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The conflict between quantum predictions and some “common sense”” assumptions is explored at
a level suitable for undergraduates with an elementary knowledge of quantum mechanics. The
current status of experimental tests of the conflict is reviewed, and the implications are briefly

discussed.

L. INTRODUCTION

Bell’s theorem' has still not penetrated the standard un-
dergraduate physics major curriculum, as a brief survey of
standard undergraduate quantum mechanics texts will
show. Although the theorem is less than 20 years old,

which is fairly new for “textbook” treatment, this absence -

is probably also partly because previously the theorem has
been hard to grasp, leading Peres to remark, for example,
that “as it often happens, the subtlety of nature beggars the
imagination.”?

However, recent generalizations of the proof by d’E-
spagnat® and Stapp* offer the possibility of displaying the
conflict between quantum theory and “common sense’ as-
sumptions in a much simpler fashion. The intention of this
paper is to explicitly do just that. The level is appropriate
for undergraduates with an elementary knowledge of quan-
tum mechanics, such as the first six chapters of Feynman,
Vol. II1, or the equivalent.’

In Sec. II of this paper, we derive the quantum mechan-
ics of a correlation experiment. Sections III and IV then
derive the Bell inequality for this same experiment in two
different ways, and show the inconsistency with quantum
mechanics. Section V reviews the experimental tests and
discusses the assumptions used in deriving the Bell inequa-
lity.

II. QUANTUM PREDICTION

The original realization of a conflict between quantum
theory and “reasonable’” assumptions was by Einstein, Po-
dolsky, and Rosen® in 1935 (EPR). EPR concluded that
“the description of reality as given by a wave function is not
complete.” The assumptions of what constitutes “com-
plete” for EPR are fairly complex; recently McGrath has
cast the EPR paper into symbolic logic’ and clearly dis-
plays the features of their argument.

Bohm?® called the EPR argument a “paradox,” and we
shall follow Bohm’s analysis of the quantum predictions
here. We imagine a system consisting of a molecule con-
taining two identical atoms. The total spin of the molecule
is zero, and the spin of each atom is #/2. The molecule is
split by a process that does not change the total angular
momentum, and each atom travels in opposite directions.
Each atom then has the z component of its spin measured
by a Stern—Gerlach® apparatus, as in Fig. 1(a). The source §
sends the two atoms, 1 and 2, to the two vertically oriented
Stern—Gerlach magnets P, and P,. {The P stands for polar-
ization.) It will be important to notice the arrows painted
on P, and P, which indicate what direction is “up” for each
individual analyzer.

Atom 1 has a wave function U (1), which is an eigenvector
of the operator P,. If atom 1 is spin up, we label the wave
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function U, (1), and we adopt the notation that the
eigenvalue is + 1:

PU,. ()= +U,(1). (1)

If atom 1 is spin down, we label the wave functionas U_(1),
and

PU_(1)= —U_(1). 2)

The wave functions for atom 2 we similarly write as U (2),
with similar eigenvalues:

PU (2)= +U,(2),
(3)
PU_(2)= —U_(2).

The total wave function for the system under consideration
is

¥=(1/V2IU,MHU_2)-U_(1)U,(2)]. 4)
That this wave function is correct is shown in the Appen-
dix.

Next we extend Bohm’s analysis and consider the situa-
tion shown in Fig. 1{b). The two Stern-Gerlach analyzers,
P and P}, have been rotated about the y axis by angles 6,
and @, respectively. We know that each atom has a definite
spin component in any direction specified by the orienta-
tion of the polarizers, so we may write down the eigenvec-
tors U’ for these orientations:

PU', =+U", . (5)
The total wave function will not be just Eq. (4) with primes
added unless 8, = 6,. This is because the two apparatuses

will not define the same directions as up.
In fact, to determine the total wave function, we use the

z
()
y
[

Fig. 1. Measuring the spin of the two atoms. (a) The orientation of the two
polarizers is the same, and measures the z component of the spin. (b) Each
polarizer P has been rotated about the y axis by an angle 8.
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standard rotation matrix applied to each eigenfunction in-
dividually:

U,(1)=cos(6,/2)U", (1) —sin(6,/2)U"_ (1},
(6)
U_(1) =cos(6,/2)U"_ (1) + sin(6,/2)U ", (1),
and similarly for 2. The reason for the appearance of 8,/2
instead of 6, is related to the fact that we have spin | objects
and know, for example, that if 8, = 180°, U_(1) = U ", (1).
The sign convention is due to the fact we are writing the
unrotated eigenvectors in terms of the rotated eigenvec-
tors, not vice versa. Inserting Eq. (6) and its equivalent for
atom 2 into the total wave function, Eq. (4), and collecting
terms gives

V= ‘/12 [cos( o, EGZ)U; (MU (2)

- cos(%)U’_ MU’ (2)

- sin(—"fl—;—az)(/; MU, )

—-sin( 4 ;92)(,,_ MU (2)]. )
Note that for 8, = 6,, Eq. (7) is identical to Eq. (4) but with
primes added.

In Secs. III and IV we shall display two different proofs
of Bell’s theorem, for which we will require two different
pieces of information from Eq. (7). First, we will ask what is
the probability that P measures atom 1 to be spin up si-
multaneous to P ; measuring the companion atom 2 to also
be spin up. The answer is just the square of the coefficient in
front of the U’ (1)U, (2) term of Eq. (7):

prob(up,up) = } sin’[(6, — 6,)/2] . (8)
Note that for 8, = 0,, this probability is zero as expected.

The other piece of information we shall require is the
expectation value of the product of the eigenvalues. Say P |
gives a signal p; = + 1 depending on whether atom 1 is
spin up or spin down, and P; gives a similar signal
p; = + 1foratom 2. We multiply these two values togeth-
er to form p; p; . Then the expectation value for the product
of the two signals, which would be the average value one
would expect after a large number of trials, is

P*p PiW= —cos@, —6,), 9)
which can be shown directly from Eq. (7).

IIL. D’ESPAGNAT’S PROOF OF THE BELL
INEQUALITY

As discussed above, EPR made a large number of as-
sumptions about what constitutes a complete theory, and
showed that the predictions of quantum mechanics violate
those assumptions. The Bell inequality can be viewed as a
generalization of EPR in which fewer but more general

Table I. Example of a three double-valued parameter specification of a
macroscopic physical object.

B = black
~ B = white

¥ = sphere
~y = cube

a = wood
~a = metal
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Fig. 2. Representing the number of objects with property a@ vs ~a, 8 vs
~B,and y vs ~¥.

assumptions are made. Bell’s original proof' was in the
context of hidden variable theories, but since then it has
been generalized even further. Here we shall prove the Bell
inequality two different ways. In this section we present a
simplified version of the proof of d’Espagnat?; in Sec. IV we
discuss a proof due to Stapp.* It should be stressed at the
outset that the results of both of these will conflict with the
results of Sec. I and with experimental tests. Thus the as-
sumptions being made here are at least partly incorrect.
Further, our experience indicates that the greater one’s fa-
miliarity with quantum mechanics the less reasonable
these assumptions will appear.

Bell himself has applauded d’Espagnat’s generalization
of the proof.'® Unfortunately, many physicists and stu-
dents, including myself, find the number of steps in this
proof sufficiently large that it is difficult to see the main
features clearly. Thus here we present a simplified version.

Our proof begins by discussing a classical situation
which does not generalize to the quantum theory of spin
measurements. We consider a collection of macroscopic
physical objects, each characterized by three independent
two-valued parameters a, S, y. For example, the objects
can be either wood or metal, either black or white, and
either a sphere or a cube, as shown in Table 1. Following
d’Espagnat, we represent the number of objects with given
properties as Venn diagrams as in Fig. 2. Then Fig. 3 shows
the number of objects N with properties (@, ~8), (B,~¥)
and (a, ~7), respectively. Inspection shows that

N(a,~B)+N(B,~¥)>Nla,~7) (10)

with the equality holding only if there are no objects in
certain categories.!’ Also, it is important to note that Eq.
(10) is based on an incomplete labelling of the objects in the
sample. For example, the first term of Eq. (10), N (&, ~B),
includes two categories of objects: N(a,~fB,y) and
N (a, ~B,~7). The second of these is included in the term
on the right-hand side of Eq. (10), N (@, ~¥), provided that
each member of the collection of specified objects, e.g.,
N (a,~B), does in fact have all three properties, e.g., ¥ or
~7%, even though only two parameters are specified. Thus
we are assuming a form of realism in the proof: that these
objects have properties whether or not they are measured
or specified.

Recalling Einstein’s role in the origins of this controver-
sy, and his long-standing objections to quantum theory, his
self-stated “basic axiom” is interesting: “It is the postula-
tion of a ‘real world’ which, so to speak, liberates the

_____
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(a) {6) fc)

Fig. 3. Representing the number of objects with properties (a,~8),
(B, ~7), and (@, ~).
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Table I1. Three-parameter specification for atomic spins for various polarizer orientations.

a = spinup, § =0° B =spinup, § =45°

~a = spin down, 8 =0°

~f = spin down, 8 = 45°

y = spin up, 8 = 90°
~7 = spin down, § = 90°

‘world’ from the thinking and experiencing subject.”?

Thus the assumption of realism used in this proof seems
consistent with Einstein’s own feelings about the nature of
the world.

Since Eq. (10} is true for any collection of classical ob-
jects, we may rewrite it in terms of the probability that in a
random selection we find an object with specified proper-
ties:

probla, ~f) + prob( B, ~y)>probla, ~y) . (11)

It is instructive to see how Eq. (11) is not expected to
apply to quantum-mechanical spin measurements. Let the
parameters a, £, and y refer to measurements of atomic
spins for polarizer orientations with respect to the z axis of
0°, 45°, and 90°, respectively, as in Table II. Then, if we
construct stacks of Stern-Gerlach filters which only pass
spin-up atoms, as in Fig. 4, we may rewrite Eq. (11} for the
incident nonpolarized beam of atoms as

prob(passes a, not ) + prob(passes S, not ¥)
>prob(passes a, not 7} . (12)

This relation is not true because, for example, the measure-
ment by polarizer a does effect the probability that the
atom will subsequently be able to pass polarizer B by intro-
ducing uncontrollable phase factors into the wave func-
tion.® This is a form of the uncertainty principle: if the
beam enters polarizer § first, one-half of the incident beam
will pass, while if the beam enters « first, the probability of
being able to subsequently pass S is changed. Put another
way, the operators P, and P ; do not commute, as can be
easily seen by letting the final beam strike a polarizer ori-
ented at 180° as in Fig. 5. In the first case shown, 3.1% of
the incident beam will pass all three filters, while in the
second case none will pass.

However, the final step in this proof of the Bell inequa-
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Fig. 4. Three different arrays of Stern-Gerlach apparatuses. Each box
passes only spin-up atoms.
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lity sidesteps this difficulty with the uncertainty principle.
We again consider our collection of macroscopic classical
objects for which Eq. (11) holds. We consider an experi-
ment in which object 1 is picked randomly as before, and
then a second object 2 is picked with each property opposite
object 1. Then, for example, prob(a,~8) for object 1 is
equal to the probability that object 1 has property  and the
corresponding object 2 does have property S, prob{1a,28).
Thus Eq. (11) becomes

prob(la,28) + prob(18,2y)>prob(la,2y) . (13)

Now consider the application of Eq. (13) to correlated
spin measurements as in Fig. 1(b). The fact that for the two
objects each has all properties opposite the other corre-
sponds to the fact that in the spin measurements if the two
polarizers have the same orientation then the two atoms
have opposite spins. Also, the two polarizers are measuring
the spins at locations separated by a spacelike interval from
the other polarizer’s measurement. Thus the two polarizers
cannot influence each other except by signals that travel
faster than light. If such “superluminal” influences do not
exist, therefore, we may expect Eq. (13) to apply to correlat-
ed spin measurements since the measurement by P | can-
not effect P 5, and vice versa. Thus assigning parameters as
before in Table I1, we rewrite Eq. (13) for spin correlations:

prob(1 up 0°,2 up 45°) + prob(1 up 45°,2 up 90°)
>prob (1 up 0°,2 up 90°) . (14)
This is the Bell inequality.

Each term in Eq. (14) can evaluated from quantum the-
ory, Eq. (8). The result is

0.1460.250 (15)

Thus the prediction of quantum mechanics violates the
Bell inequality. In fact, this result is the same as attempting
to apply Eq. (12) to the experiments of Fig. 4, a case where
the uncertainty principle is expected to lead to a violation,
as discussed. ,
We close this section by reviewing the assumptions we
have made in deriving Eq. (14). We have assume separabil-

_ity: that no influence may propagate faster than the speed

of light; this assumption is needed to “beat” the uncertain-
ty principle. We have assumed realism: that objects have

(a)

45°.1 (b}
]

\CVZalIE W\

Fig. 5. Two different combinations of three Stern-Gerlach apparatuses.
Each box passes only spin-up atoms.
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properties such as spin components in various directions
even if they are not measured. Finally, inductive inference
has been used throughout the proof.

IV. STAPP’S PROOF

Stapp has derived the Bell inequality in a way that shows
the conflict between quantum theory and common sense
assumptions in a different way. Consider Stern—-Gerlach
apparatuses which measure the spin of the atoms, assigning
a value of + 1 for spin up, — 1 for spin down. We then
calculate the product p; p; of these values for the two atoms
of the system in Fig. 1(b). Imagine we do this for N pairs of
atoms, and denote the result of the jth measurement as
p;py;- We consider four different angle combinations for
the two polarizers:

, =0 and 6,=0°,
0,=90" and 4,=0°,
(16)
6,=0" and 6,=135,
6,=90° and 6,=135.

For generality, label each eigenvalue of the polarization
measurement with both angles, i.e., p};(6,,8,) and p;;(6,,6,).
Then for large N, the result of doing the four experiments of
Eq. (16) can be calculated from quantum theory, Eq. (9):

N
(I/N) 3 py(0°0p5(0°07) = — 1,

j=1

N
(1/N) S p}y(90°0°p}(90°0) = 0,
=1
’ (17)
N
(1/N) S piy(0°,135%p5(07,135) = 1/1/2,
=1

N
(1/N) 3 pi;(90°,135°)p3(90°135) = — 1/v/2.
=

So these are the predictions of quantum theory.

Now we make two assumptions which will lead to a con-
flict with Eq. (17). First we assume separability. This means
that pj; should not depend on 6,, and p;; should not depend
on 8,, since the two measurements are done at different
spacetime locations separated by a spacelike interval. Thus
the jth measurement by, say, P | is independent of the ori-
entation of P;.

The second assumption is that the result of the jth mea-
surement by, say, P is not completely probabilistic and
will be the same in all experimental runs with identical
initial conditions. This second assumption in particular
seems consistent with another of Einstein’s “inner voices”
about the nature of the world: God does not play dice with
the universe.'?

From these two assumptions, we write

py;(0°0°) = pi;(0°,135%)=p}; ,
pi;(90°,0°) = p};(90°,135%)=p7; ,
p3(0°0°) = p3;(90°,0°)=p;; ,
p3(0°,135%) = p;,(90°,135%)=py; .
As a matter of simple algebra, it is easy to show that Eq.
(18) is not consistent with quantum theory, Eq. (17). We

shall not duplicate the ten lines of algebra that are spelled
out in Ref. 4; it suffices to say that by inserting Eq. (18) into

(18)
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Eq. (17) one derives the result
1>v2. (19)

V. EXPERIMENTAL TESTS AND DISCUSSION

In Secs. III and IV we had some unusual appearing an-
gles (45°, 135°, etc.) for the orientations of the Stern-Ger-
lach magnets. The reason is that for angles of 0°, 90°, and
180° there is no conflict between the predictions of quan-
tum mechanics and the Bell inequality. Further, it should
be pointed out that an identical but more difficult analysis
than above can be carried out for photons with total heli-
city zero,'* giving similar discrepancies except for angles
for the polarizers of 0°, 45°, and 90°.

The predictions of quantum mechanics have been ex-
perimentally tested for photons and protons at angles
where discrepancies with the Bell inequality are expect-
ed," and although these experiments are very difficult it is
fair to say that the quantum correlations have been con-
firmed. This, of course, does not necessarily mean quantum
mechanics is correct; it does, however, mean that at least
some of the Bell assumptions of Secs. III and IV are wrong.

Both proofs above used an assumption of separability:
that the two polarizers P | and P} actindependently. If this
assumption is not correct, then some sort of “superlu-
minal” signal connecting the two polarizers is possible. No-
tice, however, that this does not necessarily imply a mecha-
nism by which information may be transmitted from P to
P at speeds greater than ¢. The effect that violates the Bell
inequality only manifests in the correlations of the two de-
tectors; each detector individually appears to find that one-
half of the beam of atoms are spin up, one-half are spin
down, and that which case is true for a particular atom is
random.'®

Another feature of this separability assumption is that
the experimental tests have always involved setting the an-
gles of the polarizers, and then later taking data. Thus it is
at least conceivable that the polarizers have plenty of time
to “know” each other’s orientation. A stricter test would
involve setting the angles of the polarizers after the atoms
have left the source but before they reach the polarizers;
Aspect is currently engaged in just such an experiment.'’

The proof of d’Espagnat had two other assumptions:
realism and inductive inference. A potential conflict
between quantum theory and the assumption of an external
reality independent of its observation has been suggested
before.'® Wheeler has summarized one view of the situa-
tion in quantum theory as, ‘“No elementary phenomenon is
a phenomenon until it is an observed phenomenon.”'®
Thus d’Espagnat subtitled Ref. 3, “The doctrine that the
world is made up of objects whose existence is independent
of human consciousness turns out to be in conflict with
quantum mechanics and with facts established by experi-
ment.” This, however, is only one of the possibilities, for
there are two other assumptions in d’Espagnat’s proof.?°

As for d’Espagnat’s assumption of the validity of induc-
tive reasoning, the whole question of the validity of logic,
and its appropriateness in quantum mechanics, is contro-
versial.?! To briefly illustrate one problem in the inductive
method we retell a story which uses Mills’ rules for induc-
tion completely correctly:

A favorite example used by critics of the Method of

Agreement is the case of the Scientific Drinker, who

was extremely fond of liquor and got drunk every night
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of the week. He was ruining his health, and his few re-

maining friends pleaded with him to stop. Realizing

himself that he could not go on, he resolved to conduct a

careful experiment to discover the exact cause of his

frequent inebriations. For five nights in a row he collect-

ed instances of a given phenomenon, the antecedent cir-

cumstances being respectively scotch and soda, bour-

bon and soda, brandy and soda, rum and soda, and gin

and soda. Then using the Method of Agreement, he

swore a solemn oath never to touch soda again!*?
Thus, at the least, rules of logical inference must be applied
with caution. Note the “hidden variable” in the above ex-
ample.

The proof by Stapp uses different assumptions than d’E-
spagnat. Though they both assume separability, Stapp’s
proof assumed a nonprobabilistic structure to the spin
measurements. In particular we assumed that the result of
the jth measurement by, say, P ; would be the same in dif-
ferent experimental runs, which is not the same as saying
that an atom has a definite spin before it is measured by P ;.
Thus the conflict between the Bell inequality and the ex-
perimental tests is summarized by Stapp: “No theory that
predicts individual results that conform to the contingent
predictions of quantum theory can be local.”*

VI. CONCLUSION

Stapp has called the Bell theorem “the most profound
discovery of science.”** The consequences are in fact ex-
tremely deep.”® We see that in either form of the proof
presented above, some very general assumptions about the
nature of the world are at least partly incorrect. It is amus-
ing to speculate on the common ground of d’Espagnat’s
assumptions and Stapp’s; it may not be entirely the separa-
bility assumption. At any rate it appears that these sorts of
assumptions are close to many people’s common sense. We
thus close with Einstein’s perceptive definition of common
sense: prejudices acquired at an early age.
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APPENDIX

The wave function of the system is

V= (1/V2U. (W_(2) - U_()U (2)]. (20)
Consider an alternative wave function:

' = (VU (NU_(2)+ U_()U,(2)] - (21)

This wave function also describes a system where if atom 1
is spin up with respect to the z axis than atom 2 is spin
down, and vice versa. But consider a measurement of the x
component of the spins. We adopt the standard spinor no-
tation:
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(22)
1
e = (0) ’
)
0= (9)
The eigenvectors of o, are
_ ()
V+ - \/ 2 (1 ’
(23)
V__ = _l"“ ( l ) ’
V2 \—1
which in terms of the eigenvectors of o, are
Vie=(1/v2({U,+U_),
(24)

V_=(1/vV2)U, - U_}.
Inserting Eq. (24) for both atom 1 and atom 2 into the wave
function for the system, Eq. (20), gives

= (/v . (WV_(2) - V(). ()], (25)
but
' = (/v ()WL 2) + V_()V_(2)]. (26)

Thus the result of measuring the x components of the spin
for the system described by ¥ gives one atom spin up, the
other spin down; the same measurement on the system de-
scribed by ¥’ gives both atoms either spin up or spin down.
Thus ¥’ represents a total spin of #, but with zero value of
the z component. Note, then, that the total spin of the sys-
tem is an interference effect between the two terms in ¥.
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The formulation of the relativistic acoustic Doppler effect is considered in detail. Two approaches
were developed, both leading to the same result. The first method parallels the derivation of the
classical formula, using Lorentz velocity transformation and time dilation effects when required.
The second method is an intuitive approach done in the frame of the medium, clearly showing that
the relativistic correction terms arise solely from time dilation effects; the rest of the derivation is
entirely classical. It is demonstrated that the relativistic deviation is exactly zero when the source
and observer speeds are equal, even if the two motions are oppositely directed. Finally, a
numerical estimate reveals that the correction terms amount to only a few parts in 10" for

ordinary acoustic velocities.

I. INTRODUCTION

Bright undergraduate physics students, after having stu-
died the relativistic optical Doppler effect,! occasionally
ask about the relativistically correct formulation of the
acoustic Doppler effect. A pragmatic reply is that the cor-
rection is negligible because, in acoustics, the velocities in-
volved are of the order of the speed of sound in air (about
340 m/s), which is six orders of magnitude less than the
speed of light. Since relativisitic effects become apparent at
speeds approaching that of light, it can be stated with assur-
ance that the classical result is valid. However, the persis-
tent purist, on strictly academic grounds, may demand a
derivation of the correct acoustic formula. Becoming cur-
ious myself, I proceeded to study the problem in detail,
developing two different approaches to the solution, both
of which happily yield the same result. The deviation from
the classical result, due to relativistic effects, can then be
investigated, providing a quantitative answer to the stu-
dent’s query as well as an interesting application of special
relativity.

II. DERIVATION OF THE CLASSICAL FORMULA

To begin, it is instructive to review the development of
the classical formula, which will then be used as a founda-
tion for the exact derivations.?

Consider the frame of reference in which the acoustic
medium is at rest. A source of sound waves moves to the
right with velocity v,, while an observer moves with veloc-

816 Am. J. Phys. 50(9), Sept. 1982

ity — v, to the left, along the line joining source and observ-
er. The wave speed u is the speed of sound in the frame of
the medium. The wave frequency as seen by the observer is
higher than the source frequency for two reasons: (i) the
wavelength of the sound is shortened because the source
moves during the time in which the wave is radiated, caus-
ing a “bunching” effect as successive waves are emitted; (ii)
the moving observer intercepts more waves per unit time
than does a stationary observer because the former is mov-
ing into the radiated waves, so that the apparent acoustic
velocity is now u + v, resulting in proportionately more
waves striking the observer’s detector.

A derivation of the classical formula proceeds as follows.
As mentioned above, the moving observer sees an apparent
acoustic velocity of ¥ + v,. The apparent frequency, as see
by the observer, is then

S ={u+uv)/A’, (1)

where A ' is the wavelength seen by the observer. This is not
equal tothesource wavelength A (measured for a stationary
source) because of the “bunching” effect previously dis-
cussed. An expression for A ' is deduced from the following
argument. From the observer’s frame, the apparent source
velocity is v, + v,, while the time between successive wave
emissions is 1/f,. In this time interval, the source travels a
distance (v, + vo)/fy, while the wave travels a distance
(# + vo)/f,. The difference between these distances is the
apparent wavelength A ’ seen in the observer’s frame; i.e.,
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