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1. Introduction

In finance the decade 1990 to 2000 is characterized by a move from low
frequency data, typically weekly or daily, to high frequency intraday tick-
by-tick data. This was made possible mainly by the availability of cheap and
powerful computers and by communication networks (in turn, this techno-
logical improvement is changing high frequency data into a commodity!).
High frequency data means a real quantitative jump: when going from daily
to intraday data, the amount of information increases by a factor of 100
to 10 000 (for the FX rate DEM/USD). By tapping this added informa-
tion, financial calculations can be improved, for example in risk assessment,
portfolio optimization or forecasting.

The first big difficulty when moving into the intra-day realm is sea-
sonalities. Clearly, because markets open and close, we can expect strong
seasonalities with daily and weekly periods. These seasonalities are a real
nuisance, because they are strong and predictable, and will hide completely
other finer structures of the process. Since it is precisely these finer prop-
erties that we are interested in, seasonalities must be treated first.

Discounting for seasonality is not new in time series analysis, for ex-
ample the regularly published unemployment rates are deseasonalized for
yearly variations. But most of these classical techniques rely on the assump-
tion that the time series is regularly spaced in time. Moreover, they are not
very flexible, for example holidays can not be taken into account. For these
reasons, we have devised a method based on a change of time scale that
will be presented first. Throughout this paper, it should be kept in mind
that our ultimate goal is to use high frequency data to forecast prices and
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build trading models. This implies hunting for some subtle dependencies,
and it explains why we are quite picky about ‘trivial seasonalities’.

Then, after treating the seasonalities, we will analyse the first hitting
time, namely the random time interval before a fixed return is reached. This
will shed light on extreme events and their scaling properties. The examples
and figures will be taken from the FX market but the same technique and
analysis can be used for other markets as well.

2. Notations and Definitions

Tick-by-tick data contains a time stamp t and bid and ask prices pbid, pask.
We will consider mainly the logarithmic middle price x as the primary
useful time series

x =
1
2
{ln(pbid) + ln(pask)} . (1)

Time series are denoted with a simple letter, like x. The value at time t of a
time series x is denoted by x(t). If the time series depends on a parameter
p, it is denoted x[p].

The return in a time interval ∆t is r[∆t](t) = x(t)− x(t−∆t). Because
of the ln in the definition of x, this corresponds to a relative return (up to
second order correction). The absolute value of the return |r[∆t]| is often
taken as an estimator of the volatility at time scale ∆t. Because of the
strong tail of the price distribution, and because of the possible noise in
the data sources, this is a more robust estimator of the volatility than the
usual square return.

3. Seasonality

A time series is called seasonal if it exhibits a deterministic periodic pattern.
There are essentially two different ways to detect seasonal patterns:

− Intra-day and intra-week statistics.
An intra-day statistics for x is an average, conditional to the time in the
day < x | tmod 24 >. We will denote symbolically the intra day time
by tmod 24, meaning the elapsed time since last midnight. Similarly,
an intra-week statistics corresponds to < x | tmod 168 > (168 is the
number of hours in a week).

− lagged autocorrelation function.
The lagged autocorrelation function examines if there is a linear de-
pendence between the current and past values of a variable.

ρ[τ ] =
∑

[x(t− τ)− x][x(t)− x]√∑
[x(t− τ)− x]2

∑
[x(t)− x]2
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The lagged autocorrelation function peaks at time intervals corre-
sponding to the periods of seasonal patterns.

Note that both of these statistics are sensitive to seasonalities, although
not in identical ways. The autocorrelation assumes no a-priori periodicity. It
is also sensitive to dependences where a ‘trigger’ event appears at a random
time, followed by an ‘echo’ event at a fixed time interval τ later. On the
other hand, an intra-day statistics shows the timing of the seasonality, for
example the opening of a market.

Turning to empirical data, the lagged autocorrelation for the return
and volatility is shown in Fig. 1. The return does not seem to exhibit any
seasonalities, but the volatility clearly shows daily and weekly peaks, i.e.
there is seasonal heteroskedasticity. We also observe a small eight-hourly
seasonality of the volatility. Similarly, we have detected strong seasonalities
in the volatility, the tick frequency and the spread for both FX and IR
rates. The same volatility data are used to build an intra-week conditional
average shown in Fig. 2. Again, both the daily and weekly seasonalities
clearly appear.

From the forecasting point of view, these seasonalities are a real nui-
sance. What is the point of making a sophisticated forecaster, if the main
outcome is to predict a substantial increase of volatility each morning,
corresponding to the opening of the market! Moreover, these very strong
seasonality signals completely hide other properties of the processes. For
example, it is known that financial data exhibit a slow decay of the volatil-
ity correlation, corresponding to volatility clustering. This property of the
volatility has prompted the development of the ARCH process, and all its
descendants, like GARCH, HARCH, ... This volatility clustering should be
visible on the lagged autocorrelation graph, but clearly the seasonalities are
dominant.

Therefore, the leading signal originates in the seasonalities, and we want
to remove them. In order to do so, the main idea is to change the time
scale. In fact, this is an old and common practice in finance; for exam-
ple, daily sampled data have 5 days per week, Saturday and Sunday being
eliminated. Another common practice when studying hourly intra-day stock
data is to divide the ‘market day’ regularly from the opening to the clos-
ing of the stock exchange, in effect discarding the closed period from the
time scale. Implicitly, these two procedures define new time scales adapted
to common financial processes, and this kind of off-handedness with time
caused some commotion to physicists moving to finance. As the FX market
is open 24 hours a day, we have to be a bit more sophisticated, but the main
idea is similar, namely to expand the period with high activity and contract
the period with low activity. Clearly, this corresponds to defining a proper
financial time scale for each financial object. As we start mangling with
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Figure 1. Autocorrelation of 20 minute returns (bold curve) and absolute values of
returns (thin curve), computed on the physical time scale (uniform time, no special
treatment of weekends and Holidays). FX rate: USD-DEM; sampling period: from 2 June
1986 to 1 June 1993. The confidence limits represent the 95% confidence interval of a
Gaussian random walk.

time, and defining time scales other than the usual physical time, several
questions arise. Eventually, we will reach the fundamental question: what
is time, and which time scale should we use in finance? The next section is
a small ‘divertimento’ around this theme, without any pretention to answer
the question, but more as an invitation for further thought.
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Figure 2. The Intra-weekly histogram of mean absolute hourly returns. The hourly
intra-week grid is in Greenwich Mean Time (GMT). No adjustment has been made
for daylight saving time. FX rate: USD-DEM; sampling period: from 3 Feb 1986 to
26 Sep 1993 (398 full weeks).

4. Some Reflections about Time

With such a big question to ponder at, a first lead is to reach for the dictio-
nary in order to search for a definition of time, and to read what linguists
have to say about it. First, I invite the reader to pause and think about
his/her own definition of time, and then to get his/her favorite dictionary
and read the definition.
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A FEW DEFINITIONS OF ”TIME”

You will find below short excerpts from a random sampling of dictionaries.
A common point about all dictionaries is that they give a very long defi-
nition for time, typically 5 to 10 times longer than the average definitions.
For this reason, I kept only the main headings.

− The Oxford English Dictionary

• A limited stretch or space of continued existence, as the interval
between two successive events or acts, or the period through which
an action, condition, or state continues.
• A particular period indicated or characterized in some way.
• ... (52 definitions, 5 pages)

− Oxford Advanced Learner’s Dictionary

• All the years of the past, present and future (The world exists in
space and time).
• Passing of these taken as a whole (Time has not been kind to her

looks, i.e. She is no longer as beautiful as she was).
• Indefinite period in the future.
• Portion or measure of time.
• ... (1.5 page)

− Webster Dictionary

• The system of those sequential relations that any event has to
any other, as past, present, or future; indefinite and continuous
duration regarded as that in which events succeed one another.
• Duration regarded as belonging to the present life as distinct from

the life to come or from eternity; finite duration.
• A system or method of measuring or reckoning the passage of

time.
• ... (1 page)

− Micro Robert 1

• Indefinite medium in which lives in their changing states, events
and phenomena seem to take place according to a definite order.

1The original French definition is:

• Milieu indéfini où paraissent se dérouler selon un ordre les existences dans leur
changement, les événement et les phénomènes.

• Durée, portion limitée de cette durée.

• Point repérable dans une succession par référence à un ‘avant’ et un ‘après’.
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• Duration, limited portion of it.

• A reference point in a succession according to a ‘before’ and an
‘after’.

• ... (0.5 page)

What appears from these definitions is that the word ‘time’ is used for two
concepts. One is for a point along the ‘absolute’ time axis, as in today at
1 o’clock. The other meaning is for a time interval, as in in 1 hour. The
german language has two different words for these two different concepts:
die Uhr (a time point) and die Stunde (a time interval). Some English
authors also advocate the use of two different words, for example ‘epoch’
for a time point. Another reflection about these definitions is that each one
of us certainly has quite a deep understanding of what time is, and a strong
feel for the ineluctable passing of time. But if there exist people who do
not, I wonder if the above definitions will be of any help!

A PHYSICIST’S VIEW OF TIME

Physicists are certainly big users of the time concept. Time appears in all
basic equations: Newton, Schröndiger, heat, relativity, etc... In order to
have the equivalent of the above dictionary definitions but for physicist,
I consulted the ‘Encyclopedia of Physics’ (Lerner and Trigg, 1991), which
contains an article on time writen by P.C.W. Davies. This article about
time is in a remarkable contrast to the rest of the encyclopedia: it does not
contain any equations or greek letters, it does not provide for a definition
but assumes the knowledge of time, and it is more about open questions
than a beautiful answer provided by science. As it is also quite a long
article, I reproduce below only its very beginning and end. The missing
parts contains a discussion of fundamental questions and topics such as: is
there a beginning and end to time, is there a minimum granularity to time,
the arrow of time as provided by the increasing entropy, time is measured
(created ?) by events therefore if there is nothing, is there still a time, etc...

Encyclopedia of Physics
”Time is the most fundamental aspect of our experience. Its properties have
intrigued and baffled philosophers, theologians and scientists for centuries.
Question about the nature of time, its global and microscopic structure,
continue to fill books and provoke experimental research. ...

Psychological Time
One fundamental aspect of time has not appeared in the physical descrip-
tion already given. The human mind divides time into past, present and
future. Everyone is aware of a flow, or flux, of time toward the future. This
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flow appears to sweep the past out of existence and bring the future into
being. Such temporal activity is not a feature of time in physics, at least
as understood at present. Its appearance in the human mind is sometimes
dismissed as purely psychological, and sometimes conjectured to indicate a
great unsolved problem in physics. In either case it is a mystery.”

Again, if someone does not know what time is, I am afraid that this
article will be of no more help than the dictionaries! Being more down to
earth, the every day physical time corresponds essentially to

− The variable t appearing in various equations. However, it is not so
obvious why, say, the t in the heat equation is the same as the t in the
Schrödinger equation and why a wrist-watch still measures the same t!
Indeed, it is quite non trivial that the same concept is used to index
the advance of events in the quantum, classic and relativistic realm.

− Practically, the measure of time passing by corresponds to counting
the beats of some regular pendulum. Moreover, pendulums with widely
different periods can be related simply by counting, with ranges from
an atomic clock to the rotation of celestial bodies. The location of the
clocks can also differ, with a distant pendulum being in the next room,
on a satelite or on a remote star. Essentially, a pendulum is needed
to reckon the advance of time (which can be followed by the question,
relevant in finance: if there is ‘nothing’, is there still a time? ).

The uniqueness of the time concept across realms and scales is what makes
it so pervasive in physics. Turning now to finance, it is not clear why the
same physical time concept must be valid in this field. Indeed, there is
no regular ‘financial’ pendulum, and an economic market is not driven by
physical laws. In physics, one is able to construct and reproduce a pen-
dulum, and all copies will measure essentially the same time. In finance,
each event is unique and non reproducible. Yet we still want a scale that
measures the passing of events.

Another concept of the time scale is the psychological time. Each one
of us has his own psychological time scale, where important events take a
relatively larger span — say for example your wedding — and unimportant
days are shrunk to zero — like a dull eventless November day five years
ago. Then, you can have a ‘before’ and ‘after’ your wedding, for example.
In this way, each individual constructs his/her personal time scale from
his/her own appreciation and recollection of the lived events. The physical
time scale is used to relate different psychological time scales, for example
my wedding to the birth of your first kid. Clearly, there is a large degree of
arbitrariness in such psychological time scales.

Returning to finance, the idea is to introduce a time scale similar to
psychological time, in which elapsed time is measured by the (subjective)
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importance of the events. In this sense, each market will create its own time
scale.

5. Other Time Scales for Finance

With high frequency data, the time interval between two ticks is a positive
random process. The return is another random process, subordinated to
the time process. Even when considering daily data, the return can be seen
as subordinated to the deterministic time interval. By changing the time
scale, the characteristics of the return process are changed, and possibly
become simpler. Similarly, other characteristics of the process, for example
the volatility, become better behaved in the transformed time scale. This
overall idea is quite old, and seems to be due to Bochner back in the ’50s
(see e.g. (Feller, 1971) and reference therein), or (Mandelbrot and Taylor,
1967) who introduced a number of financial clocks.

The basic idea for every time scale is similar: contract or expand the
physical time in such a way that a measure of the market events becomes
more regular. Here are some examples of possible financial time scales:

1. Business time: counts only when a given market is open, chopping off
nights and week-ends.
This is the most widely used time scale in finance, for example when
considering daily averages but omitting Saturdays and Sundays, or
when counting 250 days per year.

2. Transaction time 1: add one for each transaction.
3. Transaction time 2: add the value of each transaction.
4. Theta-time: add a measure of the seasonal volatility.

Contract or expand the physical time in such a way that the aver-
age number of market events, as measured by the average seasonal
volatility, is constant.

5. Tau-time: add some measure of the momentary recent volatility.
Contract or expand the physical time in such a way that the number
of market events, as measured by the volatility, is constant.

The characteristics of these time scales are quite different. Some time scales
are predefined (business time, theta time), others depend on the actual
events in a given market (transaction time, tau time). This makes a big
difference when forecasting, as it is easy to extend a predefined time scale
to the future. In contradistinction, the transaction time scale or the tau time
scale must be forecasted. Yet the advantage of the transaction time scale
is that it could also deal with conditional heteroskedasticity (i.e. volatility
clustering).

Another important point is that the relevant information must be avail-
able. For example, both transaction time scales are impossible to construct
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for the FX market because all information about transactions are unavail-
able.

The next two sections are devoted to the construction of the theta time
scale, whose goal is to remove seasonal heteroskedasticity (Dacorogna et al .,
1993; Dacorogna et al ., 1996). For this, a suitably robust measure of the
seasonal activity must be constructed first.

6. Measuring the Activity

In order to construct a time scale depending on seasonal volatility, we must
first take a good estimator of the volatility of a market. Anticipating the
next section, where we will build an additive model for the theta time scale,
we need an additive quantity, similar to a tick rate. As volatility is not ad-
ditive, we must define a new quantity called ‘activity’ which measures the
market activity and is additive. A good estimator would be the transaction
volume, but these figures are not available for the FX market. Another
candidate is the tick frequency, or tick rate. The problem is that this quan-
tity is very much dependent on the data supplier. Say, for example, that a
data provider is well represented in Europe, but much less in Asia. Then,
the view of the world according to the tick rate of this data supplier is
distorted, giving less activity to Asia than it should. Another problem is
the technical compromise made by some data suppliers. In order to limit
the bandwidth, the tick-by-tick information can be decimated in periods of
high activity.

For these reasons, the volatility is a better measure of the particular
market’s activity, because it gives a much more objective view of the world.
But as mentioned earlier, the volatility is not additive. Therefore, we must
scale the volatility in order to define an additive activity. The scaling law
for the absolute value of the return is given by (Müller et al. , 1990)

〈|r[∆t]|〉 =
(

∆t
∆T

)1/E

, (2)

where 〈〉 denotes the sample average, r[∆t] is the return measured for the
time interval ∆t, ∆T is a constant, and E is the scaling law exponent. This
can be rewritten in the form

1 =
∆T
∆t

(
〈|r[∆t]|〉

)E
. (3)

We define the intra-week activity by

a(t′) =
∆T
∆t

(
〈 |r[∆t]| | t′〉

)E
, (4)
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where the average is taken conditionally to the time within the week t′ =
tmod 168. In the following section, the time interval ∆t is fixed to 1 hour.

7. The Theta Time Scale

The ϑ-time scale is defined infinitesimally by reference to the physical time
scale. The ϑ-time increment dϑ is proportional to the physical time incre-
ment, with the activity as a proportionality constant

dϑ(t′) = a(t′) dt (5)

and t′ = tmod 168. In other words, the activity is the Jacobian of the
transformation from theta to the physical time scale. Then, the ϑ-time
scale is obtained by integration.

ϑ(t) = ∆ϑ(t0, t) ≡
∫ t

t0
a(t′) dt′. (6)

The time t0 is an arbitrary zero, where the ϑ-time is rooted.
So far, so good. The next important variation of activity is created by

holidays, which are predictable, but not seasonal (at least in the above
sense). In order to include Holidays into the time scale, we need to con-
struct a model for the activity. The idea is to model the activity as a su-
perposition of three contributions corresponding to the Asiatic, European
and American markets. The total average market activity is modeled by 3
geographical components

a(t) = a0 +
3∑

k=1

ak(t) (7)

where ak(t) corresponds to the activity of the three generic markets (East
Asia, Europe and America), and a0 is a basic activity. When opened, each
market activity is modeled by a simple polynomial

ak(t′′) = w(t′′ − topen)2(t′′ − tclose)2(t′′ − s)
[
(t′′ − tlunch)2 + d2

]
(8)

with t′′ = tmod 24 = time in the day. When closed, the market activity
is zero ak = 0. Then, the model has to be fitted to the activity measured
from the data. There is a total of 17 parameters to be fitted, and the reader
can consult Dacorogna et al . (1993) for more details. Finally, there is an
overall proportionality constant that needs to be fixed. This constant fixes
the average ‘speed’ of time in the new scale, and it is chosen so that in the
long term, the ϑ-time flows at the same pace as physical time.
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Now the holidays can be introduced simply by ‘closing’ the correspond-
ing market, i.e. by putting its activity to zero. Another advantage of the
model is the possibility to take into account daylight saving time. This is
done simply by taking the fitted time in the model polynomial to be local
time. An example of the resulting mapping from physical to ϑ time is given
in Fig. 3. The week chosen for the drawing is a week with no market hol-
idays (25.9 to 1.10.95). That is why the ϑ time ends up a little above 168
hours.

Figure 3. The mapping between physical time and ϑ time for DEM/USD.

One of the motivations for the introduction of a new time scale is that
the processes may have simpler characteristics in the transformed time axis.
As an heuristic example of what we have accomplished so far, the hourly
return is plotted on Fig. 4 against the physical and the ϑ time scales. By
an hourly return in ϑ-time, we mean the difference of price, separated by
one hour along the scaled time axis. This corresponds to an irregular sam-
pling in physical time, for example the price difference may be taken across
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the week-end, or separated by only 30 minutes in periods of high activity.
Obviously, the process looks simpler in the transformed time axis. In order

Figure 4. The hourly return in physical and theta time

to be more quantitative, let us compute the lagged autocorrelation of this
process. When computed in physical time, this has already been shown in
Fig. 1. The same computation but in ϑ-time is displayed in Fig. 5. The
structures that were hidden by the strong seasonalities start to unfold. In
particular, we see clearly the slow decay of the autocorrelation, correspond-
ing to the clustering of volatility, or the conditional heteroskedasticity. The
hyperbolic decay of the correlation corresponds to the long memory of the
market with respect to volatility. This shows that by working in a time
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scale in which the process is deseasonalized, we can exhibit some of its finer
properties.

Figure 5. Autocorrelation of the return and its absolute values, in ϑ-time.
Autocorrelation of 20 minute return (bold curve) and absolute values of return (thin
curve), computed on the ϑ time scale. FX rate: USD-DEM; sampling period: from 5 May
1986 to 4 May 1992. A circle indicates the autocorrelation of absolute returns at lag 1. A
hyperbolic function (solid curve) and an exponential function (dotted curve) are shown,
both representing the best fit for the absolute price autocorrelation. The confidence limits
represent the 95% confidence interval of a Gaussian random walk.

Finally, let us remark that with one time scale, it is possible to desea-
sonalize at most one quantity. Therefore, even if we had done a perfect job
for the activity, the volatility (with your favorite definition of the volatility)
will not be completely deseasonalized. Thus, it is not so important to con-
struct a perfect time scale and activity model, but only to take into account
the largest contribution to the seasonality.
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8. First Hitting Time

Up to this section, our point of view on time was of a continuous param-
eter indexing the processes. For example, we considered the daily return
r[1 day], or more generally r[∆t] for a given ∆t. We may reverse this usual
view by considering time as a random variable, subordinated to the price
process. In fact, in finance, this is a very natural stand: how long should
one wait until one can expect a given return? To be more precise, the first
hitting time is defined as the time ∆t[r] needed to reach — for the first
time — a given return r. What makes the relationship between r[∆t] and
∆t[r] non trivial is the ‘for the first time’ in the previous definition.

When studying the return, the probability density P (r|∆t) is measured.
Similarly, for the first hitting time, P (∆t|r) has to be measured, and this
is shown in Fig. 6. The time intervals are measured in the theta time scale
in order to take care of the seasonalities (a similar picture is obtained when
measuring time intervals in physical time). Obviously, the larger the return,
the longer we should wait. Note that this graph is on a log-log scale, and
if drawn on a linear-linear scale, the curves are completely crushed against
the left and lower axes.

In order to compare the curves corresponding to different returns, we
have to scale them. Because P is a probability density, we have only one
function to choose, namely the scaling relation between ∆t and r. Then,
the normalization condition on P will enforce the scaling relation for P .
The first obvious form is to use an uncorrelated random walk scaling, given
by

∆t → z = ∆t/r2 ,

P (∆t) → r2P (z) . (9)

The resulting scaled probability densities are shown in Fig. 7, using linear-
linear scales. The agreement is fairly good for large values of z but seems
to deteriorate for small z. In order to magnify the small z region, the same
data are plotted on a log-log scale in Fig. 8. On the same graph, we also
plot P (∆t|r) for a Gaussian Random Walk (GRW). For this process, P (z)
is given by (see e.g. (Borodin and Salminen, 1996))

PGRW(z) =

√
C

2π
1
z3/2

eC/(2z) (10)

i.e. this is a Gaussian for the variable x2 = 1/z. The constant C is a free
parameter that has to be adjusted, and we draw PGRW(z) for three possible
values of C. Again, the agreement is good for large z. In fact, this agree-
ment is surprisingly good considering that for the first curve (|r| =0.001),
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Figure 6. The probability distribution P (∆t|r) for the first hitting time, with the time
intervals measured in the theta time scale. The returns are |r| =0.001, 0.00316, 0.01,
0.0316. The full (dotted) curves correspond to negative (positive) return. The data are
for CHF/USD, from 1.1.87 to 1.1.97.

this corresponds to time intervals going from 1 hour to 1 day. This means
that at this time range, for ‘normal’ events, there are a sufficient num-
ber of independent microscopic events to reach the central limit theorem
conditions.

Continuing in Fig. 8, the agreement is quite bad for small z. This region
corresponds to ‘extreme’ events, namely the fixed return was reached in a
relatively short time interval. For the largest return (|r| =0.0316), this
domain corresponds to a time of 1 to 20 days. For such a highly active
market as the foreign exchange for CHF/USD, we would expect to have
reached the long term scaling limit of the central limit theorem already.
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Figure 7. The scaled probability distribution P (∆t|r) for the first hitting time, in lin-lin
scales.

In the study of the return (given ∆t), the large r region is also a domain
where scaling seems to be different, yet it is difficult to be more assertive,
precisely because this is a domain of rare events and the statistics are quite
poor.

The situation may be improved by using another scaling, say z = ∆t/rγ

and adjusting γ. For a value of γ = 1.8 for example, the agreement in the
large z region becomes slightly better, but it deteriorates in the small z
region. Without an objective a-priori criterion, it is difficult to pick a value
for γ. Notice that a lower value of γ would be in line with the scaling of
〈|r[∆t]|〉, which exibits a scaling exponent with respect to ∆t larger than
1/2. Yet, because of the different small z shapes of the scaled curves, the
situation can be improved locally at the most, but cannot be globally cured.
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Figure 8. The scaled probability distribution P (∆t|r) for the first hitting time, in log-log
scales. The parameters for PGRW(z) are C = 1 104, 2 104, 4 104

What makes Fig. 8 particularly interesting is precisely that it clearly shows
the domain in which scaling does not hold. In short, we do not observe
scaling for small z, corresponding to extreme events.

It should also be noted that PGRW(z) has no first moment due to the
slow decay P (z) → z−3/2 for large z, namely the first moment 〈z〉, or
equivalently 〈∆t〉, diverges. Therefore, simple scaling on 〈∆t〉 for example,
cannot be computed.

Another interesting point is the comparison with the probability density
PGRW(∆t|r) of a Gaussian random walk. For the largest value of r = 0.0316,
the maximum of the probability corresponds to a time interval of ∼ 10 days.
Yet, the observed probability distribution is still clearly quite far from the
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Gaussian one in the small z region. Let us estimate the size of the domain
where we do not observe scaling. The maximum of PGRW is at zmax = C/3.
The corresponding cummulative distribution function is

cdfGRW(z) =
∫ z

0
dz′ PGRW(z′) = 1− Φ(

√
C/z) (11)

which at zmax has a value of cdf = ∼ 8%. This gives an estimate of how
the small z region corresponds to rare events. In fact, these events are not
very rare, they occur once every 10 events; this is better shown in Fig. 7.

9. Conclusion

− In finance, the physical time scale is not necessarily the relevant time
scale, because financial markets are not driven by physical laws. Given
the freedom to change time scales, we can invent several different ones.

− With high frequency data (intraday), a time scale transformation pro-
vides us with an elegant solution to seasonalities. This allows access
to finer properties of the process, for example, the conditional het-
eroskedasticity.

− The first hitting time, conditional to the return, provides another char-
acterization of financial processes. It clearly shows that the processes
are not a Gaussian random walk in the short time/large events region.
Moreover, we do not observe scaling in this region of large events.
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Dacorogna M. M., Gauvreau C. L., Müller U. A., Olsen R. B., and Pictet O. V., 1996,
Changing time scale for short-term forecasting in financial markets, Journal of Fore-
casting, 15(3), 203–227.

Dacorogna M. M., Müller U. A., Nagler R. J., Olsen R. B., and Pictet O. V., 1993,
A geographical model for the daily and weekly seasonal volatility in the FX market,
Journal of International Money and Finance, 12(4), 413–438.

Feller W., 1971, An Introduction to Probability Theory and Its Applications, volume II
of Wiley Series in Probability and Mathematical Statistics, John Wiley, New York,
2nd edition.

Lerner R. and Trigg G., editors, 1991, Encyclopedia of Physics, VCH Publisher, Inc.,
2nd edition.

Mandelbrot B. B. and Taylor H. M., 1967, On the distribution of stock prices differences,
Operations Research, 15, 1057–1062.

Müller U. A., Dacorogna M. M., Olsen R. B., Pictet O. V., Schwarz M., and Morgenegg
C., 1990, Statistical study of foreign exchange rates, empirical evidence of a price
change scaling law, and intraday analysis, Journal of Banking and Finance, 14,
1189–1208.


