , k
S
y ) the lateral component of the wave vector. The derivation

with respect to z (the direction perpendicular to the sample surface) acts on the
expansion coefficients only,

∂

∂z
ψnSkS‖ σS(r) =

∑
G‖

(
∂

∂z
AnSkS‖ σS(G‖, z)

)
exp

[
i(kS‖ + G‖)r‖

]
, (2.2.13)

while the x- and y-derivatives act on the phase factor,

∂

∂x
ψnSkS‖ σS(r) =

∑
G‖

i(kSx +Gx)AnSkS‖ σS(G‖, z) exp
[
i(kS‖ + G‖)r‖

]
, (2.2.14)

∂

∂y
ψnSkS‖ σS(r) =

∑
G‖

i(kSy +Gy)AnSkS‖ σS(G‖, z) exp
[
i(kS‖ + G‖)r‖

]
. (2.2.15)

The same procedure can be applied for higher order derivatives listed in Table
2.2.2.

2.2.2.3 Weighting coefficients

We consider three ways for the choice of the weighting coefficients Cνβ for matrix
elements Mµνβ = Cνβ∂̂νβψµ(rT ).

(i) The simplest choice is the assumption of an idealized tip with a given set
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of energy independent weighting factors {Cβ}. Such examples can be found in
the literature. We previously mentioned (see Sec. 2.2.2.3) the works of Gross et
al. [36] and Siegert et al. [37] for using this simplified tip model. Generally, Cβ
can be a complex number. We restrict the choice of the set of {Cβ} to fulfill the
condition:

∑
β |Cβ|2 = 1. Moreover, in this idealized tip model case we choose

the vacuum decay of the tip states κν =1 Å−1 for all ν. Examples of the effect
of idealized tips as pure s and pure pz orbitals and a combination of (s+ pz)/

√
2

on the STM image of N-doped graphene will be shown in section 4.2. We will
also point out that the effect of interference is remarkable in this case causing a
significant contrast change.

(ii) Based on Eq. (2.2.9), Cνβ complex numbers can be obtained as

Cνβ =
〈
Ỹνβ(r)

∣∣∣χν(r)〉 = 〈kβ(κνr)Yβ(ϑ, ϕ)|χν(r)〉 (2.2.16)

with ν = (nTkT‖ σ
T ) composite index for single electron states of the tip, where

kT‖ is the lateral component of the wave vector. We calculate these coefficients
explicitly in the Wigner-Seitz sphere (W − S) of the tip apex atom with the
VASP code. Since symmetry properties of the model tip geometry are taken into
account in VASP, we obtain a reduced set of Cνβ corresponding to kT‖ being in
the irreducible part of the Brillouin zone. We can calculate how these coefficients
change under 2D transformations (T ) of the tip’s symmetry group in order to
obtain Cνβ in the full 2D Brillouin zone. For this, the plane wave expansion of
the tip wavefunction is needed,

χν(r) = χnTkT‖ σT (r) =
∑
G‖

BnTkT‖ σ
T (G‖, z) exp

[
i(kT‖ + G‖)r‖

]
, (2.2.17)

similarly to Eq. (2.2.12). Since the B expansion coefficients are invariant under
the T transformation, i.e., BnTkT‖ σ

T = B
nT T

(
kT‖

)
σT
, the transformation of the

tip wavefunction comes from that of the phase factors. Using Eqs. (2.2.16) and
(2.2.17) we obtain the following for the transformed coefficients,

C
nT T

(
kT‖

)
σT β

=

∫
W−S

kβ(κνr)Yβ(r)
∑
G‖

Bν(G‖, z) exp
[
iT (kT‖ + G‖)r‖

]
d3r

=

∫
W−S

kβ(κνr)Yβ(T r)χν(r)d3r. (2.2.18)
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Note that T are represented by 2 × 2 real matrices and the transformation of
the coordinates is T r = (T11x + T12y, T21x + T22y, z). Using the real spherical
harmonics in Cartesian coordinates, we can calculate their transformations by
substituting the transformed lateral coordinates into their normalized form. The
results are shown in Table 2.2.3. Thus, Cνβ is determined in the full 2D Brillouin
zone, and we can directly apply them in the formula of the tunneling matrix
elements in Eq. (2.2.10).

Orbital Y (x, y, z) Transformed orbital

s 1
2
√
π

s

py
1
2

√
3
π
y
r

T21px + T22py

pz
1
2

√
3
π
z
r

pz

px
1
2

√
3
π
x
r

T11px + T12py

dxy
1
2

√
15
π
xy
r2

(T11T22 + T12T21) dxy + 2T11T21dx2−y2

dyz
1
2

√
15
π
yz
r2

T21dxz + T22dyz

d3z2−r2
1
4

√
5
π
3z2−r2
r2

d3z2−r2

dxz
1
2

√
15
π
xz
r2

T11dxz + T12dyz

dx2−y2
1
4

√
15
π
x2−y2
r2

(T 2
11 − T 2

21) dx2−y2 + 2T11T12dxy

Table 2.2.3: Transformation of real spherical harmonics under 2D symmetry operations (T )
of the tip. . Adapted from Ref. [P6].

(iii) The third suggestion for Cνβ is based on the orbital-decomposed DOS pro-
jected to the tip apex atom, nTIP (E) =

∑
β n

TIP
β (E) =

∑
β

∑
ν n

TIP
νβ δ(E − Eν)

obtained from first principles calculation. Using the expansion of the tip wave-
function in Eq. (2.2.9) and the approximation of orthonormality for Ỹνβ(r, ϑ, ϕ)

within the Wigner-Seitz (W − S) sphere of the tip apex atom,〈
Ỹνβ(r, ϑ, ϕ)

∣∣∣ Ỹνβ′(r, ϑ, ϕ)
〉
W−S

≈ δββ′, (2.2.19)
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the following is obtained,

nTIP (E) =
∑
ν

∑
β

nTIPνβ δ(E − Eν) =
∑
ν

〈χν |χν〉W−S δ(E − Eν) ≈

≈
∑
ν

∑
β

|Cνβ|2δ(E − Eν). (2.2.20)

Thus, we can approximate the complex Cνβ coefficients with real values, Cνβ ≈√
nTIPνβ . This way Eq. (2.2.10) is recast to

|Mµν |2 =
4π2~4

κ2νm
2

∣∣∣∣∣∑
β

√
nTIPνβ ∂̂νβψµ(r0)

∣∣∣∣∣
2

. (2.2.21)

Since the calculation of the orbital-decomposed atom-projected DOS is routinely
available in DFT codes, the presented approximation applied to the tip apex
atom gives a widely accessible choice for the weighting coefficients in the revised
Chen’s derivative rule. In section 4.2 we will demonstrate that the STM images
obtained by the Cνβ ≈

√
nTIPνβ approximation provide good agreement with those

calculated using the proper complex Cνβ coefficients according to Eq. (2.2.16).

2.2.2.4 Tip rotations

Since the electronic structures of the sample surface and the tip are generally cal-
culated independently to allow more flexibility with their geometries, arbitrary
orientations of the tip can be included into the revised Chen’s method. This
can be done by redefining the spatial derivatives of the sample wavefunctions
corresponding to the orbital characters in the rotated coordinate system of the
tip with respect to the sample surface. This rotation is described by a coordi-
nate transformation, which is represented by the same 3 × 3 matrix R that we
introduced previously (2.2.7). We use the explicit form of R with the Euler an-
gles (ϑ0, ϕ0, ψ0), Rj

i being the matrix elements. Using the Einstein summation
convention, the relationship between the two set of coordinates, the rotated tip
coordinates x′j ∈ {x′, y′, z′} and the sample coordinates xi ∈ {x, y, z}, is the
following:

x′j =
∂x′j

∂xi
xi = Rj

ix
i; xi =

∂xi

∂x′j
x′j =

(
R−1

)i
j
x′j. (2.2.22)

27



2.2. NEW DEVELOPMENTS CHAPTER 2. THEORY OF STM

With the help of these, we can relate the derivatives of the sample wavefunction
ψ with respect to the rotated tip coordinates x′j to the derivatives with respect
to the sample coordinates xi as

∂ψ

∂x′j
=
∂ψ

∂xi
∂xi

∂x′j
=
∂ψ

∂xi
(
R−1

)i
j
. (2.2.23)

Similarly, the second derivatives are

∂2ψ

∂x′k∂x′j
=

(
∂2ψ

∂xl∂xi

)(
R−1

)i
j

(
R−1

)l
k
. (2.2.24)

Using Eqs. (2.2.23) and (2.2.24) the transformed ∂̂′νβ differential operators corre-
sponding to the rotated tip coordinate system can be constructed and employed
in Eq. (2.2.10) for the tunneling matrix elements. Since the transformation is
linear, this, in turn, results in redefined Cνβ weighting coefficients in Eq. (2.2.10)
for the ∂̂νβ operators given in the coordinate system of the sample listed in Table
2.2.2.
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Chapter 3

3D–WKB results

In this Chapter we will demonstrate the reliability of our orbital-dependent tun-
neling model and investigate some interesting phenomena observed in STM ex-
periments. As the main advantage of our model over the Tersoff-Hamann or the
orbital-independent 3D-WKB model is the inclusion of the tip electronic struc-
ture and the orbital symmetries, we will focus on the corrugation inversion (or
contrast inversion) phenomenon which occurs on several surfaces. Introducing
the so called inversion maps and current histograms we can determine when the
inversion will occur depending on the bias voltage and the tip-sample distance,
and can also give a quantitative and quantitative explanation to the phenomenon.
In Sec. 3.1 we will consider the W(110) surface and - beside the corrugation in-
version - we will demonstrate the effect of tip rotations to the STM image. In
Sec. 3.2 the magnetic Fe(110) surface is investigated. In this case the contrast
inversion is more complex as the STM image is determined by the interplay of
the topographic and magnetic contributions of the tunneling current. Sec. 3.3
focuses on the widely used HOPG surface and its contrast changes and stability.
We will show that the experimentally observed “stripe” formation is a combined
effect of the electronic structure and the tip orbital symmetries, and also point out
that triangular-hexagonal contrast change can be achieved by tip rotations alone,
not just by bias change. Finally, making use of the remarkable computational
efficiency of our method, we will introduce a statistical approach to determine
the tip orientation and geometry in a real experiment.
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3.1 W(110)

This surface has technological importance as it is widely used as substrate for thin
film growth (see, e.g., Refs. [45, 46]). As was pointed out by Heinze et al., [45]
the determination of the position of surface atomic sites is not straightforward as
atomic resolution is lost at negative bias voltages, and a bias-dependent corru-
gation reversal has been predicted. This means that normal and anticorrugated
constant-current STM images can be obtained in certain bias voltage ranges, and
the W atoms do not always appear as protrusions in the images. It was shown that
a competition between states from different parts of the surface Brillouin zone
is responsible for this effect [47, 45]. We reinvestigate this corrugation-reversal
effect with our orbital-dependent tunneling model and compare our results to
those obtained by the Tersoff-Hamann and Bardeen methods.

3.1.1 Computational details

The electronic structure calculations were based on the density functional theory
(DFT) within the generalized gradient approximation (GGA) implemented in
VASP. A plane-wave basis set for electronic wave function expansion together
with the projector-augmented wave (PAW) method [48] has been applied, and the
exchange-correlation functional is parametrized according to Perdew and Wang
(PW91) [49]. The electronic structures of the sample surface and the tip have
been calculated separately. We modeled the W(110) surface by a slab of nine
layers, where the two topmost W layers have been fully relaxed. After relaxation
the W-W interlayer distance between the two topmost layers is reduced by 3.3%,
while the underneath W-W interlayer distance is increased by 1.1% compared
to bulk W. A separating vacuum region of 18 Å width in the surface normal
(z) direction has been set up between neighboring supercell slabs. The average
electron work function above the surface is calculated to be φS = 4.8 eV. We
used a 41×41×5 Monkhorst-Pack [50] k−point grid for obtaining the orbital-
decomposed PDOS onto the surface ith W atom, ñSβ(ri, E). The same k set
has been used for calculating the sample electron wave functions for the Tersoff-
Hamann and Bardeen simulations. The unit cell of the W(110) surface (rhombus)
and the rectangular scan area for the tunneling current simulation are shown
in Fig. 3.1.1. In our calculations we used the experimental lattice constant
aW = 316.52 pm.
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Figure 3.1.1: The surface unit cell of W(110) (rhombus) and the rectangular scan area
(shaded) for the tunneling current simulations. Grey spheres denote the W atoms. The top
(T) and hollow (H) positions are explicitly shown.

To capture the importance of the orbital symmetries of the tip we considered
different tip models:

• The orbital-independent ideal tip is characterized by a constant geometri-
cal factor tβγ = 1 for all β ↔ γ transitions, and it’s electronic structure
is completely featureless: ñTγ (rT , E) = 1/9 (eV)−1, so that ñT (rT , E) =∑

γ ñ
T
γ (rT , E) = 1 (eV)−1.

• Ideal tip models having a particular orbital symmetry γ0. In this case tβγ
is calculated following Eq. (2.2.5) and for the energy dependence of the
tip PDOS, ñTγ0(rT , E) = 1 (eV)−1, and ñTγ0 6=γ(rT , E) = 0 are assumed.
In the simulations we considered three different tip symmetries: γ0 ∈
{s, pz, d3z2−r2}.

• Realistic blunt W(110) tip. Motivated by a previous simulation [51] it was
modeled by a slab consisting of three atomic layers having one W apex
atom on both surfaces, i.e., with a double vacuum boundary. The schematic
model of the tip is presented in Fig. 3.1.2. In this system the apex atoms are
relaxed on both sides. The vertical distance between the adatom and the
topmost layer decreased by 19.3% compared to bulk W. The interaction
between apex atoms in neighboring supercells in the lateral direction is
minimized by choosing a 3×3 surface cell, and a 17.9 Å-wide separating
vacuum region in the z direction. The local electron work function above
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the tip apex was assumed to be φT = 4.8 eV. An 11× 15× 5 MP k−point
grid has been chosen for calculating the orbital-decomposed projected DOS
onto the apex atom, ñTγ (rT , E). The same k−point sampling was used for
obtaining the tip electron wave functions for the Bardeen calculation.

Figure 3.1.2: Schematic modell of the blunt W(110) tip consisting of three atomic layers
having one W apex atom on both sides.

STM images were simulated employing our orbital-dependent 3D-WKB model,
and the Tersoff-Hamann and Bardeen methods implemented in the bSKAN code
[38, 39]. Using our model the tunneling current was calculated in a box above
the rectangular scan area shown in Fig. 3.1.1 containing 99 000 (30× 22× 150)
grid points with a 0.149 Å lateral and 0.053 Å vertical resolution. The electron
local density of states (LDOS) was calculated above the same scan area with the
same spatial resolution as above. In case of the Bardeen calculations the lateral
resolution remains 0.149 Å, and the vertical resolution is 0.106 Å. The constant
current contours (STM images) are extracted following the method described in
Ref. [29]. All of the STM images are presented above the full rectangular scan
area.

3.1.2 Convergence properties

In principle, the summation in the atom superposition method (2.2.4) contains
all surface atoms. However, due to the exponentially decaying wavefunctions,
a finite and - as we will see later - relatively small number of atoms included
in the summation provides reliable, converged results. We also compared the
convergence speed of simulations using tips with different symmetries. We con-
sidered ideal tips of the orbital-independent model, and with s, pz , and d3z2−r2
symmetry, as well as the W(110) tip. To take into account a wide energy range
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around the Fermi level, we calculated the tunneling current at −2.5 V and +2.5
V bias voltages at z = 4.5 Å above a surface W atom (TOP position), and av-
eraged these current values. We also normalized the averaged current to obtain
comparable results. Contributions from surface atoms within a radius of d|| -
measured from the W atom below the tip apex - are considered. We present the
normalized, averaged current values as a function of d|| in Fig. 3.1.3. We find

Figure 3.1.3: Convergence of the normalized averaged current calculated with different tip
models. Adapted from Ref. [P1].

that the orbital-independent, the s-type, and the W(110) tips behave similarly
concerning the current convergence, while for the pz and d3z2−r2 tips a faster con-
vergence is found. This rapid convergence can be explained by the more localized
character of these tip orbitals in the surface normal direction (z). The orbital-
independent and the s-type tip produce similar results. Both tip models neglect
the tip’s electronic structure and with the s-tip the orbital symmetries come into
play only via the sample orbitals leaving the spherically decaying function part
dominant in the expression of the transmission coefficient (2.2.5). In the W(110)
tip case, electronic states of all considered symmetries have a contribution, and
their relative importance is determined not only by the transmission function via
the orbital shapes but also by the product of the symmetry-decomposed PDOS
of the surface and the tip. In general, the orbitals localized in directions different
than the z direction, e.g. dxy, dxz etc. can show a slower current convergence than
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the s orbitals. However, the partial PDOS of such states is relatively low, and we
obtain a similar current convergence in the studied energy range as for the s-type
tip. Choosing different bias voltage, and thus different electron states involved in
the tunneling, can change this slightly resulting a bit slower or faster convergence
compared to the s-tip. However, this does not affect the number of atoms we
should include in the simulation. Based on these convergence tests, considering
atom contributions within at least d|| = 3a ≈ 9.5 Å distance from the surface-
projected tip position produce well converged results for all tip symmetries and
wide bias range. In the case of calculating STM images, d|| has to be measured
from the edge of the scan area in all directions in order to avoid distortion of the
image, thus involving 67 surface atoms in the atomic superposition.

3.1.3 Orbital contributions: current histograms

From Eq. (2.2.4) we can calculate the tunneling current of the β ←→ γ transitions
(Iβγ) separately:

Iβγ(rT , V ) =
2e2

h
η
∑
i

∫ eV

0

Tβγ(κ, rT − ri)×

×
[
ñSβ(ri, E

S
F + E)ñTγ (rT , E

T
F + E − eV )+

+ m̃S
β(ri, E

S
F + E) · m̃T

γ (rTE
T
F + E − eV )

]
dE. (3.1.1)

The total current is simply the sum of the contributions from all β ←→ γ tran-
sitions

I(rT , V ) =
∑
β,γ

Iβγ(rT , V ), (3.1.2)

while the relative contribution of a given transition is: (3.3.2)

Ĩβγ(rT , V ) =
Iβγ(rT , V )

I(rT , V )
(3.1.3)

With these quantities we can analyze the relative importance of the transitions at
different tip positions and bias voltages. From this analysis we obtain a qualitative
picture about the role of the different atomic orbitals in the construction of the
tunneling current. These can be represented by a current histogram that gives
the contributions of the individual transitions to the total current. We calculated
such histograms using the W(110) tip at V = −0.1 V bias voltage z = 4.5 Å
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above two different tip positions: above the top (T) position, and above the
surface hollow (H) position, see Fig. 3.1.1. The results are shown in Fig. 3.1.4.
We find that most contributions are due to the s, pz, dyz , d3z2−r2 , and dxz orbitals

Figure 3.1.4: Histograms of the relative current contributions (Ĩβγ ) from all tip-sample
transitions with different orbital symmetries using the W(110) tip at V = −0.1 V bias. (a) Tip
apex z = 4.5 Å above the surface top (T) position (W atom); (b) tip apex z = 4.5 Å above the
surface hollow (H) position. Adapted from Ref. [P1]

and their combinations. The largest contribution to the current is given by the
d3z2−r2−d3z2−r2 transition, 31% and 20% above the top and hollow positions,
respectively. Concomitantly, above the hollow position, the relative importance
of both tip and sample dyz and dxz orbitals is increased as it is expected from the
geometrical setup; i.e., the dyz − dyz, dyz − d3z2−r2 , dxz − dxz, and dxz − d3z2−r2
contributions correspond to larger orientational overlap of the mentioned tip and
sample orbitals if the tip is above the hollow position rather than above the top
position as suggested by the geometry in Fig. 3.1.1 and Eq. (2.2.5). Thus,
our simple orbital-dependent tunneling model captures the effect of the localized
orbitals and goes beyond the spherical Tersoff-Hamann model. Note that if a
larger bias voltage is considered, i.e., the electronic states are somewhat averaged,
then the independent orbital approach might turn out to be a good approximation
[34].

3.1.4 Contrast inversion

The role of the localized orbitals can best be demonstrated by reinvestigating the
corrugation-inversion phenomenon found, e.g., on (100) [16], (110) [45], and (111)
[52] metal surfaces. Chen explained this effect as a consequence ofm 6= 0 tip states
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[28]. According to Heinze et al. [45], under certain circumstances the apparent
height of W atoms at the surface top position (T) can be larger or smaller than the
apparent height of the surface hollow position (H) at constant current condition.
Thus, the sign change of ∆z(I) = zT (I)− zH(I) is indicative for the corrugation
inversion. Obviously, ∆z(I) > 0 corresponds to a normal STM image, where the
W atoms appear as protrusions, and ∆z(I) < 0 to an anticorrugated image. Since
the tunneling current is monotonically decreasing with the increasing tip-sample
distance, we can obtain information about the occurrence of the corrugation
inversion simply by calculating the current difference between tip positions above
the top and hollow sites of the W(110) surface. The current difference at tip-
sample distance z and at bias voltage V is defined as

∆I(z, V ) = IT (z, V )− IH(z, V ). (3.1.4)

This quantity can be calculated for specific tips, and we refer to the ∆I(z, V ) = 0

contour as the corrugation inversion map. This gives the (z, V ) combinations
where the corrugation inversion occurs. The sign of ∆I(z, V ) provides the cor-
rugation character of an STM image in the given (z, V ) regime. Owing to the
monotonically decreasing character of the tunneling current, ∆I(z, V ) > 0 cor-
responds to ∆z(I(V )) > 0, i.e., normal corrugation, and similarly ∆I(z, V ) < 0

corresponds to ∆z(I(V )) < 0 and anticorrugation.

First, we calculated ∆I(z, V ) using the independent orbital approximation
and Eq. (2.1.27) for the tunneling current and found that ∆I(z, V ) is always
positive. This means that the spherical exponential decay itself cannot account
for the observed corrugation-inversion effect, and the W atoms always appear as
protrusions in STM images calculated with this model. However, considering the
orbital-dependent tunneling transmission in Eq. (2.2.4), we find evidence for the
corrugation-inversion effect, thus highlighting the role of the real-space shape of
electron orbitals involved in the tunneling.

Figure 3.1.5 shows ∆I(z, V ) = 0 contours calculated with different tip models
in the [0 Å, 14 Å] tip-sample distance and [−2 V, +2 V] bias voltage range. Before
turning to the analysis of the results obtained with previously unconsidered tip
models, let us compare our results with those of Heinze et al. [45] where an
s-wave tip model was used. They found corrugation reversal at around −0.4 V
at z = 4.6 Å tip-sample distance, and above that voltage normal while below
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Figure 3.1.5: The ∆I(z, V ) = IT (z, V )− IH(z, V ) = 0 contours indicative for the corrugation
inversion calculated with different tip models above the W(110) surface. (a), (b) shows two
distinct behaviors depending on the tip orbital composition. The sign of ∆I(z, V ) is explicitly
shown: (a) positive (+) below the curves, and negative (−) above them; (b) positive inside
the loop of a given curve, and negative (−) outside the loop. Note that positive ∆I(z, V )
corresponds to normal, whereas negative corresponds to inverted atomic contrast. Adapted
from Ref. [P1]

anticorrugated STM images were obtained. Our model with an s tip provides
the same type of corrugation reversal at −0.21 V at the same distance as can be
seen in Fig. 3.1.5(a) (red curve). These bias values are in reasonable agreement,
particularly concerning their negative sign. At this range atomic resolution is
difficult to achieve experimentally, which is an indication for being close to the
corrugation-inversion regime [45]. On the other hand, a linear dependence of the
corrugation-reversal voltage and the tip-sample distance was reported by Heinze
et al.: (z = 4.6 Å,V = −0.4 V) to (z = 7.2 Å,V = 0 V). Our model qualitatively
reproduces this linear dependence in the same bias range though the quantitative
values are somewhat different.

Calculating the corrugation-inversion maps with more tip models, we find two
distinct behaviors depending on the tip orbital composition. Figures 3.1.5(a) and
3.1.5(b) show these. While the tip models in Fig. 3.1.5(a) can show corrugation
inversion in the whole studied bias range, this effect does not occur at positive
bias voltages for tips in Fig. 3.1.5(b). Moreover, anticorrugation is observed
in the large tip-sample distance region (z > 13.5 Å) in both parts. This is in
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accordance with the prediction of Ref. [47] based on the analysis of the com-
peting electron states in the surface Brillouin zone of an Fe(001) surface. In the
z < 13.5 Å range, however, the corrugation character in the two parts of Fig.
3.1.5 is remarkably different. In Fig. 3.1.5(a), normal corrugation is found close
to the surface, which reverts only once with increasing tip-sample distance for
the tip models with a single orbital symmetry in the full studied bias range. The
W(110) tip behaves similarly below +1.7 V, while above there is a double reversal
of the corrugation character as the tip-sample distance increases. This indicates
that anticorrugation can be expected at short tip-sample distances (3.5–5 Å) at
around +2 V. On the other hand, the tip models in Fig. 3.1.5(b) always show
anticorrugation at positive bias voltages, and below −0.05 V they provide cor-
rugation characters starting from anticorrugation, then normal corrugation, and
again anticorrugation with increasing tip-sample distance. These different be-
haviors can be attributed to the tip orbital characters. It is interesting to notice
that none of the considered tip orbitals in Fig. 3.1.5(b) are localized in the z
direction, and they have nodal planes either in the yz plane (px and dxz) or in
the xz plane (py and dyz) or in the x = y and x = −y planes (dx2−y2). On the
other hand, in Fig. 3.1.5(a) there are tips which are localized in the z direction
(pz and d3z2−r2 ) or having nodal planes in both the xz and yz planes (dxy) as
well as the spherical s tip and the W(110) tip that contains all types of orbitals
with energy-dependent partial PDOS functions. The particular tip nodal planes
restrict the collection of surface atom contributions to specific regions on the sam-
ple surface. Furthermore, by changing the tip-sample distance, the orientational
overlaps between the tip and sample orbitals change, and according to our model
some localized orbitals gain more importance in the tunneling contribution (see
also Fig. 3.1.4). Since we calculate the current difference between tip positions
above the surface top and hollow sites, the complex tip-sample-distance- and
bias-voltage-dependent effect of the real-space orbitals on the tunneling can be
visualized via the corrugation-inversion maps.

Concerning tips with pz and d3z2−r2 orbital symmetry, Heinze et al. [45]
calculated a corrugation enhancement factor of 2 and 6.25, respectively, based on
Chen’s derivative rule [15]. Moreover, they argued that the corrugation-inversion
map should be practically identical to the one obtained by using the s-tip model,
and the corrugation values just have to be scaled up by these factors. On the
contrary, based on our orbital-dependent tunneling model we find that the pz and
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d3z2−r2 tips provide qualitatively different corrugation inversion maps, although
their bias-dependent shape is similar to the one of the s-tip, their tip-sample
distance is systematically pushed to larger values [see Fig. 3.1.5(a)]. This is due
to the more localized character of these tip orbitals in the z direction. Corrugation
inversion with the dxy-tip occurs at the largest tip-sample distance. A possible
explanation can be based on its xz and yz nodal planes. While above the top
position only the underlying W atom gives zero contribution to the current, above
the hollow position all four nearest-neighbor W atoms; thus, IT is expected to
be higher than IH at small tip-sample distances. To overcome this effect the tip
has to be moved farther from the surface since then the relative importance of
the nearest-neighbor contributions decays rapidly compared to other parts of the
surface.

Apart from the above findings we obtain corrugation inversion also in the
positive bias range at enlarged tip-sample distances for the s, pz, d3z2−r2 , and
W(110) tips considered in Fig. 3.1.5(a). This is most probably due to the surface
electronic structure. Note that this effect is even more difficult to capture in
experiments as the corrugation values themselves decay rapidly with increasing
tip-sample distance.

3.1.5 Comparison to other methods

To demonstrate the corrugation inversion more apparently, constant-current STM
images can be simulated. As is clear from Fig. 3.1.5, any type of crossing of the
∆I(z, V ) = 0 contour results in the occurrence of the corrugation reversal. In
experiments two ways can be considered to record STM images in the normal
and anticorrugated regimes: (1) keep the tip-sample distance z constant and
change the bias voltage V , or (2) keep the bias voltage V constant and change
the tip-sample distance. Respectively, these modes correspond to a horizontal
and a vertical crossing of the ∆I(z, V ) = 0 contour in the (z, V ) plane in Fig.
3.1.5. Heinze et al. followed the first method in their simulations [45]. However,
as the second option seems to be experimentally more feasible and needs less
calculations as well, we simulated STM images at a fixed bias voltage of −0.25
V.

In Fig. 3.1.6 STM images are compared using our model assuming an s-type
tip [(a)–(c)] to those calculated by the Tersoff-Hamann method [(d)–(f)]. We find
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a) b) c)

d) e) f)

Figure 3.1.6: Comparison of simulated STM images of the W(110) surface using our model
with an s-type tip (a)–(c) and the Tersoff-Hamann model (d)–(f) at V = −0.25 V bias voltage.
The scan area corresponds to the rectangle shown in Fig. 3.1.1. Light and dark areas denote
higher and lower apparent heights, respectively. The apparent heights of the W atom (zT
), and the corrugation of the contours (∆z′) are as follows. Our model: (a) zT = 3.80 Å,
∆z′ = 0.23 pm; (b) corrugation inversion, zT = 4.15 Å, ∆z′ = 0.10 pm; and (c) zT = 4.35
Å, ∆z′ = 0.12 pm. Tersoff-Hamann model: (d) zT = 3.80 Å ∆z′ = 1.63 pm; (e) corrugation
inversion, zT = 4.21 Å, ∆z′ = 1.82 pm; and ( f ) zT = 4.70 Å, ∆z′ = 1.79 pm. Adapted from
Ref. [P1]

that the images are in good qualitative agreement for the corresponding pairs.
In Figs. 3.1.6(a) and 3.1.6(d), at a tip-sample distance of about 3.80 Å, the
apparent height of the W atom is larger than the one of the hollow position, i.e.,
∆z = zT − zH > 0. This resembles normal corrugation. Moving the tip farther
from the surface, we obtain the corrugation inversion and striped images. These
are shown in Figs. 3.1.6(b) and (e). We find that our method reproduces the
corrugation-inversion effect at almost the same tip-sample distance (4.15 Å) as
the Tersoff-Hamann model predicts (4.21 Å). Increasing the tip-sample distance
further, we enter the anticorrugation regime, and the apparent height of the W
atom is smaller than the one of the hollow position, i.e., ∆z = zT − zH < 0. Such
images are shown in Figs. 3.1.6(c) and (f). Note that all of the simulated STM
images in Fig. 3.1.6 are in good qualitative agreement with [45]. The corrugation
of the individual current contours has also been calculated: z′ = 0.23 pm [Fig.
3.1.6(a)], z′ = 0.10 pm [Fig. 3.1.6(b)], z′ = 0.12 pm [Fig. 3.1.6(c)], z′ = 1.63 pm
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[Fig. 3.1.6(d)], z′ = 1.82 pm [Fig. 3.1.6(e)], and z′ = 1.79 pm [Fig. 3.1.6(f)]. We
find that our model gives approximately one order of magnitude less corrugation
than the Tersoff-Hamann method. Note, however, that the small corrugation
amplitudes using our method are in good agreement with [45], where they report
z′ < 1 pm, close to the contrast reversal.

a) b) c)

d) e) f)

Figure 3.1.7: Comparison of simulated STM images of the W(110) surface using our model
(a)–(c) and the Bardeen method (d)–(f) with the W(110) tip at V = −0.25 V bias voltage.
The scan area corresponds to the rectangle shown in Fig. 3.1.1. Light and dark areas denote
higher and lower apparent heights, respectively. The current values (I), the apparent heights
of the W atom (zT ), and the corrugation of the contours (z′) are as follows. Our model: (a)
I = 6.3 nA, zT = 4.50 Å, z′ = 0.36 pm; (b) corrugation inversion, I = 0.43 nA, zT = 5.80 Å,
z′ = 0.02 pm; and (c) I = 0.35 nA, zT = 5.90 Å, z′ = 0.02 pm. Bardeen method: (d) I = 4.4
nA, zT = 4.50 Å, z′ = 0.07 pm; (e) corrugation inversion, I = 0.7 nA, zT = 5.55 Å, z′ = 0.03
pm; and (f) I = 0.19 nA, zT = 6.25 Å, z′ = 0.02 pm. Adapted from Ref. [P1]

As we have seen, the corrugation-inversion effect already occurs considering
the electronic structure of the sample only. However, Fig. 3.1.5 indicates that
different tips can modify its tip-sample distance and bias-voltage dependence
quite dramatically. In Fig. 3.1.7 STM images are compared using our model
[Figs. 3.1.7(a)–(c)] to those calculated by the Bardeen method [Figs. 3.1.7(d)–
(f)], explicitly taking the electronic structure of the W(110) tip in both cases
into account. We find that the images are in good qualitative agreement for the
pairs Figs. 3.1.7(b) and (e) and Figs. 3.1.7(c) and (f). In Figs. 3.1.7(a) and (d),
at a tip-sample distance of about 4.50 Å, the agreement is weaker; however, the
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normal corrugation is more pronounced in our model: The corrugation amplitude
of Fig. 3.1.7(a), z′ = 0.36 pm, is much larger than that of Fig. 3.1.7(d), z′ = 0.07

pm. Moreover, as the current values of 6.3 nA (our model) and 4.4 nA (Bardeen
model) are comparable to each other at the given tip-sample separation, the
choice of η = 1 eV2m6 in Eq. (2.2.4) is confirmed. Note that by employing our
model, a better qualitative agreement to the image of Fig. 3.1.7(d) has been
found at a larger tip-sample separation, i.e., closer to the corrugation inversion.
This inversion is demonstrated in Figs. 3.1.7(b) and (e). Again, we obtain striped
images. Note, however, that the stripes with larger apparent height correspond
to the atomic rows, in contrast to what has been found in Figs. 3.1.6(b) and
(e), where the atomic and hollow sites appeared as depressions. This difference is
definitely due to the effect of the W tip, which was not considered in Fig. 3.1.6.
On the other hand, we find good agreement concerning the tip-sample distance
of the corrugation inversion: 5.80 Å in our model, and 5.55 Å calculated by the
Bardeen method. Figures 3.1.7(c) and (f) correspond to anticorrugated images.
In this tip-sample distance regime the extremely small corrugation amplitudes
are in good agreement between our model and the Bardeen method: z′ = 0.02

pm in Figs. 3.1.7(b), (c), and (f), and z′ = 0.03 pm in Fig. 3.1.7(e).

3.1.6 Computational efficiency

Finally, we compared computational times between our model and the Bardeen
method, and found the following: Our orbital-dependent model used 30×22×150

grid points, one CPU and consumed 229 seconds, while the Bardeen method in
bSKAN code used 31 × 10 × 100 grid points, four CPUs and consumed 173866
seconds. Normalizing to the same real-space grid points we obtain that our
method is 2425 times faster using one CPU than using four CPUs for the Bardeen
calculation. As the four CPUs’ calculations are roughly 3.5 times faster than
the calculations on one CPU in our computer cluster, a remarkable one-CPU
equivalent time boost of about 8500 is obtained for our method compared to
the Bardeen method for the given surface-tip combination. While the k−point
samplings of the surface and tip Brillouin zones affect the computational time of
the Bardeen method due to the enhanced number of transitions as the number
of k−points increases, the computational time of our model is insensitive to the
number of k−points as the PDOS of the tip apex and surface atoms are used. The
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energy-dependent PDOS functions have the same data structure, no matter what
the number of the constituting electron states obtained by the k-summation [29].
This is a great computational advantage of our model. Of course, the quality of
the results depends on the k−point samplings. Moreover, please note the further
potential that our method can be parallelized in the future.

3.1.7 The effect of arbitrary tip-orientation

Convergence properties

We report a similar convergence test for the tungsten tip comparing different tip
orientations. To take into account a wide energy range around the Fermi level,
we calculated the tunneling current at −2.0 and +2.0 V bias voltages at z = 4.5

Å above a surface W atom, and averaged these current values. The averaged
currents were normalized for each tip calculation to obtain comparable results.
The convergences of the normalized averaged current with respect to the lateral
distance on the surface, d||, characteristic for the number of atoms involved in the
atom-superposition summation, are shown in Fig. 3.1.8.

Figure 3.1.8: Convergence of the normalized averaged current z = 4.5 Å above the surface
top (T) position (W atom) calculated with different tungsten tip orientations described by the
Euler angles (ϑ0, ϕ0, ψ0) given in degrees (see also Fig. 2.2.2). Adapted from Ref. [P2]

d|| represents the radius of a surface section measured from the W atom below
the tip apex, from which area the surface atomic contributions to the tunneling
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current are taken. We find that by fixing the z′ = z axis (ϑ0 = 0°), the rotation of
the tip with ψ0 ∈ [0°,90°] does not change the convergence character compared to
ψ0 = 0° (not shown). This is due to the dominant current contributions from the
s, pz, and d3z2−r2 orbitals of both the sample and the tip, which do not change
upon the mentioned tip rotation. For an illustration see the top left part of Fig.
3.1.9.

Figure 3.1.9: Tip orientation effect on selected relative current contributions between sample
β and tip γ orbitals (Ĩβγ in Eq. (3.1.3), here denoted by β − γ ) using the tungsten tip at
V = −0.1 V bias voltage, z = 4.5 Å above the surface top (T) position (W atom). The tip
orientation is described by the Euler angles (ϑ0, ϕ0, ψ0) given in degrees (see also Fig. 2.2.2).
For brevity, we used the notation dz2 for the d3z2−r2 orbitals. Adapted from Ref. [P2]

The situation is remarkably different by changing ϑ0. This tip rotation has an
effect of a tilted z′ axis of the tip apex compared to the sample z direction. The
greater the tilt, the faster the convergence of the normalized averaged current
observed. We show examples of (45°, 0°, 0°) and (75°, 0°, 0°) in Fig. 3.1.8. As
the rotation of ϑ0 is around the x axis, i.e., x′ = x remains the same, the tip
dyz and dx2−y2 orbitals with nodal planes involving the z′ direction gain more
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importance in the tunneling as the tilting increases, since they can hybridize
easily with the dominant orbitals of the sample: s, pz, and d3z2−r2 . This finding
is demonstrated in the top right part of Fig. 3.1.9. Concomitantly, the tip pz

and d3z2−r2 orbitals lose their contribution, as they give a transmission maximum
in the z′ direction that is not in line with z because of the tilting. Starting
from the (45°, 0°, 0°) tip orientation, we can rotate the tip around the sample
z direction with angles ψ0 ∈ [0°,90°]. We find that this type of rotation does
not considerably affect the convergence character of the current compared to the
(45°, 0°, 0°) orientation (not shown). This is due to the practically unchanged
dominant current contributions by rotating with ψ0 (see the bottom left part of
Fig. 3.1.9). On the other hand, rotating the local tip coordinate system around
z′ , i.e., changing ϕ0, results in slight convergence changes. First, the convergence
speed drops slightly at (45°, 45°, 0°), and then increases at the orientation (45°,
90°, 0°). This effect is related to the tip dxz and dyz orbitals, as their contribution
changes the most by this type of rotation (see also the bottom right part of Fig.
3.1.9). We found that the tip rotation effects do not change the suggestion that
atom contributions within at least d|| = 3aW ≈ 9.5 Å distance from the surface-
projected tip position have to be considered, as we have also seen in Sec. 3.1.2.
The reason is that the exponentially decaying part of the transmission function
is dominant over the orbital-dependent part. In the case of calculating STM
images, d|| = 3aW ≈ 9.5 Å has to be measured from the edge of the scan area in
all directions to avoid distortion of the image, thus involving 67 surface atoms in
the atomic superposition. For brevity, in the following we use the same surface
atoms to calculate single-point tunneling properties as well.

Orbital contributions

Let us analyze the tip orientation effects on the relative importance of selected
β ↔ γ transitions in determining the total tunneling current above a surface
W atom. The Ĩβγ relative current contributions can be calculated according
to Eq. 3.1.3. This quantity gives the percentage contribution of the individual
transition to the total tunneling current. Fig. 3.1.9 shows selected relative current
contributions using the tungsten tip at a bias voltage V = −0.1 V and distance
z = 4.5 Å above a surface W atom. Note that only those transitions are reported
which have either a significant contribution, or show considerable changes upon
the tip rotations. We find that by rotating the tip using ψ0 around the z′ = z
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axis (top left part of Fig. 3.1.9), the dominant contributions are due to the tip
d3z′2−r′2 orbital combined with the sample s, pz, and d3z2−r2 orbitals, and they do
not change by the mentioned tip rotation. On the other hand, the dyz − dyz and
dxz − dxz contributions lose, while the dyz − dxz and dxz − dyz gain importance
upon this type of tip rotation. The top right part of Fig. 3.1.9 corresponds to
rotations around the x′ = x axis with ϑ0, and the evolution of the dominant
contributions. It can be seen that the dominant sample contributions remain
unchanged, i.e., they are the s, pz, and d3z2−r2 orbitals, while the dominant tip
orbitals change from d3z′−r2 at (0°, 0°, 0°) to dyz at (45°, 0°, 0°), and to dx2−y2
at (75°, 0°, 0°). The bottom left part of Fig. 3.1.9 shows the relative current
contribution changes with respect to tip rotations by ψ0 around the sample z
direction, starting from the (45°, 0°, 0°) orientation. We find that this type of
rotation does not affect the dominant current contributions with dyz tip orbital
character. The biggest changes in other transitions are found for the sample dyz
orbital, i.e., the contributions in combination with the tip dxy , dyz , and dxz

orbitals slightly increase, while the dyz−d3z2−r2 and dyz−dx2−y2 transitions show
decreasing importance upon this kind of tip rotation. Finally, by rotating the
local tip coordinate system around the z′ axis with ϕ0 starting from the (45°,
0°, 0°) orientation results in decreased dyz and increased dxz contributions in
combination with the sample s, pz, and d3z2−r2 orbitals. This is shown in the
bottom right part of Fig. 3.1.9. It is interesting to find that the d3z2−r2 − s

relative contribution increases by rotating ϕ0. This, however, does not mean an
absolute increment of this current contribution since the tip s state is insensitive
to the rotation.

Atomic contrast changes

We have seen in Sec. 3.1.4 that changing the bias voltage or tip–sample distance
can result in contrast inversion of the STM images (I = const. contours). Now we
demonstrate that tip rotation effects also play an important role in the formation
of the STM image.

Figure 3.1.10 shows tip rotation effects on the 4I(z, V ) = 0 contours in
the [0 Å, 14 Å] tip–sample distance and [−2 V,+2 V] bias voltage range. We
find that by rotating the tip using ψ0 around the z′ = z axis (top left part
of Fig. 3.1.10), the contours shift to larger tip–sample distances close to zero
bias, and their shapes remain qualitatively unchanged. It is interesting to see
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Figure 3.1.10: 4I(z, V ) = 0 contours indicative of the relative apparent heights of the surface
top (T) and hollow (H) positions (see equation (3.1.4), and its meaning in the text) calculated
using a tungsten tip with different tip orientations described by the Euler angles (ϑ0, ϕ0, ψ0)
given in degrees (see also Fig. 2.2.2). The sign of 4I(z, V ) (+ or −) is explicitly shown at the
corners on the right hand side of each part of the figure: it is positive below the curves, and
negative above them. Adapted from Ref. [P2]

that the 4I(z, V ) < 0 region found for the (0°, 0°, 0°) tip orientation at around
z = 3.5 Å close to +2 V disappears with this type of tip rotation. The same
finding is obtained in the top right part of Fig. 3.1.10, which corresponds to
rotations around the x′ = x axis using ϑ0. Here, the quality of the contours
change considerably. The (30°, 0°, 0°) and (45°, 0°, 0°) tip orientations result in
I(z, V ) = 0 contours at enlarged tip–sample distances close to zero bias, and a
4I(z, V ) < 0 region opens at small tip–sample distances between bias voltages of
+0.5 V and +1 V. On further rotation this region disappears, and concomitantly
the contours shift to lower tip–sample distances close to V = 0 V. For the (75°, 0°,
0°) tip orientation, we obtain 4I(z, V ) < 0 at z > 3.5 Å around zero bias. The
bottom left part of Fig. 3.1.10 shows the evolution of the 4I(z, V ) = 0 contours
with respect to tip rotations by ψ0 around the sample z direction starting from
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the (45°, 0°, 0°) orientation. The contours do not change considerably close to
V = 0 V, but the 4I(z, V ) < 0 region at small tip–sample distances between
+0.5 V and +1 V disappears. Finally, the effect of the rotation of the local
tip coordinate system around the z′ axis with ϕ0 starting from the (45°, 0°,
0°) orientation is shown in the bottom right part of Fig. 3.1.10. The contours
are shifted to lower tip–sample distances close to zero bias and at high positive
bias voltages, whereas the shift is towards larger tip–sample distances at high
negative bias. Moreover, this type of rotation does not affect the presence of
the 4I(z, V ) < 0 region at small tip–sample distances between +0.5 V and +1
V. As was suggested earlier, particular tip nodal planes restrict the collection of
surface atom contributions to specific regions on the sample surface. By changing
the tip–sample distance, the orientational overlaps between the tip and sample
orbitals change, and according to our model some localized orbitals gain more
importance in the tunneling contribution (see also Fig. 3.1.9). The complex
tip–sample distance, bias voltage, and tip orientation dependent effect of the
real-space orbitals on the tunneling can be visualized as the zero contours of the
current difference between tip positions above the surface top and hollow sites,
as shown in Fig. 3.1.10.
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(0°,0°,0°) (0°,0°,55°) (0°,0°,90°)

(0°,0°,0°) (15°,0°,0°) (30°,0°,0°)

(45°,0°,0°) (45°,0°,55°) (45°,0°,90°)

(45°,0°,0°) (45°,45°,0°) (45°,90°,0°)

Figure 3.1.11: Tip orientation effect on the simulated STM images: Constant-current contours
at I = 6.3 nA and V = −0.25 V bias voltage about z = 4.5 Å above the W(110) surface, using
the tungsten tip with different orientations described by the Euler angles (ϑ0, ϕ0, ψ0) given in
degrees (see also Fig. 2.2.2). The scan area corresponds to the rectangle shown in Fig. 3.1.1.
Light and dark areas denote larger and smaller apparent heights, respectively. Adapted from
Ref. [P2]

To demonstrate the atomic contrast changes depending on the tip orientation
(ϑ0, ϕ0, ψ0) more clearly, constant-current STM images are simulated. The scan
area is the rectangular section shown in Fig. 3.1.1. Selected results obtained at
I = 6.3 nA current and V = −0.25 V bias voltage are shown in Fig. 3.1.11. These
tunneling parameters correspond to a tip–sample distance of z = 4.5 Å above the
surface W atoms, and with an unrotated tip a normal corrugation is expected,
see Sec. 3.1.4. Moving the unrotated tip farther from the surface results in lower
tunneling currents, and the atomic contrast is inverted at I = 0.43 nA (z = 5.8
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Å), in reasonable agreement with calculations employing the Bardeen tunneling
model (Sec. 3.1.5). Alternatively, a corrugation inversion can be observed at
a fixed tip–sample distance by changing the bias voltage. Such an effect was
reported in [45], where z = 4.6 Å was assumed. We find that by rotating the tip
with ψ0 around the z′ = z axis (top row of Fig. 3.1.11), the elongated feature
located on the W atoms initially in the y direction is rotated. This results in a
striped image for the (0°, 0°, 55°) tip orientation. The stripes with larger apparent
height correspond to the atomic rows and are oriented along the diagonal of the
rectangle. Turning the tip to the (0°, 0°, 90°) orientation, the elongated feature
located on the W atoms turns to the x direction. The reason is the rearrangement
of the importance of the dyz − dyz and dxz − dxz transitions towards the dyz − dxz
and dxz − dyz transitions upon this type of rotation, as shown in Fig. 3.1.9.
Tip rotation around the x′ = x axis using ϑ0 results in apparent atom positions
shifted towards the bottom edge of the image, i.e., towards the −y direction.
This effect is demonstrated for the set of images with (0°, 0°, 0°) to (45°, 0°, 0°)
tip orientations (second row, and first image of the third row of Fig. 3.1.11).
During this rotation the dominant tip orbital character changes from d3z2−r2 to
dyz (see Fig. 3.1.9). The third row of Fig. 3.1.11 shows the effect of tip rotations
by ψ0 around the sample z direction starting from the (45°, 0°, 0°) orientation.
We find that the apparent atom positions that were shifted away towards the −y
direction are now rotated on the images with respect to the z axis centered on the
real W atom positions. The STM image corresponding to the (45°, 0°, 55°) tip
orientation shows apparent W atom positions shifted along the diagonal of the
rectangle with respect to the real atomic positions. Similarly, the (45°, 0°, 90°)
tip orientation corresponds to apparent W atom positions shifted towards the +x

direction. As was shown in Fig. 3.1.9, the tip dyz orbital is always dominant,
and the biggest changes are found for the sample dyz orbital contributions upon
this type of rotation. The last row of Fig. 3.1.11 considers the tip rotation
around the z′ axis by ϕ0 starting from the (45°, 0°, 0°) orientation. The obtained
complex rearrangement of apparent atom positions on the STM images is due
to the changing effect of the dyz and dxz contributions of the tunneling tip, as
demonstrated in Fig. 3.1.9.
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3.2 Fe(110)

In the previous chapter we have seen that in non-magnetic STM, at certain bias
voltage and tip–sample distance ranges, constant-current STM images can show
atomic contrast inversion above flat metal surfaces, and tip-rotational effects can
also play an important role. This phenomenon was widely studied in the litera-
ture [16, 52, 45, P1, P2]. Chen theoretically explained the corrugation inversion
found on low Miller index metal surfaces by the presence of m 6= 0 tip states [28].
On the other hand, Heinze et al. [45] pointed out that a competition between
electron states from different surface Brillouin zone parts is responsible for the
corrugation inversion effect. A similar explanation was given on the contrast in-
version above the magnetic Fe(001) surface in the presence of an external electric
field [47]. Following the real-space electron orbital picture, we expect that be-
side orbital-dependent effects magnetic characteristics also play an important role
in the determination of the corrugation quality of SP-STM images on magnetic
surfaces. This expectation is supported by the reported bias voltage dependent
magnetic contrast reversals in two different magnetic systems [53, 29] obtained
by using spherical tunneling models. Note that the magnetic effect can be tuned
in different ways, e.g., the magnetic contrast can be enhanced by properly ad-
justing the bias voltage and/or the tip magnetization direction [54], or by using
chemically modified magnetic STM tips [55].

To capture the effect of magnetic characteristics we can separate the topo-
graphic (TOPO) and magnetic (MAGN) part of the total STM current:

I(rT , V ) = ITOPO(rT , V ) + IMAGN(rT , V ), (3.2.1)

where the two components – using Eq. (2.2.4) – are the following:

ITOPO(rT , V ) =
2e2

h
η
∑
i

∑
β,γ

∫ eV

0

Tβγ(κ, rT − ri)×

× ñSβ(ri, E
S
F + E)ñTγ (rT , E

T
F + E − eV )dE, (3.2.2)
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IMAGN(rT , V ) =
2e2

h
η
∑
i

∑
β,γ

∫ eV

0

Tβγ(κ, rT − ri)×

× m̃S
β(ri, E

S
F + E) · m̃T

γ (rTE
T
F + E − eV )dE. (3.2.3)

Using these quantities a similar investigation can be performed as it was done in
the case of W(110).

3.2.1 Computational details

Figure 3.2.1: The surface unit cell of Fe(110) (rhombus) and the rectangular scan area
(shaded) for the tunneling current simulations. Grey spheres denote the Fe atoms. The top
(T) and hollow (H) positions are explicitly shown.

We particularly focus on tip effects, and consider ideal magnetic tip mod-
els with different orbital symmetries, and a more realistic iron tip. The effect
of three different tip magnetization orientations is also investigated. We choose
27 Fe(110) surface atoms involved in the atomic superposition in combination
with the ideal tips, and 112 Fe(110) surface atoms combined with the iron tip
including the simulation of SP-STM images. We performed geometry relaxation
and electronic structure calculations within the generalized gradient approxima-
tion (GGA) of the density functional theory implemented in VASP [42]. A plane
wave basis set for electronic wave function expansion in combination with the
projector augmented wave (PAW) method [48] was applied, and the exchange-
correlation functional is parametrized by Perdew and Wang (PW91) [49]. The
electronic structures of the sample surface and the tip were calculated separately.
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We model the Fe(110) surface by a slab of nine atomic layers with the theoreti-
cally determined lattice constant of aFe = 2.829 Å, obtained at the total energy
minimum of a bulk body-centered cubic Fe cell, in agreement with Ref. [56].
In the surface slab calculations we set up a separating vacuum region of 24 Å
width in the surface normal (z) direction between neighboring supercell slabs to
minimize slab–slab interaction. After geometry relaxation the Fe–Fe interlayer
distance between the two topmost layers is reduced by 0.39%, and the under-
neath Fe–Fe interlayer distance is increased by 0.36% in comparison to bulk Fe.
These are in excellent agreement with the findings of Ref. [56]: −0.36%, and
+0.46%, respectively. The size of the in-plane magnetic moment of the surface
Fe atoms is 2.50 µB, in agreement with Refs. [56, 45]. The unit cell of the
Fe(110) surface (rhombus) and the rectangular scan area for the tunneling cur-
rent simulations are shown in Fig. 3.2.1 where the surface top (T) and hollow
(H) positions are explicitly indicated. The average electron work function above
the Fe(110) surface is φS = 4.84 eV calculated from the local electrostatic poten-
tial. We used a 41× 41× 5 Monkhorst–Pack [50] k−point grid for obtaining the
orbital-decomposed projected charge and magnetization electron DOS onto the
surface Fe atom, ñS(E) and m̃S(E), respectively.

We used three different tip models: ideal magnetic tip models with a particular
γ0 orbital symmetry where the PDOS of the tip is energy-independent: nTγ0 =

1(eV )−1 and nT(γ 6=γ0) = 0. Another characteristic for ideal magnetic tips is that
their absolute spin polarization is maximal (|PT | = |mT |/nT = 1) in the full
energy range, i.e., combined with a particular γ0 orbital symmetry: mTγ0

=

1(eV )−1eT (eT is the unit vector of the tip spin quantization axis that is parallel
to the assumed tip magnetization direction, an input parameter in our method)
and mT(γ 6=γ0)

= 0. We took γ0 ∈ {s, pz, d3z2−r2} tip orbital symmetries into
consideration.

More realistic tips can be employed by explicitly calculating the orbital de-
composition of the tip apex PDOS in model tip geometries. In the present work
a blunt iron tip is used, where a single Fe apex atom is placed on the hollow
position of the Fe(001) surface, similarly as in Ref. [57]. We took an Fe(001) slab
consisting of nine atomic layers with the theoretically determined lattice constant
of aFe = 2.829 Å, and placed an adatom on each side of a 3×3 surface cell. A
separating vacuum region of 20 Å width in the surface normal direction was cho-
sen to minimize slab–slab interaction. After geometry relaxation of the adatom
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and the first surface layer performed by the VASP code, the orbital-decomposed
electronic structure data projected to the tip apex atom, nTγ (E) and mTγ (E),
were calculated using a 13× 13× 3 Monkhorst–Pack k−point grid. We obtained
the local electron work function of φT = 3.96 eV above the iron tip apex atom
that was used in the tunneling simulations.
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3.2.2 Electronic structure and current histograms

Figure 3.2.2: Orbital-decomposed projected electron density of states (PDOS) of the Fe(110)
surface atom and the iron tip apex atom. (a) surface charge PDOS: ñSβ (E); (b) tip charge
PDOS: ñTγ (E); (c) surface spin-resolved ñS↑↓β (E); (d) tip spin-resolved ñT↑↓γ (E). Orbitals β, γ ∈{
s, py, pz, px, dxy, dyz, d3z2−r2 , dxz, dx2−y2

}
are indicated. Adapted from Ref. [P3]

Fig. 3.2.2 shows the energy-dependent orbital-decomposed charge (n) and
spin-resolved (↑, ↓) PDOS functions of the Fe(110) surface atom (S) and the
Fe(001) tip apex atom (T) as follows: Fig. 3.2.2(a) ñSβ(E), Fig. 3.2.2(b) ñTγ (E),
Fig. 3.2.2(c) ñS↑↓β (E), Fig. 3.2.2(d) ñT↑↓γ (E), with tip and sample orbitals β, γ ∈
{s, py, pz, px, dxy, dyz, d3z2−r2 , dxz, dx2−y2}. We find that the d partial PDOS is
dominating over s and p partial PDOS with the exception of the majority spin
(↑) PDOS above the Fermi levels. The obtained results are in good agreement
with Refs. [57, 45], where the full potential linearized augmented plane wave
(FLAPW) method was employed.
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Figure 3.2.3: Histograms of the orbital-dependent relative current contributions (Ĩβγ(rT , V )
in Eq. (3.1.3)) using the iron tip placed z = 5 Å above two Fe(110) surface positions [top (T)
and hollow (H), see Fig. 3.2.1] at different bias voltages: (a) T position, V = −0.1 V; (b) H
position, V = −0.1 V; (c) T position, V = −1.0 V; (d) H position, V = −1.0 V; (e) T position,
V = −2.0 V; (f) H position, V = −2.0 V. Adapted from Ref. [P3]

56



CHAPTER 3. 3D–WKB RESULTS 3.2. FE(110)

The relative contributions of all β ↔ γ orbital-dependent transitions to the
total tunneling current, Ĩβγ(rT , V ), can be calculated according to Eq. (3.1.3).
Fig. 3.2.3 shows representative histograms at different bias voltages and iron tip
positions above the Fe(110) surface. We set the tip magnetization parallel to
the in-plane Fe(110) surface magnetic moment. Parts (a) and (b) of Fig. 3.2.3
correspond to the tip apex z = 5 Å above the surface top (T) and hollow (H)
positions, respectively (for T and H see Fig. 3.2.1), and the bias voltage is set to
V = −0.1 V. We find that the tip s orbital provides the dominating contributions
combined with the sample dyz and d3z2−r2 orbitals. The d3z2−r2 − d3z2−r2 and
dyz − dyz transitions also give sizable contributions. The main difference between
the T and H tip positions is that above the Fe(110) hollow site the dyz − d3z2−r2
contributions gain, while the d3z2−r2 − d3z2−r2 contribution loses weight, similarly
to the finding above the W(110) surface. This is due to the different orientational
overlap of the mentioned tip and sample orbitals at the two tip positions, and it
is not affected by the bias voltage. On the other hand, at a larger negative bias
V = −1.0 V [Fig. (3.2.3)(c) and (d)] we observe that the tip s orbital loses and
the dyz, d3z2−r2 , and dxz orbitals and their tip-sample combinations gain weight.
The largest contribution is now found for the d3z2−r2 − d3z2−r2 transition. We
find an enhancement of this effect at V = −2.0 V Fig. 3.2.3(e and f), and here
the tip s orbital contributions are tiny. This bias-trend can be explained by the
surface and tip partial charge PDOS in Fig. 3.2.2. At large negative bias voltages
the combination of the surface occupied d partial PDOS with the tip unoccupied
d partial PDOS clearly dominates over the tip s partial contributions. We find
similar trends for a tip magnetization perpendicular to the surface, and also for
positive bias voltages (consider the combination of the surface unoccupied with
the tip occupied d partial charge PDOS in Fig. 3.2.2).

3.2.3 Contrast inversion

As demonstrated in Sec 3.1, the current difference between tip positions above
the top (T) and hollow (H) surface sites is indicative for the corrugation char-
acter of a constant-current STM image. The total (TOPO + MAGN) current
difference at tip-sample distance z and bias voltage V is defined as ∆I(z, V ) =

IT (z, V )−IH(z, V ). Positive4I(z, V ) corresponds to an STM image with normal
corrugation where the atomic sites appear as protrusions, and negative 4I(z, V )
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to an inverted STM image with anticorrugation and atomic sites appearing as
depressions. The 4I(z, V ) = 0 contour gives the (z, V ) combinations where
the corrugation inversion occurs. Fig. 3.2.4 shows such zero current difference

Figure 3.2.4: The ∆I(z, V ) = IT (z, V )−IH(z, V ) = 0 contours indicative for the corrugation
inversion calculated with four tip models above the Fe(110) surface: (a) s-tip, (b) pz-tip, (c)
d3z2−r2-tip, and (d) Fe(001)-tip. The tip magnetization directions are explicitly shown with
respect to the Fe(110) surface magnetic moment: parallel (P), perpendicular (PERP), and
antiparallel (AP). For comparison, the 4I(z, V ) = 0 curves are shown in (a) obtained by using
the Tersoff–Hamann (T–H) approach. The sign of 4I (+ or −) is shown in selected (z, V )
sections, and crossing the 4I(z, V ) = 0 curve always means inversion of the sign. Note that
positive 4I(z, V ) corresponds to normal, and negative to inverted atomic contrast in the SP-
STM images, see also Fig. 3.2.5. In (d) seven crosses at 0.5 V mark the apparent heights of
the Fe atom on the constant-current contours shown in Fig. 3.2.5. Adapted from Ref. [P3]

contours calculated with four different tip models and three tip magnetization
orientations (parallel (P), perpendicular (PERP), and antiparallel (AP) with re-
spect to the Fe(110) surface magnetic moment) in the [−2 V, +2 V] bias voltage
range. We consider the [3 Å, 8 Å] tip-sample distance regime in Fig. 3.2.4(a–c)
for the ideal tips with s, pz, and d3z2−r2 orbital character, respectively, and the
[3 Å, 10 Å] range in Fig. 3.2.4(d) for the iron tip. Note that the validity of our
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tunneling model is restricted to about z > 3.5 Å. Let us first focus on the zero
current difference contours obtained by the s-tip in Fig. 3.2.4(a). The contrast
inversion of the Fe(110) surface with an s-tip at a fixed z = 4.5 Å tip-sample
distance was already studied with a different theoretical approach by Heinze et
al. in Ref. [45]. Comparing these results with ours we find good qualitative
agreement: The P tip magnetization does not show any contrast inversion in the
studied (z, V ) range. This corresponds to the majority spin+ data of Fig. 15
in Ref. [45]. On the other hand, the PERP and AP tip magnetizations result
in 4I(z, V ) = 0 curves shifted away from each other, and the direction of the
shift qualitatively agrees with the findings of Ref. [45]. Note, however, that the
corrugation inversions at z = 4.5 Å are found at different bias voltages: 0.87 V
(our model, PERP) vs. 0.4 V (Total, Fig. 15 in Ref. [45]), and 0.94 V (our
model, AP) vs. 0.7 V (minority spin−, Fig. 15 in Ref. [45]). This difference
can be attributed to the nonequal lattice constants used and the different the-
oretical approaches. As a further test of the reliability of our tunneling model,
we compared the 4I(z, V ) = 0 contour using the PERP tip magnetization with
that obtained by the Tersoff–Hamann method, the curve denoted by T–H in Fig.
3.2.4(a). We find that our model reproduces the (z, V ) region with the inverse
corrugation denoted by the ‘−’ sign qualitatively well. Quantitative agreement is
not present due to the approximations in the 3D-WKB method. Note that the
PERP tip magnetization corresponds to an equal 0.5–0.5 weighting of the major-
ity and minority spin channels contributing to the tunneling and, thus, to a zero
spin-polarized (MAGN) contribution of the current (IMAGN = 0, I = ITOPO),
and solely orbital-dependent effects play a role in the tunneling without spin-
polarization effects. Altogether, the results obtained by the s-tip indicate that
the Fe(110) surface always appears to be normally corrugated taking a P tip
magnetization with respect to the surface magnetic moment, whereas changing
the tip magnetization to PERP and AP result in anticorrugation below about 1
V bias and 6 Å tip-sample distance.

To understand these results, we give the following interpretation: it is known
that there is a competition between the tunneling contributions from m = 0

(s, pz, d3z2−r2) and m 6= 0 orbitals in the formation of the corrugation charac-
ter of an STM image [28]. Generally, m = 0 states prefer normal corrugation,
whereasm 6= 0 states prefer anticorrugation. Based on our model, we suggest that
the corrugation inversion can be understood as an interplay of the real-space or-
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bital shapes involved in the tunneling and their corresponding energy-dependent
partial PDOS. For the PERP Fig. 3.2.2(a) and AP [minority spin (↓) in Fig.
3.2.2(c)] cases the d partial PDOS of the Fe(110) surface is dominating over the
s and p partial PDOS in the whole energy range. Therefore, considering only d
orbital shapes of the surface, the leading current contribution is expected from
the d3z2−r2 orbital of the underlying Fe atom when the tip is placed above the
surface T position, and from the d3z2−r2 , dxz, dyz orbitals of the four nearest-
neighbor surface Fe atoms when the tip is above the surface H position. Note
that the weight of dyz is larger than of dxz due to the geometry of the (110)
surface, see Fig. 3.2.1. By changing the tip-sample distance there is a compe-
tition between the contributions of these d states due to the orbital-dependent
transmission, and there is a range (z < 6 Å) where IH dominates over IT , thus
anticorrugation is obtained. At large distances the dxz, dyz orbitals lose and the
d3z2−r2 orbital gains importance, and normal corrugation is found. This simple
orbital-picture has to be combined with the energy-dependence of the PDOS of
the contributing spin channels for an accurate interpretation. As can be seen in
Fig. 3.2.2(a) and (c) (↓), there is a large d3z2−r2 -type PDOS peak at about 1.5
eV above the Fermi level. The existence of this PDOS feature results in the dis-
appearance of the anticorrugated region above around 1 V. Note that although
the dxz-type PDOS is comparable in size with the d3z2−r2 -type PDOS in this
energy range, the weighted contribution of dxz orbitals is much smaller due to the
orbital shapes and the tip-sample geometry. For the P tip magnetization, below
the Fermi level the orbital-shape-weighted contribution of d3z2−r2 is dominating
compared to dxz, dyz; for the PDOS see Fig. 3.2.2(c) (↑). Above the Fermi level
the importance of the d states decreases rapidly, and concomitantly m = 0 s and
pz states gain more importance, resulting in normal corrugation in the full energy
and tip-sample distance range.

Comparing Fig. 3.2.4(a–c) we find that the anticorrugation regime is shifted
to larger tip-sample distances following the order s, pz, and d3z2−r2 , similarly as
found for the W(110) surface. This is due to the increasingly localized character
of these tip orbitals in the z-direction. It means that the dominating current
contributions originate from less and less surface atoms that are located directly
below the tip position. Considering the orbital-dependent transmission and these
z-localized (m = 0) tip orbitals, it follows naturally that the maximal effect of the
surface dxz, dyz orbitals preferring anticorrugation is found at larger tip-sample
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distances. On the other hand, there are certain energy regimes where this orbital
overlap effect results in the occurrence of normal corrugation since the complex
competition between dxz, dyz and d3z2−r2 surface orbitals weighted with their
partial PDOS is won by the corrugating d3z2−r2 state. For all considered ideal
magnetic tips the P tip magnetization corresponding to the majority spin channel
does not show any contrast inversion in the studied (z, V ) range. Taking the
PERP and AP tip magnetization directions we expect normal corrugation above
approximately 1.0 V (s-tip), 0.9 V (pz-tip), and 0.8 V (d3z2−r2-tip) irrespective of
the tip-sample distance. The reasons are outlined above, and see the discussion
for the s-tip. The series of Fig. 3.2.4(a–c) demonstrate the orbital-dependent
tunneling and tip orbital effects on the corrugation inversion.

Taking the iron tip having all nine orbital characters with weighted energy-
dependent PDOS, it is clearly seen in Fig. 3.2.4(d) that the ∆I(z, V ) = 0 con-
tours are considerably affected by the tip electronic structure. We find that all
considered tip magnetization directions result in the appearance of corrugation
inversions in the studied bias voltage and tip-sample distance range. Close to the
surface anticorrugation is observed for the same reason as discussed for the s-tip,
with the exception of the approximate [−1.7 V, −1.4 V] range where the AP tip
magnetization shows normal corrugation and no inversion at all. The reasons for
this finding are the observed d3z2−r2 peaks in the surface majority spin (↑) PDOS
at around 1 eV and 1.5 eV below the sample Fermi energy and the tip minority
spin (↓) PDOS at around 1.5 eV above the tip Fermi level, see Fig. 3.2.2(c) and
(d). Such a combination of electronic structures gives a robust normal corruga-
tion in the given bias range. By moving the tip away from the surface, contrast
inversions are indicated by the 4I = 0 contours at large tip-sample distances,
i.e., the anticorrugation (4I < 0) changes to normal corrugation (4I > 0). It
is clearly seen that these inversion contours vary considerably depending on the
tip magnetization orientation. This is due to the complex combined effect of the
orbital-dependent tunneling and spin-polarization originating from the electronic
structures of the sample surface and the tip. For instance, the minority spin (↓)
dxy PDOS peak of the tip located at 0.5 eV below its Fermi level in Fig. 3.2.2(d)
is mainly responsible for the set of observed inversions at around 0.5 V bias. The
dxy tip orbital prefers normal corrugation in the studied tip-sample distance range
due to its xz and yz nodal planes since above the H position the anticorrugating
dxz, dyz surface orbitals do not contribute to the current, and IT is expected to
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be larger than IH . Considering other orbital contributions weighted with their
partial PDOS, however, results in anticorrugation below about z = 6 Å. In ef-
fect, we point out that the complex interplay of the real-space orbital shapes and
the energy-dependent PDOS of the contributing spin channels of both the sur-
face and the tip results in the observed corrugation inversion maps in Fig. 3.2.4.
The above findings demonstrate the tunability of the height of the observable
atomic contrast inversion depending on the spin-polarized tunneling via the tip
magnetization orientation.
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3.2.4 Simulated SP-STM images

parallel perpendicular antiparallel
6.
00

Å
6.
37

Å
7.
00

Å
7.
28

Å
8.
00

Å
9.
12

Å
9.
50

Å

Figure 3.2.5: Simulated constant-current SP-STM images of the Fe(110) surface at V = 0.5
V bias voltage and three magnetic orientations of the iron tip: parallel, perpendicular, and
antiparallel to the Fe(110) surface magnetic moment. The apparent heights of the Fe atom
denoted by crosses in Fig. 3.2.4(d) are the same in each row. The SP-STM scan area corresponds
to the rectangle shown in Fig. 3.2.1. Light and dark areas denote larger and smaller apparent
heights, respectively. Adapted from Ref. [P3]
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In order to show the dependence of the atomic contrast inversion on the tip-sample
distance and on the tip magnetization orientation more apparently, constant-
current SP-STM images are simulated. We choose the iron tip and the bias
voltage of V = 0.5 V. The total tunneling current is calculated in sheets of
0.01 Å vertical width centered at seven selected tip heights between 6 and 9.5 Å
marked by crosses in Fig. 3.2.4(d) above the rectangular scan area shown in Fig.
3.2.1. The lateral resolution is 0.04 Å by taking 100 × 70 points in each sheet.
The constant-current contours are extracted following the method described in
Ref. [29]. Fig. 3.2.5 shows the simulated constant-current SP-STM images
of the Fe(110) surface at seven apparent heights of the surface Fe atom (seven
rows) and three magnetic orientations of the iron tip (three columns): parallel
(P, first column), perpendicular (PERP, second column), and antiparallel (AP,
third column) to the Fe(110) surface magnetic moment. It can clearly be seen
that the contrast inversion occurs at different tip heights depending on the tip
magnetization orientation: P – 6.37 Å, PERP – 7.28 Å, AP – 9.12 Å, see also
Fig. 3.2.4(d). We find that the SP-STM image of the contrast inversion with P
tip magnetization orientation is markedly different from the striped images in the
PERP and AP case. Note, that such striped STM images of the contrast inversion
were found above the nonmagnetic W(110) surface as well. Below the inversion we
observe anticorrugation, i.e., the surface atoms appear as depressions, and above
the inversion normal corrugation is obtained, in accordance with Fig. 3.2.4(d).
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3.3 HOPG

Recent interest in different carbon allotropes (fullerenes, nanotubes, graphene,
graphite) and nanostructures [58] and their potential for a wide spectrum of
technological applications [59, 60, 61], for example biological and chemical sen-
sors [62, 63], nano- and molecular electronics [64, 65], photovoltaics [66] and
catalysis [67, 68], make atomically resolved investigation of carbon substrates –
such as highly oriented pyrolytic graphite (HOPG) – of great relevance across
many different scientific fields.

HOPG(0001) is one of the most frequently probed surface, where the tip or-
bital symmetries play a crucial role. The tip-dependent corrugation was discussed
by Tersoff and Lang and the role of the orbital composition of the tip atom was
highlighted [69]. The two nonequivalent carbon atomic sites of HOPG (α and β)
are responsible for different patterns in STM images. Depending on the applied
bias voltage and tunneling current both triangular and hexagonal honeycomb pat-
terns can be observed. The selective imaging of the α and β atoms results in a
triangular pattern [70, 71], which is mostly observed under typical tunneling con-
ditions, although a honeycomb pattern can be recorded as well [72, 73]. Chaika
et al. showed that using a [001]-oriented tungsten tip allows for the control of
the tip orbitals responsible for the imaging, hence different patterns in the STM
image can be obtained [74, 75]. Ondráček et al. showed that multiple scattering
effects can also play an important role in the near contact regime and they can
result in a triangular pattern in the STM image with hollow sites appearing as
bright spots, instead of the carbon atoms [76]. Teobaldi et al. rationalized the
bias dependent STM contrast mechanisms observed on the HOPG(0001) surface
by modelling a set of tungsten tips taking the effects of tip electronic structure,
termination, composition and sharpness into account [51].

Note that in Hungary experimental scanning probe methods (mostly STM)
have been applied with great success to study intriguing phenomena at the sur-
faces of carbon-based materials in the group of László Péter Biró [64, 77, 78, 79,
80, 81, 82].

It is clear that the tip geometry and electronic structure cannot be neglected
in an accurate STM simulation method. If the symmetry of the tip orbitals has
a considerable effect on the STM image, it follows naturally that so does the tip
orientation. All simulation methods require a well-defined tip geometry and ori-
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entation. Usually a simple geometry is chosen, e.g. a pyramid-shaped tip apex,
but the local tip geometry at the apex and the relative orientation of the sample
surface and the tip apex are unknown and hardly controllable in experiments.
Moreover, these tip apex characteristics can even change during the experimen-
tal STM scan, see e.g. [55, 83] for magnetic surfaces. In separate electronic
structure calculations of the sample surface and the tip their local coordinate
systems are usually set up in such a way that they represent the correspond-
ing crystallographic symmetries. The electronic structure data, either the single
electron wave-functions or the density of states (DOS), are defined in the given
local coordinate systems and they are used in the STM simulations. Thus, the
relative orientation of the tip and the sample is fixed and it usually corresponds
to a very symmetrical setup, which is unlikely in experiments. Hagelaar et al
studied a wide range of tip geometries and spatial orientations in the imaging of
the NO adsorption on Rh(111) in combination with STM experiments [35] and
their analysis is quite unique among the published STM simulations.

In this section we mainly focus on the contrast changes and stability of the
HOPG surface. By calculating relative brightness maps we compare our 3D-
WKB method to the Bardeen method and experimental data as well. We will
show that the observed “stripe” formation is a combined effect of the electronic
structure and the tip orbital symmetries, and demonstrate that the triangular-
hexagonal contrast change can be achieved by - apart from bias voltage change -
tip rotations alone.

3.3.1 Computational details

The HOPG(0001) surface and a set of tungsten tips were modelled in [51]. Em-
ploying the bSKAN code [38, 39] it was pointed out in [51] that the tunneling
current depends on the relative orientation of the tip and the surface and two
orthogonal orientations were considered for three tip models with different sharp-
nesses and compositions: blunt tungsten tip – (r)Wblunt, sharp tungsten tip –
(r)Wsharp and carbon-contaminated tungsten tip – (r)WC−apex, with ‘r’ marking
the tips rotated by 90 degrees around the z axis normal to the surface plane.
Slab geometry relaxations were performed and the PDOS of the tip apex and
sample surface atoms were calculated within the generalized gradient approxima-
tion Perdew-Burke-Ernzerhof (GGA-PBE) [84] projector augmented wave (PAW)
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Figure 3.3.1: The shaded rectangle shows the considered scanning area of the HOPG surface
for STM simulations. The positions of the characteristic h, α and β sites of the HOPG(0001)
surface are explicitly shown. Adapted from Ref. [P4]

scheme implemented in the plane-wave VASP code [42, 85, 86]. Details on the
geometries of the HOPG surface and the W tips as well as on the performed elec-
tronic structure calculations are found in Fig. 3.3.1 and section II B of [51]. For
the 3D-WKB STM simulations we chose φS = φT = 4.8 eV electron work function
for both the HOPG surface [87] and the tungsten tips. The tunneling current was
calculated in a box above the rectangular scan area of the HOPG(0001) surface
shown as the shaded area in Fig. 3.3.1 containing 31 × 21 lateral grid points
in accordance with the STM calculations of [51] using the Bardeen approach.
This corresponds to 0.142 Å and 0.123 Å resolution in the x and y direction,
respectively and in the surface-normal z direction we used a finer, 0.02 Å resolu-
tion. The constant-current contours are extracted following the method described
in [29] and we report STM images above the mentioned rectangular scan area.
Similarly to the W(110) and Fe(110) surfaces we performed convergence tests to
determine the suitable number of atoms to include in the superposition. Based
on the results we considered carbon atoms which are at most d|| = 7.5 Å far
from the edge of the scan area, thus involving altogether 117 surface atoms in the
atomic superposition.

In the 3D-WKB model an arbitrary tip rotation can be performed by setting
the corresponding Euler angles (ϑ0, ϕ0, ψ0), see also Fig. 2.2.2. Due to our choice
of the fixed sample and tip geometries the rotated (rW) tips of [51] correspond to
(0°, 0°, 0°) and the unrotated (W) tips to (0°, 0°, 90°) Euler angles. Note that when
changing the Euler angles, tunneling through one tip apex atom was considered
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only and contributions from other tip atoms were not taken into account. High
degrees of tilting the tip (ϑ0 > 30°) could, in fact, result in multiple tip apices
[88] depending on the local geometry, which can increase the tunneling current,
but can also lead to the destruction of the atomic resolution in STM images.

3.3.2 Relative brightness maps

As in the previous sections – to demonstrate the reliability of the 3D-WKB ap-
proach – first we perform a systematic comparison of bias-dependent normalized
constant-current topographs (relative brightnesses) calculated above the HOPG
surface with those obtained by Bardeen’s tunneling approach. We discuss the
differences and their origins. Comparing the simulated relative brightnesses with
experimental data [51] we find that the two tunneling methods perform at the
same quantitative reliability. Turning to STM images, we show that the local tip
orientation has a considerable effect on the obtained constant-current contrast.

For the analysis of the topographic contrast we calculate brightness profiles
along the 〈11̄00〉 direction of the HOPG(0001) surface, following the methods
described in [51]. These brightness profiles are line sections of the constant-
current contour at a given bias voltage, which contain the three characteristic
positions of the HOPG surface: hollow (h), carbon-α and carbon-β, see Fig.
3.3.1. In order to compare the brightness profiles of different tip geometries and
bias voltages, the profiles are scaled to the [0,1] interval. The definition of the
relative brightness of a given point (x) along the scan line is the following:

B(x, V ) =
z(x, V )− z(xmin, V )

z(xmax, V )− z(xmin, V )
, (3.3.1)

where z(x, V ) is the height of the constant-current contour above the x point
at bias voltage V , z(xmin, V ) and z(xmax, V ) respectively have the smallest
and largest apparent heights along the scan line, thus B(xmin, V ) = 0 and
B(xmax, V ) = 1 . The current values were chosen for each bias voltage in the
interval of [−1V, 1V] in steps of 0.1 V in such a way that the lowest apparent
height of each constant-current contour was 5.5 Å.

Using the same lateral resolution of the scanning area employing two different
methodsM and N , it is possible to quantitatively compare the relative brightness
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profiles BM and BN by calculating the correlation coefficient as

rM,N(V ) =

n∑
i=1

[
BM(xi, V )−BM(V )

] [
BN(xi, V )−BN(V )

]
√

n∑
i=1

[
BM(xi, V )−BM(V )

]2 ×√ n∑
i=1

[
BN(xi, V )−BN(V )

]2 .
(3.3.2)

Here, BM(V ) =
1

n

n∑
i=1

BM(xi, V ) is the mean value of the brightness profile

obtained by method M at bias voltage V and BM(xi, V ) denotes the relative
brightness of the ith point of the BM profile, which consists of n points. M,N ∈
{3D−WKB,Bardeen,Experiment} methods were compared, the data for the
last two were taken from [51].

3.3.3 Comparison between 3D-WKB and Bardeen meth-

ods

Using the correlation coefficient defined in Eq. (3.3.2), we compare the relative
brightness profiles obtained by the 3D-WKB and Bardeen methods. Figure 3.3.2
shows bias-dependent relative brightnesses above the h−α−β−h line along the
〈11̄00〉 direction of the HOPG(0001) surface in the bias voltage range of [−1V,
1V] in steps of 0.1 V for each considered W and rW tip models using the 3D-WKB
method. The corresponding relative brightness profiles obtained by the Bardeen
method can be found in Fig. 9 of [51].
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Figure 3.3.2: Relative brightness profiles B(x, V ) in Eq. (3.3.1) along the 〈11̄00〉 direction
(h−α−β−h line) of the HOPG(0001) surface calculated by the 3D-WKB method in the [−1V,
1V] range for different tip models: Wblunt, rWblunt, Wsharp, rWsharp, WC−apex, and rWC−apex,
see text for details. Adapted from Ref. [P4]

We also calculate correlations considering the negative (−1V ≤ V < 0V),
positive (0V < V ≤1V) and full (−1V ≤ V ≤ 1V) bias ranges. In these cases
the B3D−WKB(xk, V ) and BBardeen(xk, V ) brightness data consist of ten (negative
or positive bias) or twenty (full bias range) times the number of points (n = 31)
of a single bias brightness profile. The results are listed in table 3.3.1.

Considering the obtained correlations, we find an excellent agreement between
the 3D-WKB and the Bardeen brightness results in the case of the Wblunt and
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3D-WKB vs. Bardeen Wblunt rWblunt Wsharp rWsharp WC−apex rWC−apex

Negative bias 97.1 98.3 96.1 92.4 62.0 3.4

Positive bias 98.3 96.5 -27.1 8.9 -4.9 27.3

Full bias range 97.5 97.3 36.6 48.8 29.2 16.0

Table 3.3.1: Percentual relative brightness correlations according to equation (3.3.2) between
the 3D-WKB and Bardeen methods for different tip models in the negative (−1 V ≤ V < 0 V),
positive (0 V < V ≤ 1 V) and full (−1 V ≤ V ≤ 1 V) bias ranges. Adapted from Ref. [P4]

rWblunt tips. All of the single bias profiles show at least 90% correlation and in
the full bias range the correlation is more than 97% for both orientations. For
the Wsharp and rWsharp tips a good agreement between the two models is found at
negative bias voltages only, where the brightness profiles are qualitatively similar
to the ones obtained by the blunt tip models. In the positive bias range the
3D-WKB model shows that the h position has the largest apparent height at
almost each considered bias voltage and in effect, the STM contrast is reversed at
positive compared to negative bias voltages. We return to this asymmetry later
on. For the WC−apex and rWC−apex tips the agreement is the poorest between the
two tunneling models.

These results can be rationalized on the basis of the different contributions of
the orbital-decomposed tip electronic states to the tunneling current and can be
explained by the atomic geometry of the STM tip models in view of the different
concepts of the tunneling models. The Bardeen method uses the Kohn–Sham sin-
gle electron states in the vacuum to construct the transmission matrix elements,
i.e. outside the localization radii of the PAW projectors. On the other hand,
in the 3D-WKB model it is assumed that electrons tunnel through one tip apex
atom and the PDOS of this apex atom is used for describing the tip electronic
structure which is constructed based on the PAW projectors. The exponential
decay of the electron states into the vacuum is taken into account by the trans-
mission coefficient in equation 2.2.5. The PDOS of the tip apex atom is sensitive
to the chemical environment, i.e. to the quality and geometrical arrangement of
the surrounding atoms. In case of the (r)Wblunt tips the PDOS of the tip apex
atom represents well the electronic structure of the whole tip and there is practi-
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cally no significant difference in the description of the tunneling process between
the two methods. For the (r)Wsharp and (r)WC−apex tips a pyramidal atomic ar-
rangement was considered and the transmission functions differ considerably in
the two methods. For example, in case of the (r)WC−apex tips the W atoms from
the pyramid itself are expected to contribute much more to the tunneling due
to their relatively large d-DOS compared to the C-apex p-DOS, see Fig. 6 of
[51]. These electron states are considered in the Bardeen but not in the 3D-WKB
model.

To understand the practically reversed brightness profiles at positive with
respect to negative bias voltages for the (r)Wsharp tips a deeper analysis is needed.
As a first indication, it was found that the local density of states (LDOS) 3 Å
above the tip apex is much more asymmetric in the bias voltage for the Wsharp

than for the Wblunt tip, see Fig. 6(d) of [51]. The 3D-WKB method allows for
the decomposition of the tunneling current according to the orbital symmetries
σ (sample) and τ (tip): Iστ . The electronic structure calculation of the HOPG
sample showed that the pz−like PDOS is at least an order of magnitude larger
than the s−, px− and py− like PDOS for both α− and β−type carbon atoms
in the range of ±1 eV around the Fermi energy. This means that the HOPG
electronic structure can safely be approximated by taking the pz−like PDOS
only and we fixed the orbital index of the sample as σ = pz. On the other hand,
the W-apex has τ ∈ {s, py, pz, px, dxy, dyz, d3z2−r2 , dxz, dx2−y2} and the C-apex has
τ ∈ {s, py, pz, px} orbital symmetries in the considered tip models.

Using Eq. (3.1.3) we calculate the relative contribution of all σ ↔ τ tran-
sitions to the tunneling current, Ĩστ , 5.5 Å above the β carbon atom at ±1 V
bias voltages. The current histograms shown in Fig. 3.3.3 give the percentual
contributions of the different tip orbitals to the current for the three tip models.
First, let us focus on the bias-asymmetry of the contributions of the Wsharp tip.
For this case the s, dyz, d3z2−r2 and dxz tip states are dominant and the largest
contribution comes from the d3z2−r2 state. As can clearly be seen, the main dif-
ference in the positive and negative bias ranges shows up in the increasing dyz
and dxz contributions with a concomitant decreasing of the d3z2−r2 contribution
at positive bias. Since m 6= 0 tip states are responsible for a contrast inversion on
metal surfaces [28, P1], these current histograms explain the observed contrast
inversion with respect to the bias polarity above the β carbon atom of the HOPG
surface found in Fig. 3.3.2. Based on the current histograms, we also expect that
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Figure 3.3.3: Orbital-dependent relative current contributions Ĩστ defined in Eq. (3.1.3)for
σ = pz , 5.5 Å above the β atom of the HOPG(0001) surface at ±1 V bias voltages using three
different tip models. The tip orbitals (τ) are explicitly shown. For brevity, we used the notation
of dz2 for the d3z2−r2 orbital. Adapted from Ref. [P4]

the Wsharp and Wblunt tips provide similar contrast at negative bias voltages. This
is confirmed by Fig. 3.3.2. Note that changing the bias voltage in the respective
negative (−1 V ≤ V < 0 V), positive (0 V < V ≤ 1 V) ranges does not influence
the quality of the current histograms. For the Wblunt and WC−apex tips no qual-
itative difference of the current histograms were found at positive bias voltages,
therefore, the V < 0 V results are shown only. Moreover, it is seen in Fig. 3.3.3
that the largest contribution is due to the pz − pz transition for the WC−apex tip:
it gives 85% of the total current.

These features of the current histograms can be understood from the energy
dependence of the PDOS of the tip apices and also from the angular dependence
of the electron states. In Fig. 6 of [51] one can see that for the Wblunt and
WC−apex tips the PDOS functions are fairly symmetric with respect to the Fermi
energy, thus the bias voltage does not affect the current contributions significantly.
Although some of the orbitals have rather asymmetric PDOS, these give small
contributions to the tunneling current due to their angular dependence, thus they
do not affect the histograms, e.g. the px state of the WC−apex tip, or the dx2−y2
state of the Wblunt tip. On the other hand, the PDOS functions of the Wsharp

tip apex are rather asymmetric, particularly for the d3z2−r2 state, which has the
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largest contribution. For E > ET
F , which is relevant at negative bias, it is larger

than for E < ET
F , thus the current contribution of this particular d3z2−r2 state

is also larger for negative bias, as seen in Fig. 3.3.3. All in all, this asymmetric
behaviour of the PDOS of the Wsharp tip apex is responsible for the observed
contrast inversion with respect to the bias polarity in Fig. 3.3.2.

3.3.4 Comparison between simulations and experiment

In experimental STM images of HOPG, it is possible to identify the 〈11̄00〉 di-
rection (assuming that the brightest features lie along this direction), however,
the order of h, α and β sites is unknown, see figures 3 and 4 of [51]. The only
possible way to determine the h−α−β or h−β−α order along the 〈11̄00〉 direc-
tion is the direct comparison of experimental and simulated brightness profiles.
Since the experimental profiles are obtained by averaging numerous sections of
the scan lines (for more information, see [51]), the comparison at different bias
voltages can be performed if the profiles are transformed to start with their cor-
responding maximum or minimum. While in [51] the relative brightness profiles
are shifted to start with their maximum, we transform them to start with their
global minimum. The motivation for changing the reference point is the following:
the experimental brightness profiles at each bias voltage have one minimum only,
while at certain voltages they have two local maxima very close in magnitude
to each other: B(xmax1 , V ) ≈ B(xmax2 , V ), similarly to the simulated brightness
profiles using the rWblunt tip at larger bias voltages, see Fig. 3.3.2. If the pro-
files are shifted to start with the global maximum then the correlation coefficient
strongly depends on the actual position (xmax1 or xmax2 ) of the global maximum.
For example, when comparing two almost identical brightnesses with two local
maxima at α and β sites, if the global maximum in one profile is α and is β in
the other, then the correlation coefficient of the two profiles shifted to the cor-
responding global maximum can be negative, instead of the value of close to 1.
Rigidly shifting the brightness profiles to start with their global minimum value
solves this problem.

Following this convention, Fig. 3.3.4 shows a comparison between the exper-
imental [51], Bardeen-calculated and 3D-WKB modeled brightness profiles. In
the simulations the rWblunt tip was used. We obtain good qualitative agreement
on the bias-dependence of the triangular-hexagonal contrast transition between
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Figure 3.3.4: Experimental and simulated relative brightness profiles (B(x, V )) along the
〈11̄00〉 direction (h − α − β − h line) of the HOPG(0001) surface: (a) experiment [51], (b)
Bardeen [51], (c) 3D-WKB. All profiles are rigidly shifted to start with their global minimum
value. In the simulations the rWblunt tip was used. Adapted from Ref. [P4]

the experiments and simulations. To quantify the agreement the correlation coef-
ficients between the experimental and simulated brightness profiles are reported
in Table 3.3.2 using all of the previously introduced tip models.

Bardeen vs. Exp. Wblunt rWblunt Wsharp rWsharp WC−apex rWC−apex

Negative bias 91.3 92.6 89.8 84.6 93.5 91.9

Positive bias 90.6 88.2 67.2 69.8 87.8 78.8

Full bias range 90.9 90.2 77.6 75.0 90.5 85.1

3D-WKB vs. Exp. Wblunt rWblunt Wsharp rWsharp WC−apex rWC−apex

Negative bias 90.7 92.5 89.9 85.3 93.6 91.9

Positive bias 89.9 87.9 66.1 68.1 87.4 78.5

Full bias range 90.3 90.0 77.0 74.3 90.3 84.9

Table 3.3.2: Percentual relative brightness correlations according to Eq. (3.3.2) between the
simulated results (Bardeen, 3D-WKB) using different tip models and the experimental data
(see Fig. 3.3.4(a) and [51]) in the negative (−1 V ≤ V < 0 V), positive (0 V < V ≤ 1 V) and
full (−1 V ≤ V ≤ 1 V) bias ranges. Adapted from Ref. [P4]

The two tunneling methods produce almost the same correlation coefficients
when comparing the simulated brightness profiles with the experimental results,
the difference between them is always less then 2%. This finding is independent
of the applied tip model or bias polarity. Based on the correlation values, we
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also find that brightness profiles of the (r)Wblunt and (r)WC−apex tips are very
similar to the experimental ones, while the (r)Wsharp tip models perform better
at negative compared to positive bias polarity.

3.3.5 Simulated STM images

To investigate the STM contrast changes depending on the bias voltage and on
the tip orientation, constant-current STM images are simulated. The calculated
images shown in Figures 3.3.5–3.3.7 are taken in the rectangular scan area shown
in Fig. 3.3.1 and all contours have the same minimum apparent height of 5.5 Å.
We use the convention for the definition of the two different contrast patterns
as in [51]: A triangular pattern has two brightness maxima in the scan area
and beside these a hexagonal pattern has two secondary maxima with relative
brightness larger than 0.7.

3D-WKB Bardeen experimental

V
=

0.
1
V

V
=

0.
6
V

Figure 3.3.5: Bias voltage effect on the simulated STM image contrast of HOPG at a fixed
(ϑ0 = 0°, ϕ0 = 0°, ψ0 = 0°) tip orientation using the blunt W tip at 0.1 V, and 0.6 V bias
voltages using 3D-WKB and Bardeen methods. For comparison, experimental STM images [51]
are also shown, with the rectangular scan area for the simulations (see also Fig. 3.3.1). The
qualities of the STM image contrasts correspond to the results of Fig. 3.3.4. Adapted from
Ref. [P4]

In Fig. 3.3.5 we demonstrate the bias-dependent contrast change at two char-
acteristic bias voltages for both 3D-WKB and Bardeen methods employing a
rWblunt tip and compare the simulation results to experiments [51]. From the
brightness profiles of Fig. 3.3.4 we expect a triangular pattern of bright spots for
0.1 V bias voltage as these profiles have one global maximum. On the other hand,
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a hexagonal honeycomb pattern is expected for 0.6 V bias as the corresponding
profiles have two local maxima. These expectations are in accordance with the
simulated constant-current STM images of Fig. 3.3.5 and we obtain a qualita-
tively good agreement for the primary contrast in comparison with experiments
shown in Fig. 3.3.5. Thus, the results confirm that the bias voltage has a major
influence on the apparent height of the atoms in the STM images of HOPG [51].

ϕ0 = 0° ϕ0 = 30° ϕ0 = 60°

ϕ0 = 90° ϕ0 = 120° ϕ0 = 150°

Figure 3.3.6: Tip rotation effect on the simulated STM images of HOPG at V = 0.1 V using
the blunt W tip. ϑ0 = ψ0 are fixed at 0° in each part. The rectangular scan area is shown in
Fig. 3.3.1. Adapted from Ref. [P4]

To investigate the effect of the tip orientation on the STM contrast, we simu-
late constant-current STM images of the HOPG surface at 0.1 V bias voltage using
the Wblunt tip with different local orientations of the apex. First, tip rotations
around the z = z′-axis are considered, i.e. we fix the Euler angles ϑ0 = ψ0 = 0°
and change ϕ0 from 0° to 150° in 30° steps. This way, no orientational change of
the dominating d3z2−r2 tip-apex orbital state is present. The obtained constant-
current STM images are shown in Fig. 3.3.6. We find that the primary features of
the images do not change with such kind of tip rotations: the maxima of the con-
tours are always located at the same carbon-β positions, thus the images preserve
the symmetry of the HOPG surface and the tip is stable using the experimentalist
terminology. At the selected bias voltage and tip-sample distance we observe a
triangular pattern with the apparent height of the β atoms significantly larger
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than that of the α atoms. The effect of the tip rotation shows up as a secondary
feature in the STM images. There are certain lateral directions where the appar-
ent heights are larger and elongated, thus we can identify ‘stripes’ in the images.
The direction of these ‘stripes’ is independent of the underlying atomic structure
of the HOPG surface, thus it is clearly the rotational effect of the blunt W(110)
tip having C2v symmetry. Note that similar elongated features are also reported
in figure 15(b) of [89] for the HOPG surface using a blunt W(110) cluster model
for the STM tip. Similar ‘stripes’ can also be observed in experimental STM im-
ages, see e.g. figure 3 of [51]. It was even found that the ‘stripes’ can change their
lateral orientation depending on the bias voltage (compare figures 3(f ) and (i) of
[51]). According to our interpretation, this suggests two differently rotated local
tip apex geometries at the two bias voltages. We note that in-plane low-barrier
sub-apex atomic rearrangements, while maintaining the tip-apex, can lead to an
effective rotation of the tip-apex structure (see for instance the models in figures
1(b) and (d) in [51]), causing the simulated and measured changes in the STM
‘stripes’.

ϑ0 = 15°, ϕ0 = 25°, ψ0 = 0° ϑ0 = 15°, ϕ0 = 150°, ψ0 = 0°

Figure 3.3.7: Tip rotation effect on the simulated STM image contrast of HOPG at V = 0.7
V using the blunt W tip. Parts correspond to (ϑ0 = 15°, ϕ0 = 25°, ψ0 = 0°) and (ϑ0 = 15°,
ϕ0 = 150°, ψ0 = 0°) tip orientations, respectively. The rectangular scan area is shown in Fig.
3.3.1. A triangular-hexagonal contrast change is observed due to the tip rotation. Adapted
from Ref. [P4]

On the other hand, it is interesting to find that the primary features of the
STM image can change by the same kind of local tip rotation around the z′−axis
by ϕ0 . The requirement for this is a non-zero ϑ0, i.e. a tilted d3z2−r2 tip-
apex orbital with respect to the surface normal of the substrate. Figure 3.3.7
demonstrates that the STM image contrast can change between the triangular
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and hexagonal patterns above the HOPG surface solely due to the change of
the tip orientation by fixing all other tunneling parameters. For this case we
selected 0.7 V bias voltage and two orientations of the Wblunt tip: (ϑ0 = 15°,
ϕ0 = 25°, ψ0 = 0°) and (ϑ0 = 15°, ϕ0 = 150°, ψ0 = 0°) . Note that the modelled
contrast change is obtained at a 125° difference in ϕ0 and is expected to be due
to enhanced contributions from m 6= 0 tip-apex electronic states to the tunneling
current upon tip-rotation, as we have seen in Sec. 3.2. As a further consequence,
our simulations indicate that tip instabilities in STM experiments are likely found
for local tip-apex geometries described by non-zero ϑ0 angles that also result in
distorted STM images.

Note that tip-surface interactions can further complicate the STM contrast.
In [76] it was shown that multiple scattering effects can induce a contrast change
shifting the maximum brightness from β carbon to the hollow position above the
HOPG surface in the near contact regime (below 4 Å of tip-sample separation).
Since our minimum tip-sample distance is always 5.5 Å, i.e. we are in the pure
tunneling regime, we expect that the tip-surface force is monotonically decreasing
with decreasing current by moving the tip away from the surface. Thus force
related changes in the contrast do not modify our conclusions on the effect of the
tip orientations observed in STM images in pure tunneling regimes for tip-surface
distances larger than 4 Å. However, close to the contact substantial effects of the
tip-surface force on the STM contrast can be expected upon tip rotation, which
could be interesting to study in the future using an appropriate method.

3.4 What is the orientation of the tip?

The atomic structure and electronic properties of the tip apex can strongly affect
the contrast of STM images. This is a critical issue given the – to date unsolved
–, experimental limitations in the precise control of the tip apex atomic structure.
Definition of statistically robust procedures to indirectly obtain information on
the tip apex structure is highly desirable as it would open up for more rigorous
interpretation and comparison of STM images from different experiments. To this
end, here we introduce a statistical correlation analysis method to obtain infor-
mation on the local geometry and orientation of the tip used in STM experiments
based on large scale simulations. The key quantity is the relative brightness corre-
lation of constant-current topographs between experimental and simulated data.
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This correlation can be analyzed statistically for a large number of modeled tip
orientations and geometries. Assuming a stable tip during the STM scans and
based on the correlation distribution, it is possible to determine the tip orien-
tations that are most likely present in an STM experiment, and exclude other
orientations. This is especially important for substrates such as HOPG since
its STM contrast is strongly tip dependent, which makes the interpretation and
comparison of STM images very challenging.

a) b) c)

Figure 3.4.1: Constant-current STM images illustrating the variety of observed STM contrasts
above the HOPG(0001) surface in the tunneling regime for ϑ0 = ϕ0 = 0 : (a) hexagonal
contrast (both α− and β−carbons are bright; V = 1 V, ψ0 = 90° ), (b) triangular contrast
(only β−carbons are bright; V = 0.1 V, ψ0 = 90° ), (c) triangular contrast with striped feature
(V = 0.1 V, ψ0 = 120° ). The STM images are calculated above the shaded rectangular area
shown in Fig. 3.3.1 using the Wblunt tip model. The relative orientation of the Wblunt tip with
respect to the HOPG(0001) surface is shown in each subfigure. Adapted from Ref. [P5]

A characteristic set of the possible STM contrasts in the tunneling regime is
shown in Fig. 3.4.1. Here, the two nonequivalent carbon atoms of HOPG (α and
β) are primarily responsible for the different STM contrasts [hexagonal contrast
in Fig. 3.4.1(a) and triangular contrast in Fig. 3.4.1(b)]. Particular rotations of
the STM tip were shown to result in striped STM images, affecting the secondary
contrast features [Fig. 3.4.1(c)]. In the near contact regime multiple scattering
effects and tip-sample forces also play an important role in the STM contrast
appearance [18], e.g. a shift of the maximum brightness from the β−carbon to
the hollow (h) position of HOPG was demonstrated by Ondráček et al. [76]. Note
that we restrict our study to the pure tunneling regime corresponding to the used
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experimental data [51] and to the validity of the 3D-WKB method. The diversity
of the observed STM contrasts above the HOPG(0001) surface surely contains
information about the local geometry of the tip apex in STM measurements,
therefore HOPG(0001) is an ideal candidate to illustrate the applicability of our
statistical correlation analysis method combining large scale STM simulations
with experiments.

3.4.1 Method

To quantitatively compare the experimental (M = EXP) and simulated (M =

SIM) constant-current topographs, we use the previously defined relative bright-
ness (see equation (3.3.1)). Assuming that all contours of method M consist of
Nx × Ny points (x ∈ {xij}, i = 1 . . . Nx, j = 1 . . . Ny ), the mean value of the
relative brightness in a given bias voltage range of NV bias values (k = 1 . . . NV )
can be calculated as

BM =
1

NxNyNV

Nx∑
i=1

Ny∑
j=1

NV∑
k=1

BM(xij, Vk). (3.4.1)

Using the same resolution of the scanning area in the experiment and in the
simulations resulting in relative brightness contours of Nx ×Ny lateral points in
both cases, it is possible to quantitatively compare the BEXP and BSIM contours
in the corresponding bias voltage range of NV bias values by calculating their
correlation coefficient as

r =

∑
i,j,k

[
BEXP(xij, Vk)−BEXP

] [
BSIM(xij, Vk)−BSIM

]
√∑

i,j,k

[
BEXP(xij, Vk)−BEXP

]2 ×√∑
i,j,k

[
BSIM(xij, Vk)−BSIM

]2 . (3.4.2)

Another statistical measure for the difference between experimental and simulated
contours is the mean squared error,

MSE =
1

NxNyNV

Nx∑
i=1

Ny∑
j=1

NV∑
k=1

[BEXP(xij, Vk)−BSIM(xij, Vk)]
2 . (3.4.3)
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A perfect agreement of contours is obtained at MSE = 0, and it is desired that
MSE is minimal comparing experimental and simulated contours for obtaining
the best agreement. For selected contours and bias voltages we found good cor-
respondence between minimal MSE and maximal correlation. However, MSE

is not bounded from above, and this makes the analysis of MSE distribution
and the interpretation of maximal MSE difficult. Therefore, we excluded using
this measure in our statistical analysis. The calculation of the correlation coeffi-
cient in Eq. (3.4.2) was presented in the more general case of taking 2D relative
brightness contours. However, the same method can be specifically applied to
one-dimensional (1D) relative brightness profiles by setting Ny = 1. This ap-
proach will be used in the following for the 〈11̄00〉 direction of the HOPG(0001)
surface since experimental data is available for such a case [51], similarly as in sec-
tions 3.3.3 and 3.3.4. To calculate the relative brightness correlations between the
experiment and simulations, profiles shifted to start with their minimum value,
B(xi=1,j=1, Vk) = 0 are taken, as we have discussed in the section 3.3.4.

Since in the simulations the tip material, atomic arrangement/geometry, and
orientation described by the Euler angles (ϑ0, ϕ0, ψ0) can be chosen in practically
infinite ways, the corresponding relative brightness profiles are dependent on these
parameters, as well as the correlation coefficient r. Based on the results of HOPG
imaging (see Sec. 3.3) we only consider Wblunt and Wsharp tip models, since
carbon-contaminated tips with a C atom at the apex can be excluded due to a
dramatic decrease of the tunneling current.

Constant-current brightness profiles are calculated along the 〈11̄00〉 direc-
tion (x-axis of Fig. 3.3.1) containing the three characteristic positions of the
HOPG(0001) surface: hollow (h), carbon−α and carbon−β sites. The exper-
imental averaged brightness data with Ny = 1 and Nx = 46 points are taken
from Fig. 4 of Ref. [51] in the interval of [-1 V, 1 V] with 0.1 V steps. In the
simulations the current values are chosen for each corresponding bias voltage in
such a way that the lowest apparent height of each constant-current contour is
zSIM(xmin, Vk) = 5.5 Å. The relative brightness profiles are calculated by using the
introduced Wblunt and Wsharp tip models for a set of tip orientations described by
the Euler angles: ϑ0 = 0° . . . 30° , ϕ0 = 0° . . . 175°, ψ0 = 0° . . . 355° with 5° steps.
The Euler angles are visualized in Fig. 2.2.2. ϑ0 angle describes the rotation with
respect to the x axis, transforming the z axis to z′. Additionally, ϕ0 and ψ0 are
rotation angles around the z and z′ axes, respectively, as Fig. 2.2.2 shows. The
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exact meaning of the Euler angles is mathematically formulated in the rotation
matrix in Eq. (2.2.7). Altogether 7 × 36 × 72 = 18144 tip orientations are con-
sidered. For this selection we used the general symmetry property of the rotation
matrix in Eq.(2.2.7): (ϑ0, ϕ0, ψ0) = (−ϑ0, ϕ0+π, ψ0+π) and the mirror symmetry
of the HOPG surface above the h − α − β line: (ϑ0, ϕ0, ψ0) = (−ϑ0,−ϕ0,−ψ0)

. Correlation coefficients in Eq. (3.4.2) are calculated between the experimental
and a large number of simulated relative brightness profiles in the negative (−1
V ≤ V < 0 V), positive (0 V < V ≤ 1 V) and full (−1 V ≤ V ≤ 1 V) bias ranges.

3.4.2 Correlation analysis

Figure 3.4.2: |V | ≤ 1 V relative brightness correlation histograms calculated by using 18144
tip orientations for the Wblunt tip and Wsharp tip models. The correlation histograms for the
negative, positive and full bias ranges are shown using Eq. (3.4.2) in the r =[0.5, 1] range with
0.001 resolution. Adapted from Ref. [P5]

Fig. 3.4.2 shows the calculated relative brightness correlation histograms for
the two considered tungsten tip models in 18144 tip orientations. The maximal
correlation between the experiment and simulations is found at approximately
0.97 in the negative and at approximately 0.95 in the positive bias range for both
tips. However, we cannot conclude that the tip orientations belonging to the max-
imal correlation are the best since there is a large number of other orientations
within a few percent from the maximum correlation well above 0.9. Analyzing
the correlation distribution, it is clearly seen that much more tip orientations pro-
vide better correlation values in the negative compared to the positive bias range
for both tip models. This effect is even more evident for the Wsharp tip, where
the correlation distributions have two distinct peaks for the negative and positive
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bias at around 0.93 and 0.66, respectively. The presented statistics for the rela-
tive brightness correlation taking a large number of tip orientations confirm the
significance of the findings of the previous section (Sec. 3.3), where the simulated
brightness profiles obtained at positive bias for the Wsharp tip model in high sym-
metry orientations resulted in much lower correlation with the experiment than
in the negative bias voltage range. No such large differences were found for the
Wblunt tip at either bias polarities. This suggests that the Wblunt tip is more likely
to be present in a wide range of bias voltages in the experiment than the Wsharp

tip. The minimal correlation between the experimental and simulated brightness
profiles is found at 0.55 for the Wsharp tip at positive bias voltages, whereas for
the Wsharp tip at negative bias voltages and for the Wblunt tip at all considered
bias voltage ranges the minimal correlation is above 0.7. Once more, this suggests
a more likely Wblunt than Wsharp tip in the experiment since various local rota-
tions of the Wblunt tip do not give worse correlations with the experiment than
0.7, whereas there are particular local rotations of the Wsharp tip at positive bias
voltages with much worse correlations. The presented relative brightness corre-
lation histograms provide information about the distribution of the correlation
values in terms of the number of simulated tip orientations within a particular
correlation range with the experimental brightness data. This presentation of the
correlation statistics, however, cannot tell which specific tip orientations give the
best or worst correlations with the experiment. To assign the most or least likely
orientations of the STM tip in the experiment for the given tip model, we need
another representation of the correlation data. Therefore, we complement our
analysis by calculating correlation maps.
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Figure 3.4.3: −1 V ≤ V < 0 V negative bias range correlation analysis. Relative brightness
correlation distributions r(ϑ0, ϕ0, ψ0) for Wblunt tip (first column) and Wsharp tip (second col-
umn) for the following fixed ϑ0 angles: (a and b) 0° , (c and d) 5° , (e and f) 10° , (g and h) 15°
, (i and j) 20° , (k and l) 25° , (m and n) 30° . Most (least) likely tip orientations in the exper-
iment in the given bias interval correspond to bright (dark) regions bounded by black (white)
contours within 2% relative to the maximum (minimum) correlation value in each subfigure.
Adapted from Ref. [P5]
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Figure 3.4.4: 0 V < V ≤ 1 V positive bias range correlation analysis. Relative brightness cor-
relation distributions r(ϑ0, ϕ0, ψ0) for Wblunt tip (first column) and Wsharp tip (second column)
for the following fixed ϑ0 angles: (a and b) 0° , (c and d) 5° , (e and f) 10° , (g and h) 15° , (i and
j) 20° , (k and l) 25° , (m and n) 30° . Most (least) likely tip orientations in the experiment in
the given bias interval correspond to bright (dark) regions bounded by black (white) contours
within 2% relative to the maximum (minimum) correlation value in each subfigure. Adapted
from Ref. [P5]
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Figure 3.4.5: −1 V ≤ V ≤ 1 V full bias range correlation analysis. Relative brightness corre-
lation distributions r(ϑ0, ϕ0, ψ0) for Wblunt tip (first column) and Wsharp tip (second column)
for the following fixed ϑ0 angles: (a and b) 0° , (c and d) 5° , (e and f) 10° , (g and h) 15° , (i and
j) 20° , (k and l) 25° , (m and n) 30° . Most (least) likely tip orientations in the experiment in
the given bias interval correspond to bright (dark) regions bounded by black (white) contours
within 2% relative to the maximum (minimum) correlation value in each subfigure. Adapted
from Ref. [P5]
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Figs. 3.4.3–3.4.5 show the calculated relative brightness correlation maps for
the two considered tungsten tip models in the negative, positive and full bias volt-
age range, respectively. r(ϕ0, ψ0) two-dimensional maps are shown as a function
of ϑ0. Note that ϑ0 = 0 corresponds to the same z-axis of the surface and the tip,
and in this case ϕ0 and ψ0 denote the same type of rotations around the common
z-axis. As a result, we obtain striped r(ϕ0, ψ0) correlation maps for ϑ0 = 0 [pan-
els (a) and (b)]. For ϑ0 > 0 these maps quickly change to show more complicated
correlation distributions [panels (c–n)]. Most importantly, Figs. 3.4.3–3.4.5 show
the most (least) likely tip orientations (ϑ0, ϕ0, ψ0) in the experiment in the given
bias interval corresponding to bright (dark) regions bounded by black (white)
contours within 2% relative to the maximum (minimum) correlation value for
each ϑ0 assuming the model tip apex geometry. Overall, we find that the regions
close to the maximal and minimal correlations can be differently affected by the
bias range considered for the mapping for different tip apex geometries. These
results emphasize the importance of a large experimental dataset for reliable ap-
plication of the proposed procedure. Considering the favorable and unfavorable
orientations for the given tip models, we find that the (ϕ0, ψ0) positions of the in-
dicated regions close to the maximum and minimum correlations in the r(ϕ0, ψ0)

maps are fairly stable with respect to the change of ϑ0. This means that the
specific (ϕ0, ψ0) Euler angles are representative for the likely (bright regions) and
unlikely (dark regions) tip orientations in the STM experiment, irrespective of
ϑ0. Based on our results, we find that the favored tip-sample relative orientations
are far from being symmetric.

We introduce the area ratios as the number of tip orientations (area) within the
denoted regions in Figs. 3.4.3–3.4.5 divided by the area of the r(ϕ0, ψ0) maps (36×
72). These area ratios at fixed ϑ0 can be interpreted as the likelihood of favorable
or unfavorable tip orientations in the experiment assuming the considered tip
geometry in the given bias range. The area ratios alone, however, are not sufficient
to identify the most or least likely tip orientations in the experiment since the
maximum and minimum correlation values vary considerably depending on ϑ0.

To further analyze the correlation maps, the evolutions of the maximum and
minimum correlation values and the calculated area ratios with ϑ0 are reported in
Fig. 3.4.6. This figure also allows for the comparison between the different bias
voltage ranges and the two considered tip models. We find that the maximum
correlation is increasing and the minimum correlation is decreasing with increas-

88



CHAPTER 3. 3D–WKB RESULTS 3.4. TIP ORIENTATION IN STM

Figure 3.4.6: Analysis of the correlation maps in Fig. 3.4.3 (at negative bias), Fig. 3.4.4
(at positive bias) and Fig. 3.4.5 (at full bias) in the |V | ≤ 1 V bias range. Top row: The
evolution of the maximum and minimum correlation value in the r(ϑ0, ϕ0, ψ0) maps with ϑ0.
Bottom row: The ϑ0−evolution of the area within 2% relative to the maximum and minimum
correlation values (respectively bounded by the black and white contours in Figs. 3.4.3–3.4.5
) in relation to the area of the r(ϕ0, ψ0) map (36 × 72). These area ratios at fixed ϑ0 can
be interpreted as the likelihood of favorable or unfavorable tip orientations in the experiment
assuming the considered tip geometry. Left and right parts respectively correspond to data
obtained by Wblunt and Wsharp tip models. Adapted from Ref. [P5]

ing ϑ0 for all bias voltage ranges. This results in a larger difference between the
maximum and minimum correlations with increasing ϑ0. It is interesting to note
that the maximum correlation values are always larger than 0.9 for the Wblunt

tip, whereas this is true only in the negative bias range for the Wsharp tip. In
the positive and full bias ranges the maximum correlation above 0.9 is achieved
for ϑ0 ≥ 20°, i.e., for a much smaller number of considered tip orientations. On
the other hand, the minimum correlation values are always smaller for the Wsharp

compared to the Wblunt tip. These findings clearly suggest that the Wblunt tip is
more likely to be present in the experiment in an enhanced bias voltage range
than the Wsharp tip.
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In Fig. 3.4.6, at negative bias voltages the two tips provide similar maximum
correlation values as a function of ϑ0. In such case the area ratios can be used
to decide which tip is more likely in the experiment since the corresponding area
ratios are proportional to the number of tip orientations within the maximum
correlation, and such larger area ratios favor a given tip. We find that the area
ratios are generally larger for the Wblunt compared to the Wsharp tip. Area ratios
close to the correlation maximum mean that more orientations can provide better
correlation values for the Wblunt than for the Wsharp tip. On the other hand, area
ratios close to the correlation minimum mean that more orientations provide
correlations close to the minimum for the Wblunt compared to the Wsharp tip. This
is, however, not a problem in the present case since the minimum correlations
are always larger for the Wblunt compared to the Wsharp tip. Therefore, based
on the number of favorable tip orientations, we can also conclude that the blunt
tungsten tip is indeed more likely in the experiment than the sharp tip in the
|V | ≤ 1 V bias voltage range.

In order to check the robustness of our results we performed the correlation
analysis with simulated brightness profiles obtained by taking the contributions
of four extra next-neighbor atoms of the tip apex atom in the tunneling current
calculations using the 3D-WKB method. We find that the correlation maps are
quantitatively very similar to those obtained by the one-apex tip for ϑ0 ≤ 20°.
For larger ϑ0−tilting the emergence of multiple tip apices distorts the simulated
brightness profiles and consequently worsens the agreement with the experiment,
manifesting as dramatically reduced correlation values (down to 0.35 at ϑ0 = 25◦

and 0.13 at ϑ0 = 30◦) for particular (ϕ0, ψ0) ranges. Based on this, we can
conclude that our findings are robust for ϑ0 ≤ 20° , i.e. for a small tilting of the
tip z-axis.

To investigate the effect of the bias voltage on the obtained results, we re-
calculated the correlation statistics in the |V | ≤ 0.3 V bias voltage range that
corresponds to the low bias regime used in typical STM imaging experiments of
HOPG. This analysis used redefined negative (−0.3 V ≤ V < 0 V ; NV = 3),
positive (0 V < V ‚≤0.3 V ; NV = 3) and full (−0.3 V ≤ V ≤ 0.3 V ; NV = 6)
bias ranges. Fig. 3.4.7 shows the recalculated relative brightness correlation his-
tograms for the two considered tungsten tip models in 18144 tip orientations. We
find qualitatively similar results as in the |V | ≤ 1 V bias range reported in Fig.
3.4.2. The main differences in Fig. 3.4.7 in comparison to Fig. 3.4.2 are: (i) there
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Figure 3.4.7: |V | ≤ 0.3 V relative brightness correlation histograms calculated by using 18144
tip orientations for the Wblunt tip and Wsharp tip models. The correlation histograms for the
negative, positive and full bias ranges are shown using Eq. (3.4.2) in the r =[0.5, 1] range with
0.001 resolution. Adapted from Ref. [P5]

is a longer tail of the correlation distributions extending toward lower values for
both tips, resulting in much lower minimum correlations (e.g., 0.26 for the Wsharp

tip at positive bias voltages and 0.58 for the Wblunt tip at all bias ranges), (ii)
the maximum correlations are increased to 0.99 at negative bias for both tips,
(iii) the difference between the two distinct peaks of the correlation distributions
for the negative and positive bias in case of the Wsharp tip is reduced, but still
significant (above 0.1).

Fig. 3.4.8 shows the evolutions of the maximum and minimum correlation
values and the calculated area ratios with ϑ0 obtained from the r(ϑ0, ϕ0, ψ0)

correlation maps in the |V | ≤ 0.3 V bias voltage range. We find that the main
discussed tendencies in Fig. 3.4.6 are not affected in the low bias regime. However,
the area ratios within 2% of the maximum correlation are systematically larger for
the Wsharp than for the Wblunt tip in the negative bias range. Since the maximum
correlations are above 0.93 for for both type of tips in this bias interval, this
suggests that more tip orientations of the Wsharp tip result in better agreement
with the experiment than of the Wblunt tip at low negative bias, −0.3V ≤ V < 0V.
The indications of a favored Wblunt tip in the experiment are, however, not affected
in the other considered low bias regimes.

Although using larger bias ranges is better for the statistical analysis, the
tip may become unstable in the experiment at larger bias voltages, thus making
the assignment of the tip geometry and orientation more difficult. In general, we
suggest that the primary decision for the quality of the STM tip in an experiment
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Figure 3.4.8: Extracted data from the correlation maps in the |V | ≤ 0.3 V bias voltage range.
Top row: The evolution of the maximum and minimum correlation value in the r(ϑ0, ϕ0, ψ0)
maps with ϑ0. Bottom row: the ϑ0−evolution of the area ratio, for explanation see the caption
of Fig. 3.4.6. Left and right parts respectively correspond to data obtained by Wblunt and
Wsharp tip models. Adapted from Ref. [P5]

has to be based on the comparison between the maximum and minimum relative
brightness correlations between two (or more) tip models, and the secondary
decisive factor should be the introduced area ratio measure that gives information
on the number of likely or unlikely tip orientations.
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Chapter 4

bSKAN-Chen results

In recent years there were several studies concerned with the role of the tip
geometry, orbital character, and functionalization on the STM imaging. In the
previous sections we investigated the effect of the bias voltage and tip electronic
structure on the STM contrast formation of HOPG surface using tungsten tips
with different terminations and sharpnesses following the work of Teobaldi et al.
[51]. Chaika et al. demonstrated that by using oriented single-crystalline tungsten
tips, it is possible to select a particular tip electron orbital for high-resolution
imaging of HOPG [74, 75]. Channel-selective tunneling was also examined by
Wong et al. using tip functionalization with hexa-peri-hexabenzocoronene (HBC)
molecules [90]. Employing Chen’s derivative rule, Gross et al. simulated STM
images of pentacene and naphthalocyanine molecules using CO-functionalized
tips [36]. The increased lateral resolution achieved by these tips demonstrated the
significant contribution of p−type tip states. Siegert et al. studied the influence
of s− and p−wave tip symmetries on the STM maps of π−conjugated molecules
using the reduced density matrix formalism combined with Chen’s derivative
rule [37]. The effect of tip-orbital symmetries on the scanning tunneling spectra
was also investigated by probing the cuprate high-temperature superconductor
Bi2Sr2CaCu2O8+δ . Suominen et al. found that the symmetry of the tip can
radically change the topographic image due to the overlap of sample and tip
orbitals [91], while da Silva Neto et al. stated that the apparent nematic behavior
of the lattice is likely related to a realistic STM tip probing the band structure of
the material [92]. They also pointed out the importance of tunneling interference
effects in the STM junction.

The effect of inter- and intra-atomic interference of electron orbitals has also
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been in the focus of several studies. Telychko et al. investigated the nitrogen-
doped graphene surface with tungsten and diamond tips and found significantly
smaller current (dip) above the nitrogen atom than above the neighboring carbon
atoms at constant height [93]. This finding has been explained by a destructive
quantum interference essentially resulting from the C− N π−bond. Using the
Keldysh Green’s-function formalism, Jurczyszyn and Stankiewicz and Mingo et
al. extensively investigated interorbital interference effects in various tip-sample
combinations and found that the interference has a considerable influence on
STM images and STS spectra [40, 41, 16]. Sachse et al. showed that an antifer-
romagnetic alignment of Mn spin moments in a Mn2H complex on the Ag(111)
surface explains the experimental STM observation of a dip above the middle of
the Mn dimer [94]. In the following, we will point out that a destructive quantum
interference between s and pz tip orbitals contributes to the emergence of such a
dip in the STM image.

In this chapter we demonstrate the reliability of the revised Chen’s derivative
rule (see Sec. 2.2.2) for the mentioned N-doped graphene and antiferromagnetic
Mn2H complex on the Ag(111) surface, where quantum interference effects play an
important role in the STM imaging process. This demonstration is done by quali-
tative and quantitative comparisons of simulated STM images with corresponding
results obtained by Tersoff-Hamann and Bardeen tunneling methods. Quantita-
tive comparison is facilitated by calculating Pearson product-moment correlation
coefficients between the STM data sets as we have seen in Sec. 3.3. Importantly,
we find that the revised Chen’s model is 25 times faster than the Bardeen method
concerning computational time taking the same tunneling channels, while main-
taining good agreement. The effects of electronic structure, orbital interference,
and spatial orientation of the tip on the STM images are highlighted. Since the
detailed analysis of quantum interference effects and arbitrary tip orientations in
STM junctions is presently highly demanding and enormously time consuming
using the Bardeen method, the implementation of the revised Chen’s derivative
rule in the bSKAN code [38, 39] is a very promising tool for more efficient STM
simulations, providing a deeper understanding of a wide variety of physical phe-
nomena in STM junctions, e.g., quantum interference and tip geometry effects.
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4.1 Computational details

Using the revised Chen’s derivative rule implemented in the bSKAN code [39, 38],
STM imaging of two functionalized surfaces of recent interest is investigated: N-
doped graphene and an antiferromagnetic Mn2H complex on the Ag(111) surface
in combination with several tip models. Geometrical relaxations and electronic
structure calculations of the surface and tip models were performed separately us-
ing the VASP code [42], employing the projector augmented wave (PAW) method
[48].

N-doped graphene is modeled as a free-standing single-layer graphene sheet
in a 7× 7 surface unit cell following Ref. [93] and 16 Å wide vacuum perpendic-
ular to the surface to avoid unphysical interactions between neighboring slabs.
One carbon atom is replaced by nitrogen in the given supercell. The gener-
alized gradient approximation (GGA) and the exchange-correlation (XC) func-
tional parametrized by Perdew and Wang (PW91) [49] were used together with a
plane-wave basis-set energy cutoff of 400 eV and an 11× 11× 1 Monkhorst-Pack
[50] k−point sampling of the Brillouin zone. We found a planar lattice structure
after geometrical relaxation following N doping, in agreement with Ref. [93].

For the revised Chen’s derivative rule, idealized model tips of pure s, pure pz,
and a combination of (s+pz)/

√
2 orbitals are initially considered. Since N-doped

graphene has been experimentally probed with tungsten tips [93], we consider the
previously introduced three tungsten tip models with different sharpnesses and
compositions: Wblunt , Wsharp and WC−apex.

Geometrical relaxations, search for the magnetic ground state, and electronic
structure calculations of an Mn monomer, Mn dimer, and Mn2H on the Ag(111)
surface have been reported in Ref. [94], and an antiferromagnetic ground state
for the Mn2H/Ag(111) system has been found. We use their electronic structure
results in the present paper; for more details on the modeled geometries and
DFT calculations, please refer to Ref. [94]. In their STM experiments, silver tips
have been used. Therefore, we consider blunt tips as an adatom adsorbed on the
hollow site of the silver surface in two different orientations, i.e., Ag(001) and
Ag(111), in a 3×3 surface unit cell and at least 15 Å wide vacuum perpendicular
to the surface to avoid unphysical interactions due to the slab geometry. The
GGA and XC functional parametrized by Perdew, Burke, and Ernzerhof (PBE)
[84] are employed. Moreover, a plane-wave basis-set energy cutoff of 250 eV and
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an 11 × 11 × 1 Monkhorst-Pack [50] k−point grid centered on the Γ−point are
used. The convergence criterion for the forces acting on relaxed atoms (adatom
and first full layer) is 0.01 eV/Å.

4.2 Graphene−N

Experimental studies have shown that in the constant-height STM images of N-
doped graphene, the tunneling current above the N atom is significantly lower
than above the neighboring C atoms [93]. At first sight, this seems to be in
contradiction to the fact that the density of states of the N atom is larger than
that of the neighboring C atoms close to the Fermi level. The current dip above
the N atom has been explained by a destructive interference between the orbitals
of the N and the nearest-neighbor C atoms, i.e., a pure sample effect [93]. Such a
quantum interference effect is an ideal candidate to study with the revised Chen’s
method.

4.2.1 Comparison of simulation methods

We have calculated constant-height STM images of the N-doped graphene surface
using four different tunneling models: 3D-WKB, Tersoff-Hamann, revised Chen,
and Bardeen. The constant-height STM simulations were performed at relatively
small tip-sample distance (4 Å) at two selected bias voltages (±0.4 V) corre-
sponding to the STM experiments by Telychko et al. [93]. First, the 3D-WKB
method has been used. This model takes into account the orbital characteristics
and electronic structure of the sample and the tip as well, but uses the atom-
projected density of states (amplitudes) instead of the explicit wave functions
(amplitudes and phases); thus, electron interference effects are not considered.
Using the 3D-WKB method, the N atom always shows up as a protrusion in the
STM image as is expected from the relation of the density of states of the N and
C atoms [93].

Next, we focus on the comparison of the revised Chen’s method with two
conventional STM simulation models: Tersoff-Hamann and Bardeen. Fig. 4.2.1
shows that the STM images obtained by the revised Chen’s method using a pure
s tip quantitatively agree with those calculated by the Tersoff-Hamann model,
i.e., a correlation value of 1 between the corresponding STM images is found. We
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Tersoff-Hamann
Revised Chen

s−tip pz−tip (s+ pz)/
√
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Figure 4.2.1: Constant-height STM images of N-doped graphene at 4 Å tip-sample distance
and ±0.4 V bias. Comparison between the Tersoff-Hamann model and revised Chen method
with selected tip orbitals: s, pz, (s + pz)/

√
2. The N defect is located in the middle of the

images. Adapted from Ref. [P6]

obtain qualitatively similar STM images assuming an ideal tip of pure pz orbital,
where the current dip above the N atom is slightly more pronounced than with the
s tip. For these tip models, the energy-independent weighting factors were used
(for more details see Sec. 2.2.2.3 (i)). Furthermore, we point out the importance
of quantum interference of tip orbitals in Fig. 4.2.1. Therefore, we consider an
ideal tip of a linear combination of s and pz orbitals of equal weights. As can be
seen, the (s + pz)/

√
2−tip shows a remarkable contrast change compared to the

STM images of pure s or pure pz orbitals, where the current dip above the N atom
is even more pronounced and the bright triangle showing C atoms is larger and
reversed. This effect is clearly related to the orbital interference of the tip’s s and
pz states, and shows an additional effect to the destructive quantum interference
arising from the sample’s C− N bond in the formation of the STM contrast of
N-doped graphene. We stress again that the s−pz tip-orbital interference results
in a much more pronounced current dip above the N atom than the destructive
quantum interference of the sample itself; the latter is imaged by the Tersoff-
Hamann method. Interestingly, STM images obtained by the (s + pz)/

√
2−tip

resemble results calculated by a C(111) tip model (see Ref. [93]) having these
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dominant orbitals in the electronic structure. Note that both types of STM
contrast of N-doped graphene in Fig. 4.2.1 have been experimentally observed in
Ref. [93].

Wblunt tip Wsharp tip WC−apex tip
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Figure 4.2.2: Constant-height STM images of N-doped graphene at 4 Å tip-sample distance
and ±0.4 V bias. Comparison between the Bardeen’s model and revised Chen’s method with
two different choices of the Cνβ weighting coefficients in Eq. (2.2.16) for three tungsten tip
models: Wblunt , Wsharp and WC−apex. Room temperature was assumed, corresponding to the
STM experiments in Ref. [93]. The N defect is located in the middle of the images. Adapted
from Ref. [P6]

Fig. 4.2.2 and Table 4.2.1 show qualitative and quantitative comparisons of
the revised Chen’s method with Bardeen’s method using three different tungsten
tip models, which have also been used in previous studies of STM imaging of
HOPG (see Secs. 3.3.3 and 3.3.4). Moreover, we compare two different choices
of the Cνβ weighting coefficients of the revised Chen’s method [see Secs. 2.2.2.3
(ii) and 2.2.2.3 (iii)] and good qualitative agreement is obtained.

We find that using these methods, the current dip above the N atom is always
present in the STM images in Fig. 4.2.2. The degree of agreement between
the Bardeen’s and revised Chen’s methods, reported as correlation coefficients
between corresponding STM images in Table 4.2.1, depends on the actual tip
geometry and electronic structure, and hence the bias voltage. Let us recall that
we expand the tip wave functions/density of states around the tip-apex atom and
calculate the Cνβ coefficients in the Wigner-Seitz sphere of the tip-apex atom in
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Bardeen vs. Chen
Wblunt tip Wsharp tip WC−apex tip

−0.4 V +0.4 V −0.4 V +0.4 V −0.4 V +0.4 V

Cνβ in Eq. (2.2.16) 0.81 0.82 0.78 0.89 0.73 0.91

Cνβ ≈
√
nTIPνβ 0.71 0.81 0.62 0.79 0.74 0.92

Table 4.2.1: Quantitative comparison between Bardeen’s model and the revised Chen’s
method: calculated correlation coefficients between STM images in Fig. 4.2.2. Adapted from
Ref. [P6]

the revised Chen’s method. The accuracy of such an expansion depends strongly
on the neighboring sub-apex atoms’ electronic structure and on the tip-sample
distance. For example, for sharp tips, the contribution of sub-apex atoms to the
tunneling current is more important than for blunt tips. On the other hand, the
larger the tip-sample distance, the better the agreement of STM images between
the two methods. The reason is that with increasing tip-sample separation, the
effect of the local tip geometry decreases. At larger tip-sample distances, we find
that the current dip above the N atom vanishes and a rounded triangular pattern
is obtained, leaving the three nearest-neighbor C atoms visible, similarly to the
Tersoff-Hamann results in Fig. 4.2.1.

Overall, we find good agreement between the Bardeen’s and revised Chen’s
methods in Fig. 4.2.2 and Table 4.2.1. Calculated correlation values are above
0.7, except for the Wsharp tip at −0.4 V bias and Cνβ ≈

√
nTIPνβ . We find better

correlation for Cνβ in Eq. (2.2.16) than for the Cνβ ≈
√
nTIPνβ approximation used

in the revised Chen’s method, with the exception of the WC−apex tip. Moreover,
systematically better correlation between the Bardeen’s and the revised Chen’s
methods is found for +0.4 V than for −0.4 V bias voltage. Note that the large
difference between STM images of the Wsharp tip with different bias polarities can
be explained by the asymmetric electronic structure of the tip apex around the
Fermi level [51].

4.2.2 The effect of strain

It is interesting to investigate the effect of strain on the obtained STM contrast.
Figure 4.2.3 shows a comparison between STM images calculated for three dif-

99



4.2. GRAPHENE−N CHAPTER 4. BSKAN-CHEN RESULTS

Wblunt tip Wsharp tip WC−apex tip

−0.4V +0.4V −0.4V +0.4V −0.4V +0.4V

B
on

d
le
ng

th
−

1
0%

G
ro
un

d
st
at
e

B
on

d
le
ng

th
+

1
0%

Figure 4.2.3: Effect of strain on constant-height STM images of N-doped graphene at 4 Å
tip-sample distance and ±0.4 V bias using the revised Chen’s method with three tungsten tip
models: Wblunt, Wsharp, and WC−apex. The ground-state N-doped graphene geometry obtained
by DFT and two other structures with bond lengths varied by ±10% relative to the ground
state are compared. Adapted from Ref. [P6]

ferent N-doped graphene geometries with bond lengths varying by ±10% relative
to the ground-state structure, which has been obtained by DFT calculation with
C− N and C− C bond lengths of 1.42 Å. Generally, we observe that the main
features of the STM contrast do not change with the applied strain. This is quan-
titatively confirmed by correlation coefficients being above 0.93 for each tip and
bias combination calculated between images within each column of Fig. 4.2.3 .
We find a tendency of spatially extended brighter features in the STM images
upon elongation of the bonds.

4.2.3 The effect of tip rotation

Constant-height STM images have been calculated above the N-doped graphene
surface with the tungsten tip models at 4 Å tip-sample distance. We considered
tip rotations around the axis perpendicular to the sample surface. This corre-
sponds to ϑ0 = 0°, and in this case rotations with respect to ϕ0 and ψ0 are
equivalent; thus, we fixed ψ0 = 0° and rotated the tip by ϕ0 in 10° steps. Since a
more asymmetric tip is expected to have a larger tip rotational effect, we present
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results obtained by the Wsharp tip at +0.4 V bias voltage. Selected STM images
are shown in Fig. 4.2.4.

ϕ0 = 0° ϕ0 = 30° ϕ0 = 60° ϕ0 = 90° ϕ0 = 120° ϕ0 = 150°

Figure 4.2.4: Tip rotation effect on the constant-height STM images of N-doped graphene
calculated with Wsharp tip at 4 Å tip-sample distance and +0.4 V bias voltage. The rotation
axis of the tip is perpendicular to the surface (ϑ0 = ψ0 = 0°). The orientations of the brightest
features are indicated by white arrows in each STM image. Adapted from Ref. [P6]

Due to the C2v symmetry of the tip, the same image is obtained for ϕ0 = 180°
as for ϕ0 = 0°. We find that the current dip above the N atom is always present
independently of the degree of tip rotation by ϕ0, but the intensity of the current
above the surrounding C atoms changes with the tip rotation. There are certain
directions denoted by white arrows in Fig. 4.2.4, where the brightest features
occur that correspond to the largest currents above or close to nearest-neighbor
C atoms. These indicated directions rotate two times faster than the tip rotation
by ϕ0 itself. The finding that such kind of tip rotations, where the z axis of the
tip is not tilted with respect to the z axis of the sample (ϑ0 = 0°), affect the
secondary features of the STM image is in agreement with previous results using
the 3D-WKB method, e.g. for HOPG sample, see Sec. 3.3.

In Fig. 4.2.5, we extracted line sections of the constant-height STM images
presented in Fig. 4.2.4. The line along the x direction contains the N atom and
its nearest-neighbor (C1) and third-nearest-neighbor (C3) carbon atoms. The line
along the y direction contains the other two nearest-neighbor carbon atoms (C′1
and C′′1); see the inset of Fig. 4.2.5(a). The symmetries of the sample and the tip
are reflected in these line sections as well. We find indeed that the current value
above the N atom is insensitive to the tip rotation, and it is almost the smallest
current value in the entire scan area. We can also see that the brightest features,
i.e., the largest current values of the STM images, are actually not located above
the carbon atoms, but rather above the hollow positions of the honeycomb lattice.
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Figure 4.2.5: Current profiles along the x [subfigure (a)] and y [subfigure (b)] directions
of the N-doped graphene surface (see inset) as a function of tip rotation with respect to ϕ0

(ϑ0 = ψ0 = 0°). Adapted from Ref. [P6]

4.3 AgMn2H

Sachse et al. found that Mn2H on the Ag(111) surface can produce STM im-
ages with single or double features, depending on the magnetic coupling between
Mn atoms [94]. Double features have been obtained at positive bias employing
the Tersoff-Hamann method for an antiferromagnetic Mn-Mn coupling, which
corresponds to the energetically favored ground state. The calculated relaxed
geometry of antiferromagnetic Mn2H on the Ag(111) surface is shown in Fig.
4.3.1. We consider this system and perform an investigation of its STM imag-
ing depending on three employed tunneling models: Bardeen, revised Chen, and
Tersoff-Hamann. Using the decomposition of the tunneling current in the revised
Chen’s method, we are able to identify the physical origin of the observed dip
above Mn2H.

The calculated constant-height STM images at small bias voltages (±0.1 V)
using two silver blunt tip models (Ag(001) and Ag(111)) are shown in Fig. 4.3.2.
Correlation coefficients between STM images obtained by the Bardeen’s and re-
vised Chen’s methods are reported in Table 4.3.1. First of all, we find excellent
quantitative agreement between the STM images obtained by the Bardeen’s and
revised Chen’s methods for the Ag(111) tip and good agreement for the Ag(001)
tip. Recalling that the revised Chen’s method is 25 times faster than Bardeen’s
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Figure 4.3.1: Calculated relaxed geometry of antiferromagnetic Mn2H on the Ag(111) surface.
Data is taken from Ref. [94]. The figure is adapted from Ref. [P6]

Bardeen vs. Chen
Ag(001) tip Ag(111) tip

−0.1 V +0.1 V −0.1 V +0.1 V

Cνβ in Eq. (2.2.16) 0.72 0.88 0.97 0.95

Table 4.3.1: Quantitative comparison between Bardeen’s model and the revised Chen’s
method: calculated correlation coefficients between STM images in Fig. 4.3.2. Adapted from
Ref. [P6]

method in practical STM calculations, this clearly indicates that our proposed
model is a very promising tool for STM simulations in the future. Moreover, the
results in Fig. 4.3.2 show that the geometry and electronic structure of the tip
have a considerable effect on the STM imaging of Mn2H/Ag(111): the Ag(001)
tip provides single protrusion and the Ag(111) tip provides double features of the
STM images at both bias polarities using both the Bardeen’s and revised Chen’s
methods. However, the Tersoff-Hamann model provides qualitative agreement
with these at selected bias voltages only: At −0.1 V, a single protrusion is ob-
tained, while at +0.1 V, a double feature is visible. The comparison of the
Tersoff-Hamann results with those obtained by the revised Chen’s method sug-
gests a contradiction with the general assumption of Ag tips being of s orbital
character [94]. In order to understand the components of the tunneling current
above the H atom, the decomposition according to Eq. (2.2.11) in the revised
Chen’s method is employed.

Figure 4.3.3 shows the results of the current decomposition according to tip
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Figure 4.3.2: Constant-height STM images of antiferromagnetic Mn2H on the Ag(111) sur-
face simulated at 5 Å Ag surface-tip distance and ±0.1 V bias with three different methods
(Bardeen, revised Chen, and Tersoff-Hamann) and two blunt tip models: Ag(001) and Ag(111).
A temperature of 7 K was assumed, corresponding to the STM experiments in Ref. [94]. Note
that results of the Tersoff-Hamann model are shown for comparison reasons only, and no explicit
tip electronic structure is considered there. Adapted from Ref. [P6]

orbital characters. Interestingly, we find that the Ag(001) tip does not behave as
an s-type tip at +0.1 V bias [see Fig. 4.3.3(a)]. The major contributions are from
the px, py, dxz and dyz tip orbitals, and there are destructive interferences arising
from px−dxz and py−dyz tip orbitals. This explains the qualitative disagreement
between the Tersoff-Hamann and revised Chen’s results for the Ag(001) tip at
+0.1 V bias. On the other hand, using the Ag(111) tip at −0.1 V bias, the major
contribution is clearly from the tip’s s orbital (see Fig. 4.3.3(b)). Apart from that,
there is a strong s− pz destructive tip interference that is missing in the Tersoff-
Hamann model, causing the observed qualitative difference in the STM images for
the Ag(111) tip at −0.1 V bias. Moreover, we find similar current decomposition
characteristics for the Ag(001) tip at −0.1 V bias and for the Ag(111) tip at +0.1
V bias, as Fig. 4.3.3(b) shows, with a dominating s orbital contribution from the
tip. For these tip and bias-voltage combinations, a good qualitative agreement
of the STM images between the revised Chen’s and Tersoff-Hamann results is
obtained. Our findings suggest that although the quality of the STM contrast
(single or double feature) is mainly determined by the electronic states of the
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Figure 4.3.3: Decomposition of the tunneling current 1.83 Å above the H atom in
Mn2H/Ag(111) (corresponding to Fig. 4.3.2) using Eq. (2.2.11). Diagonal: direct (positive)
contributions; off-diagonal: interference (positive or negative) contributions to the current. (a)
Ag(001) tip at bias voltage V = +0.1 V; (b) Ag(111) tip at bias voltage V = −0.1 V. Adapted
from Ref. [P6]

sample surface that can be captured by employing the Tersoff-Hamann model,
the tip electronic structure and, in the present case, an s − pz destructive tip
interference can cause a contrast change.

4.3.1 The effect of temperature

It is important to highlight the effect of temperature on the obtained STM con-
trast. Temperature enters into the tunneling model in two ways: (i) the energy
window for calculating the tunneling channels, where nonzero temperature re-
sults in an extension of the energy window due to the Fermi distribution [see Eq.
(2.1.5)] and (ii) the thermal broadening of the electron states. In the Bardeen
model the tunneling is assumed to be elastic and energy conservation is ensured
by the Dirac-δ in Eq. (2.1.5). At finite temperature, the thermal broadening
of the electron states has to be taken into account. This is usually done by
approximating the Dirac-δ with a Gaussian function:

δ (Eν − Eµ − eV ) ∼ 1√
2π∆2

exp

[
−(Eν − Eµ − eV )2

2π∆2

]
. (4.3.1)
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In Eq. (2.1.5), in principle, all µ − ν transitions have to be considered with
the probability given by this Gaussian factor (and |Mµν |2 ) when calculating the
tunneling current, but, practically, transitions with significantly low probability
can be neglected, e.g., if |Eµ − Eν − eV | > 3∆ where ∆ = kBT is the thermal
broadening of the states at T temperature, with kB the Boltzmann constant.

Ag(001) tip Ag(111) tip

−0.1 V +0.1 V −0.1 V +0.1 V

T
=

7
K

T
=

70
K

Figure 4.3.4: Effect of temperature on constant-height STM images of antiferromagnetic
Mn2H on the Ag(111) surface simulated at 5 Å Ag surface-tip distance and ±0.1 V bias using
the revised Chen’s method with two blunt tip models: Ag(001) and Ag(111). Temperatures of
T = 7 K and 70 K are compared. Adapted from Ref. [P6]

Figure 4.3.4 shows a comparison between STM images calculated at T = 7 K
and 70 K, with the former corresponding to the temperature used in the experi-
ments of Ref. [94]. We find a diverse behavior of the STM contrast at the higher
temperature depending on the tip and bias voltage. The contrast (single protru-
sion) is preserved for the Ag(001) tip at −0.1 V bias only. The other three images
show different contrasts at the two temperatures. Upon increasing the temper-
ature, for the Ag(001) tip at +0.1 V, the single protrusion contrast changes to
double features, while for the Ag(111) tip at both bias voltages, the double pro-
trusion contrast changes to an elongated single feature with the maximal current
above the H atom of Mn2H. This diversity of simulated STM contrasts points
to the importance of the correct choice of temperature in STM simulations if a
meaningful explanation of given experimental STM data is desired.
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Chapter 5

Summary, concluding remarks

5.1 Summary

We introduced an orbital-dependent electron tunneling model and implemented it
within the atom superposition approach based on 3D-WKB theory, for simulating
STM and STS. We analyzed the convergence and the orbital contributions to the
tunneling current above the W(110) surface. We found that the d3z2−r2 −d3z2−r2
contribution is the largest, and depending on the tip position other d states can
gain importance as well. We also studied the corrugation-inversion effect. Using
the independent orbital approximation no corrugation reversal was obtained at
all. Employing the orbital-dependent model we found corrugation reversals de-
pending on the bias voltage in accordance with the work of Heinze et al. [45] and
also on the tip-sample distance. Explaining this effect we highlighted the role
of the real-space shape of the orbitals involved in the tunneling. Moreover, we
calculated corrugation-inversion maps considering different tip models and found
two qualitatively different behaviors based on the tip orbital composition. Our
results indicate that using a W-tip anticorrugation can be observed not only at
negative bias voltages but also at positive bias at reasonably short tip-sample
distances. Simulation of STM images made the corrugation-inversion effect more
apparent. A good agreement has been found by comparing STM images calcu-
lated by our model to Tersoff-Hamann and Bardeen results. The computational
efficiency of our model is remarkable as the k−point samplings of the surface and
tip Brillouin zones do not affect the computation time, in contrast to the Bardeen
method.

Our model is capable of simulating STM images with arbitrary tip orienta-
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tions. We highlighted the role of the real-space shape of the electron orbitals
involved in the tunneling, and analyzed the convergence and the orbital con-
tributions of the tunneling current above the W(110) surface depending on the
orientation of a model tungsten tip. We found that tip rotations around the
z−axis of the tip apex atom do not change the dominant current contributions,
while other rotations can change the tip character of the dominant transitions.
We also studied atomic contrast changes upon tip rotation. We found that the
zero contours of the current difference above the surface top and hollow posi-
tions have a complex tip–sample distance and bias voltage dependence on the
tip orientation. The relative apparent heights of these two surface positions are
directly related to the calculated current difference. Simulating STM images at
constant-current condition, we found that their quality depends very much on
the tip orientation. Some orientations result in protrusions on the images that do
not occur above W atoms. The presence of such apparent atom positions makes
it difficult to identify the exact position of surface atoms. It is suggested that
this tip orientation effect should be considered in the evaluation of experimental
STM images on other surfaces as well. We concluded that our computationally
efficient tunneling model could prove to be useful in obtaining more information
on the local tip geometry and orientation by comparing STM experiments to a
large number of simulations with systematically varied tip orientations.

As a next case study we simulated spin-polarized scanning tunneling mi-
croscopy (SP-STM) above magnetic surfaces. Applying our method, we analyzed
the bias-dependence of the orbital contributions to the tunneling current above
the Fe(110) surface, and found a shift of the relevant tip s contributions close to
zero bias toward d − d tunneling at higher bias. We showed that spin-polarized
tunneling has a considerable effect on the tip-sample distance where atomic con-
trast inversion occurs, and the tip magnetization direction and tip orbital compo-
sition play a crucial role as well. Taking an s-tip, our findings showed qualitative
agreement with the Tersoff–Hamann method and with Ref. [45] concerning the
corrugation character of the Fe(110) surface. We explained our results based on
the complex interplay of the real-space orbital shapes involved in the tunneling
and the energy-dependent orbital-decomposed PDOS of the sample and the tip.
We also demonstrated the contrast inversion by simulating SP-STM images.

To test our model on a bit more complex surfaces combined with different
realistic tip models we turned to HOPG. We studied the STM image contrast of
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the HOPG(0001) surface in the tunneling regime as a function of the local orien-
tation of a set of tungsten tips. Employing the 3D-WKB tunneling approach, we
demonstrated that the relative local orientation of the STM-tip apex with respect
to the HOPG substrate can have a considerable effect on the HOPG STM con-
trast. Depending on the STM tip-apex structure and composition, applied bias
and relative orientation with respect to the substrate, substantially different ef-
fects, ranging from conservation to inversion of the STM contrast, were observed.
These results were rationalised in terms of the tip-rotation mediated contribu-
tion of tip-apex electronic states of different orbital characters to the tunneling
current. For a sharp tungsten tip the HOPG contrast inversion between opposite
bias polarities was explained by the different weights of the tip orbital charac-
ters involved in the tunneling that is due to the asymmetry of the tip electronic
structure with respect to its Fermi level. We also compared the 3D-WKB and
Bardeen STM simulation models with each other and with experiments in terms
of bias-voltage-dependent STM topography brightness correlations. We found
quantitatively good agreement for particular tip models and bias voltage ranges
and discussed the identified differences in view of the construction of the two
tunneling models. In view of the experiments, we can also conclude that the two
tunneling methods perform at the same quantitative reliability. Importantly for
experimental STM analysis of HOPG, the simulations indicate that particular
local tip-reconstructions with no orientational change of the dominating d3z2−r2
tip-apex orbital state affect only the secondary features of the HOPG STM con-
trast, leaving the primary contrast unchanged, thus resulting in a stable tip.
Such tip orientations are found to be responsible for ‘striped’ images observed
in experiments. Conversely, tip-rotations leading to enhanced contributions from
m 6= 0 tip-apex electronic states can cause a triangular- hexagonal change in the
primary contrast, indicating a likely tip instability.

In scanning probe experiments the scanning tip is the source of one of the
largest uncertainty as very little is known about its precise atomic structure and
stability. Since the atomic structure and electronic properties of the tip apex can
strongly affect the contrast of STM images, it is very difficult to experimentally
obtain predictive STM images in certain systems. To tackle this problem we
proposed a statistical correlation analysis method to obtain information on the
local geometry and orientation of the tip used in STM experiments. We defined
the relative brightness correlation of constant-current topographs between exper-
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imental and simulated data, and analyzed it statistically for the HOPG(0001)
surface in combination with two tungsten tip geometries in 18144 orientations
each. The simulations were performed using the 3D-WKB electron tunneling
theory based on first principles electronic structure calculations. We found that
a blunt tip model provides better correlation with the experiment for a wider
range of tip orientations and bias voltages than a sharp tip model. A favored
sharp tip is indicated at low negative bias only. From the correlation distribution
we proposed particular tip orientations that are most likely present in the STM
experiment, and likely excluded other orientations. Importantly, we find that
the favored relative tip-sample orientations do not correspond to high symmetry
setups that are routinely used in standard STM simulations. The demonstrated
combination of large scale simulations with experiments is expected to open up
the way for a more reliable interpretation of STM data in the view of local tip
geometry effects. Moreover, the introduced correlation analysis method could be
useful for other scanning probe imaging techniques as well.

Finally, we revised Chen’s derivative rule for the purpose of computationally
efficient STM simulations. The revised Chen’s model includes the electronic struc-
ture and arbitrary spatial orientation of the tip by taking appropriate weighting
coefficients of tunneling matrix elements of different tip-orbital characters. In-
terference of tip orbitals in the STM junction is included in the model by con-
struction. We demonstrated the reliability of the model by applying it to two
functionalized surfaces of recent interest where quantum interference effects play
an important role in the STM imaging process: N-doped graphene and an anti-
ferromagnetic Mn2H complex on the Ag(111) surface. We found that the revised
Chen’s model is 25 times faster than the Bardeen method concerning compu-
tational time, while maintaining good agreement. Our results show that the
electronic structure of the tip has a considerable effect on STM images, and the
Tersoff-Hamann model does not always provide sufficient results in view of quan-
tum interference effects. For both studied surfaces, we highlighted the importance
of interference between s and pz tip orbitals that can cause a significant contrast
change in the STM images. Moreover, our findings show that stretched bonds
have a minor effect on the main features of the STM contrast of the Graphene− N

system, and temperature is an important factor to be taken into account in STM
simulations if aiming at accuracy in comparison with experiments, as we demon-
strated for the AgMn2H system. Our method, implemented in the bSKAN code,
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thus provides a fast and reliable tool for calculating STM images based on Chen’s
derivative rule, taking into account the electronic structure and local geometry
of the tip apex.

5.2 Outlook

The introduced tunneling models, methodology and code base turned out to be
an efficient and useful tool for STM/SP-STM simulation and analysis. Some
applications are out of the scope of this thesis, but worth mentioning to get an
idea of the possible fields of applications.

The tunneling model was also extended to calculate spin transfer torque (STT)
in magnetic STM junctions. Palotás et al. studied the Fe/W(110) surface and
showed that the ratio between the STT and the spin-polarized charge current
is not constant, and more importantly, it can be tuned by the bias voltage,
tip-sample distance, and magnetization rotation, hence it can be enhanced by
selecting the proper bias voltage [P8].

Using the revised Chen method Walls et al. simulated (110)-terminated mag-
netite surface and investigated oxygen induced surface stabilization [95]. Liu et
al. studied the surface defects of CH3NH3PbBr3 perovskite [96], Turansky et
al. studied the limits of SPM subatomic resolution in imaging orbital magnetic
features [97]. Lee et al. used the Chen method for comparing experimental
and simulated STM images of thin layers of Mo-oxides on Au(111) [98]. The
nitrogen-doped graphene system was also studied by Neilson et al. focusing on
doping-induced variations of the local work function [99] while Ly et al. carried
out a detailed investigation of Cu2O(111) surface [100]. Cossu et al. studied a
strain-induced stripe phase in the charge-ordered single layer NbSe2, and STM
images were calculated to visualize the charge density waves [101]. Szitás et al.
investigated the adsorption of azobenzene molecules on hexagonal boron nitride
on Rh(111), and predicted low-temperature bias-voltage-dependent STM images
by using the revised Chen method [102]. Lee et al. simulated STM images of
ultrathin CuI layers on Cu(111), and compared them to experimental results
[103].

The 3D-WKB method was intensively used for studying skyrmionic spin struc-
tures by Palotás et. al. High resolution SP-STM calculations were used to charac-
terize metastable spin structures in the (Pt1−xIrx)Fe / Pd(111) ultrathin magnetic
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film [104]. The tunneling spin transport characteristics of a magnetic skyrmion
in SP-STM were described theoretically in [105]. The spin-polarized charge cur-
rent and tunneling spin transport vector quantities (such as the longitudinal spin
current and the spin transfer torque), were calculated within the same theoretical
framework. A connection between the conventional charge current SP-STM im-
age contrasts and the magnitudes of the spin transport vectors was shown, that
enables the estimation of tunneling spin transport properties based on experi-
mentally measured SP-STM images. Using the same theoretical framework, the
high-resolution tunneling electron charge and coupled spin transport properties of
a variety of Néel- and Bloch-type skyrmions were investigated in [106]. Recently,
the tip-position-dependence of the spin transfer torque efficiency was reported
above skyrmionic spin textures with various topologies [107]. This enables the
optimization of the creation and annihilation of topological magnetic objects on
surfaces by the SP-STM tip.

As the above list indicates the developed theoretical and computational STM
methods presented in this dissertation are already being actively used for solving a
wide range of surface science problems, and due to their computational efficiency
they are expected to be key methods in the future as well.

5.3 Thesis points

The major achievements of my research are summarized in the following thesis
statements:

1. I made essential contributions to the theoretical development and imple-
mentation of the orbital-dependent 3D-WKB electron tunneling model for
the simulation of high-resolution STM and SP-STM images in a computa-
tionally efficient way since the k−point samplings of the surface and the tip
Brillouin zones do not affect the computational time in this new model [P1].
I demonstrated the validity of the model by investigating the corrugation
inversion phenomenon depending on the tip-sample distance and bias volt-
age observed on the nonmagnetic W(110) [P1] and on the magnetic Fe(110)
surfaces [P3]. I explained the observed STM contrast inversion based on the
real-space shape of the electron orbitals involved in the tunneling, and in
the magnetic SP-STM case based on the interplay of the real-space electron
orbitals and the spin- and energy-dependent orbital-decomposed projected
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electron densities of states of the sample and the tip. In both cases, I found
a good agreement by comparing STM images calculated by the 3D-WKB
model to results obtained by Tersoff-Hamann and Bardeen theories [P1,P3].

2. I developed and implemented the treatment of asymmetric tips in the STM
junction in a novel way by considering arbitrary tip orientations in the
orbital-dependent 3D-WKB electron tunneling model [P2]. Focusing on
the corrugation inversion phenomenon, I studied the W(110) surface with
numerous tip orientations, and the complex dependence of the contrast
inversion on the tip-sample distance, bias voltage, and tip orientation was
uncovered and explained. I showed that – even in this case of a relatively
simply structured surface – the relative orientation of the tip and sample
has a considerable effect on characteristics of the corrugation inversion as
well as on the STM images [P2]. I also studied the tip-rotational effects on
the STM images of the highly oriented pyrolytic graphite (HOPG) surface.
Focusing on the favorable conditions for tip stability, I pointed out that local
tip-rotations maintaining a major contribution of the d3z2−r2 tip-apex state
to the STM current affect only the secondary features of the HOPG STM
contrast resulting in ‘stripe’ formation and leaving the primary contrast
unaltered [P4]. Conversely, tip-rotations leading to enhanced contributions
from m 6= 0 tip-apex electronic states can cause a triangular-hexagonal
change in the primary contrast [P4].

3. I introduced a novel correlation analysis method to quantitatively evaluate
the degree of agreement between STM images obtained by different theo-
retical methods or experimental data [P5]. I applied the method on the
HOPG surface in combination with different tungsten tips, and a detailed
comparison among 3D-WKB and Bardeen theoretical methods and exper-
imental data was provided. I found that both theoretical methods provide
the same quantitative reliability of correlation coefficients in comparison
with the experimental STM images [P5]. Moreover, I introduced a statisti-
cal correlation analysis method to obtain information on the local geometry
and orientation of the tip used in STM experiments based on large scale
simulations. I demonstrated the applicability of the method considering
the HOPG surface in combination with tungsten tip models of two different
apex geometries, each in close to 20000 different orientations. I found that a
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blunt tip model provides better correlation with the experiment for a wider
range of tip orientations and bias voltages than a sharp tip model [P5].

4. I revised Chen’s derivative rule for electron tunneling for the purpose of com-
putationally efficient simulations of STM based on first-principles electronic
structure data and implemented it in the bSKAN code [P6]. The revised
model allows the weighting of tunneling matrix elements of different tip-
orbital characters by an arbitrary energy-independent choice or based on
energy-dependent weighting coefficients obtained by an expansion of the tip
single-electron wave functions/density of states projected onto the tip-apex
atom. The reliability of the model was demonstrated by applying it to two
functionalized surfaces where quantum interference effects play an impor-
tant role in the STM imaging process: N-doped graphene and a magnetic
Mn2H complex on the Ag(111) surface [P6]. I showed that the electronic
structure of the tip has a considerable effect on STM images, especially
the interference between s and pz tip orbitals that can cause a significant
contrast change in both studied systems, which cannot be captured by the
widely used Tersoff-Hamann method [P6]. Moreover, the revised Chen’s
model turned out to be 25 times faster than the Bardeen method concern-
ing computational time, while maintaining good agreement, thus proved to
be a fast and reliable tool for calculating STM images taking into account
the electronic structure and local geometry by arbitrary tip orientations
[P6].
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