István
László's Home Page
|
List of publications
by I. László
77. The D5h C70 fullerene. Physica E ( in press ) (2012). 76. of fullerenes, nanotubes and
other carbon structures. Europhysics
Letters 99, 63001-p1-63001-p5 (2012). 75. Eigenvectors. In Carbon Bonding and
Structures, Chemistry and Physics, Volume 5, Pages 95-115
(Ed. M. V. Putz, Springer, 74: T. Réti, of
Fullerenes. In Mathematics and Topology of Fullerenes, Volume 4, Pages 61-83 (Eds. F. Cataldo; A. Graovac; O. Ori, Springer, 73. V. Zólyomi, J. Koltai, D. Visontai, L. Oroszlány, A. Rusznyák, I. László,
J. Kürti: Characterization of bamboo defects in peapod-grown double-walled carbon nanotubes Phys. Rev. B82, 195423 (2010) 72. B. Slepetz, Characterization of large vacancy
clusters in diamond from a generational algorithm using tight binding density
functional theory Phys. Chem. Chem. Phys. 12, 14017-14022
(2010) 71. Simulation of large multi atom
vacancies in diamond Diamond and Related Mater. 19,
1153-1162 (2010) 70. T Réti, Acta Polytechn. Hung. 6, 85-93 (2009) 69. J. Koltai, A. Rusznyák, V. Zólyomi, J. Kürti, I. László: Junctions of left- and right-handed chiral
carbon nanotubes nanobamboo,
Phys. Status Solidi
(b) 246, 2671-2674 (2009). 68. Euler formula and its application for
carbon structures, in Mathematical Methods and Modeling for Students of Chemistry
and Biology, A. Graovac, D. Vukicevic
(Eds.) (Hum naklada d.o.o.
Zagreb, 2009, pp 157-170) 67. Computation of the loading diagram and
tensile strength of carbon nanotube networks Shape analysis of polyhex
carbon nanotubes and nanotori Int. J. of Chem. Modelling
1, 355-362 (2008). Shape analysis of carbon nanotube junctions MATCH
Commun. Math. Comput. Chem . 60, 917-926 (2008) 64. Construction of carbon nanotube
junctions Croat. Chem. Acta 81, 267-272 (2008) 63. Hexagonal and non-hexagonal carbon
surfaces In Carbon Nanotubes and Related
Structures, Chapter 5, ps 121-146 Eds. V. Blank and B. Kulnitskiy Research
Singpost, Kerala
India (2008) 62. Construction of atomic arrangement for
carbon nanotube junctions. Phys. Stat. Sol.
(b) 244, 4265-4268 (2007) 61. Geometric and electronic structure of
carbon nanotube junctions obtained by intersection of cylinders Phys. Stat. Sol.
(b) 243, 3468-3471 (2006) 60. Topological coordinates for Schegel diagrams of fullerenes and other planar graphs in Nanostructures: Novel Architecture Ed. Mirceae
V. Diudea pp. 193-202 (2005, Nova Science Publishers, Inc., 59. Topological description and construction
of single wall carbon nanotube junctions Croat. Chem. Acta
78, 217-221 (2005). 58. A possible topological arrangement of
carbon atoms at nanotube junctions Fullerenes, Nanotubes and Carbon
Nanostructures, 13, 535-541 (2005). 57. Topological aspects beyond the Hückel theory Internet Electronic Journal of
Molecular Design, 3,
182-188 (2004). 56. The electronic structure of nanotubes
and the topological arrangements of carbon atoms NATO Science Series, II. Mathematics,
Physics and Chemistry 152, 11-18 (2004) Eds. E. Buzaneva
and P. Scharff Frontiers of Multifunctional Nanosystems 19-22 (Kluwer
Academic Publishers, 55. Topological coordinates for nanotubes Carbon 42, 983-986 (2004). Reprint
(pdf) 54. The electronic structure of non-polyhex carbon nanotubes J. Chem. Inf. Comput.
Sci. 44, 315-322 (2004). Reprint
(pdf) Topological rotational strengths as chirality descriptors for fullerenes Chemistry: A European Journal 9, 644-651 (2003). Reprint
(pdf) 52. I. László,
A. Rassat The geometric structure of deformed nanotubes
and the topological coordinates J. Chem. Inf. Comput.
Sci. 43, 519-524 (2003). 51. I.László, A. Rassat Topological coordinates for deformed
nanotubes in Molecular nanostructures, XVII
International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings 685, 2003 p. 423-426. 50. Topologically determined electronic
energy levels and matching problems Acta Phys. Et Chim. Debrecina 34-35, 125-130 (2002). 49. I.László,
A. Rassat Continuous symmetry and chirality
measures for fullerenes in Molecular nanostructures, XVI
International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings
633, 2002 p. 413-416. 48. Topological coordinates for toroidal structures Chem. Phys. Letters 342, 369-374
(2001). Reprint (pdf ) 47. Toroidal and
spherical fullerenes with only pentagonal and heptagonal faces Int. J. Quantum Chem. 84, 136-139 (2001). 46. Doctor of the Hungarian Az atomok elrendeződésének és elektronszerkezetének elméleti vizsgálata, különös
tekintettel a fullerénekre.
45. Topological coordinates for carbon
nanostructures in Molecular nanostructures, XV
International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings 591, 2001 p. 438-441. 44. Graph theoretical study of
topologically determined electronic energy levels Journal of Molecular Structures
(THEOCHEM) 501-502, 501-508 (2000). 43. Modeling of nanotube as a molecular
tool in Molecular nanostructures, XIV
International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings 544, 2000 p. 299-302. 42. S. Kugler, Molecular dynamics simulation of
amorphous carbon structures Functional Materials 6, 459-463 (1999). Reprint (ps.gz ) 41. Computer simulation of fullerene and
nanotube structures Research News, 40. Molecular dynamics study of the C60
molecule Journal of Molecular Structure
(THEOCHEM) 463, 181-184 (1999). 39. Molecular mechanics study of carbon
nanotubes in Electronic properties of novel
materials Progress in molecular nanostructures,
XIII International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings 486, 1999. p. 355-359 38. S. Kugler,
K. Koháry, I. László Microscopic structure of amorphous carbon.
Tight-binding molecular dynamics study in
CP479, Neutrons an Numerical Methods- N2M Eds. M. R- Johnson, G. J. Kearley H. G. Büttner The American Institute of Physics
1999, p. 64-69. 37. Sikerkönyv egy sikertörténetről Természet Világa 1999. július,
301. oldal 36. I László Fermat és nagy tétele Természet Világa 1999. február, 50-53 oldalak 35. Formation of cage-like C60 clusters in
molecular dynamics simulations Europhysics
Letters 44, 741-746 (1998). Reprint (pdf) 34. K. Koháry, S. Kugler, Molecular dynamics simulations of
amorphous carbon structures Journal of Non-Crystalline Solids
227-230, 594-596 (1998). 33. Molecular dynamics study of carbon
structures in Electronic properties of novel
materials Progress in molecular nanostructures,
XII International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth The American Institute of Physics,
Conference Proceedings 442, 1998. p. 435-438. 32. Molecular dynamics simulation of
fullerene formation in Proceedings of the XI International Winterschool Kirchberg, Ed. H. Kuzmany,
J. Fink, M. Mehring, S. Roth World Scientific ,
31. A C60 molekula
megtalálásának heurisztikus
vizsgálata Természet Világa 1998. május,
199-202 oldalak. 30. Tight-binding molecular dynamics
simulation of the disintegration of fullerenes Full. Sci.
and Techn. 5, 357 (1997). 29. K. Kádas, Topologically determined midgap states in amorphous carbon: odd-membered
ring study J. Non-cryst.
Solids 198-200, 91 (1996). Reprint (pdf) 28. K. Kádas,
I. László, S. Kugler Atomic structure and electronic density of
states around the Fermi level in amorphous carbon models 27. Topologically determined electronic
energy levels in Bethe lattices J. Mol. Struct.
(THEOCHEM) 305, 201 (1994) 26. E. Kapuy, K. Kozmutza, I. László, J. Pipek, P. Surján, L. Szunyogh, E. Tfirst,
L. Udvardi, Electronic structure of complex systems Per. Polytechn.
1, 237 (1993) 25. S. Kugler, K. Shimakawa, T. Watanobe, K. Hoyashi, The temperature dependence of the
structure of amorphous carbon J. Non-cryst. Solids 164-166, 1143 (1993). 24. I. László Stable electronic energy levels in the
presence of off-diagonal disorder Int. J. Quantum Chem. 48, 135 (1993). 23. I. László Topologically determined electronic energy
levels in fullerenes Fullerene Science and Technology 1, 11
(1993). 22. The electronic transition energies of
four alternative C60 molecules Int. J. Quantum Chem. 42, 1651 (1992). 21. I. László Embedding by pseudo atoms and the
topologically determined one-electron energy levels J. of Math. Chem. B10, 303 (1992). 20. I. László,
Cs. Menyes Existence of stable electronic energy
levels in the presence of vibrational and off-diagonal disorder 19. Model Studies of the hydrogen-iron bond
distances on BCC iron surfaces Acta Phys. Hung. 70, 361 (1991). 18. I. László, S. Kugler Self-doping and hopping conductivity in
amorphous carbon J. Non-cryst. Solids 137-138, 831 (1991). 17. S. Kugler,
I. László Connection between topology and pi-electron
structure in amorphous carbon 16. I. László, L. Udvardi A study of the UV spectrum of the truncared icosahedral C60 molecule. J. Mol. Struct.
(THEOCHEM) 183, 271 (1989). 15. S. Kugler, Topology and pi-electron structure in
amorphous carbon Proceedings of the 9-th International
Conference on Non-crystalline solids Uzhgorod, 14. P. Rennert, B. Vasvári, Recursion structure of C60 clusters Proceedings of the 19-th Annual
International Symposium on Electronic Structure of Metals and Alloys Holzhau, GDR,
1989. p. 214. 13. On the pi-electron structure in
amorphous carbon Proceedings of the 19-th Annual
International Symposium on Electronic Structure of metals and Alloys Holzhau, GDR,
1989. p. 204. 12. Mikrofizikai
alapok I-II (text book ) 11. On the geometrical structure and UV
spectrum of the truncated icosahedral C60 molecule Chem. Phys. Letters 136, 418 (1987). 10. Ph.
D. dissertation (1987) Egyszerűsített
kvantumkémiai önkonzisztens
tér módszer véges atomcsoportok
elektronszerkezetének meghatározására
9. Interaction of H atoms with bcc iron
clusters Proceedings of the 15-th Annual
International Symposium on Electronic Structure of Metals and Alloys Johnsbach,
GDR, 1985. p. 121 8. Geometrical structures of triatomic and tetratomic
clusters of LI, Na, K,
Cu and Ag atoms. Acta Phys.
Hung. 58, 199 (1985).. 7. One-parameter double-zeta atomic
functions for the Hartree-Fock energies of helium isoelectronic
sequence Int. J. Quantum Chem. 27, 559 (1985). An iterative semi-empirical method fort he
study of large-size metal aggregates J. Mol. Struct.
(THEOCHEM) 105, 393 (1983). 5. CNDO/2 calculations of relaxation and
reconstruction of diamond and silicon (1,1,1) surfaces Int. J. Quantum Chem. 21, 813-822 (1982). 4. Algorithm for the structure of large
spherical clusters Acta Phys.
Hung. 51, 41 (1981) 3. University doctorate (1977) Szilícium- és gyémántrács felületi szerkezetének elméleti vizsgálata 2. Application of the CNDO/2 formalism for
the study of silicon atom clusters Int. J. Quantum Chem. Suppl. 2, 12, 105-114 (1977). 1. University thesis (1975) Pirrol, imidazol és pirazol UV
spektrumának PPP módszerrel történő számítása |