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B-4000 Liège, Belgium

1. Introduction

Scale invariance seems to be widespread in natural systems [1]. Numerous
examples can be found in the literature: earthquakes, sandpiles, river net-
works, clouds, mountains, etc.. Such an abundance of quasifractal objects
in nature is still actually a puzzling problem [1, 2, 3].

In particular, problems in economics and finance have recently started
to attract the interest of statistical physicists. Fundamental problems are
whether long-range power-law correlations exist in economic systems and
the explanation of economic cycles. Indeed, traditional methods (like spec-
tral methods) have corroborated that there is evidence that the Brownian
motion idea is only approximately right [4, 5, 6].

Long-range power-law correlations have been discovered in economic
systems and particularily in company growth [7] and in financial fluctua-
tions [8]. Different approaches have been envisaged to measure the correla-
tions and to analyze them. Through the so-called Lévy statistics, Stanley et
al. [8] have shown the existence of long-range power-law correlations in the
Standard and Poor (S&P500) index. A method based on wavelet analysis
has also shown the emergence of hidden structures in the S&P500 index [9].
We have recently performed a Detrended Fluctuation Analysis (DFA) of the
USD/DEM ratio [10] and we have demonstrated the existence of successive
sequences of economic activity having different statistical behaviors.
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In the present report, we perform a DFA of various foreign exchange
rates as for example the JPY/USD and the GBP/DEM rates. This work is
also an attempt to classify the behaviour of exchange rates and to provide
some interpretations of apparently random fluctuations in financial data.
The next section will describe the DFA technique. Information about the
data will be given. Numerical results for long-range and local correlations
will be given in Secs. 4 and 5, respectively. The robustness of the DFA
technique will be underlined in Sec. 6 through the analysis of artificial
data, and the comparison of results following different detrending functions.
Additional remarks on the DFA method will be given in Sec. 7. A conclusion
will be drawn in Sec. 8.

2. The DFA Analysis

The Detrended Fluctuation Analysis (DFA) technique was introduced a few
years ago in order to investigate long-range power-law correlations along
DNA sequences [11, 12]. The DFA method consists of dividing the whole
data sequence y(n) of length N into N/t nonoverlapping boxes, each con-
taining t points. The local trend

z(n) = an+ b (1)

in each box is defined to be the ordinate of a linear least-square fit of the
data points in that box. One should remark that a trend z(n) different from
a first-degree polynomial can also be used, such as the cubic trend [13] or
an asymmetric Λ-function [14]. Cubic detrending will be discussed in Sec.
6. The use of other detrending functions may improve the accuracy of the
DFA technique but this remains outside the scope of the present paper,
although we suggest that some basic improvements over the method are
necessary (see Sec. 7).

The detrended fluctuation function F (t) is then calculated from

F 2(t) =
1
t

kt∑
n=(k−1)t+1

|y(n)− z(n)|2, k = 1, 2, · · · , N/t (2)

Averaging F (t) over the N/t intervals gives a function depending on the
box size t. The above calculation is thus repeated for different box sizes t. If
the y(n) data are randomly uncorrelated variables or short range correlated
variables, the behavior is expected to be a power law

〈F 〉 ∼ tα (3)

with an exponent 1/2 [11] just as if the excursion were governed by a mere
random walk. An exponent α 6= 1/2 in a certain range of t values implies
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the existence of long-range correlations in that time interval. Then, the
signal y(n) can be well approximated by the fractional Brownian motion law
[15, 16]. Mathematically, the correlation of a future increment y(n)− y(0)
with a past increment y(0)− y(−n) is then given by

C(t) =
〈(y(0)− y(−n))(y(n)− y(0))〉

〈(y(n)− y(0))2〉
= 22α−1 − 1 (4)

where the correlations are normalized by the variance of y(n) [15].
The cases α > 1/2 and α < 1/2 should be physically distinguished

[15]. For α > 1/2, there is persistence, i.e. C > 0. In this case, if in the
immediate past the signal has a positive increment, then on average an
increase of the signal in the immediate future is expected. An exponent
α < 1/2 means antipersistence, i.e. C < 0. In this case, an increasing value
in the immediate past implies a decreasing signal in the immediate future,
while a decreasing signal in the immediate past makes an increasing signal
in the future probable. In so doing, data records with α < 1/2 appear very
noisy (rough). They have a local noise of the same order of magnitude as the
total excursion of the record [15]. The α = 0 situation corresponds to the
so-called white noise which is obviously antipersistent. Finally, one should
note that α is nothing but H, the so-called Hurst exponent for fractional
Brownian motion [15].

It can be useful to recall [17] that the power spectrum of such random
signals is characterized by a power law with an exponent β = 2α − 1 as
investigated by Liu et al. in this volume.

3. The Collection of Data

We have considered the daily evolution of several currency exchange rates
from January 1980 till December 1996 only including all open banking days.
This represents about N = 4400 data points. The week-ends and holidays
are not considered even though political or social events can occur during
week-ends. The data were collected in Brussels at 02:30 p.m. local time
[18], i.e. near the closing time of the foreign exchange market in London.

4. Long-range Power-law Correlations

The evolution of the JPY/USD exchange rate from 1980 to 1996 is drawn in
Fig.1. In Fig.2, a log-log plot of the function 〈F (t)〉 is shown for the whole
of the data set in Fig.1. This function is very close to a power law with an
exponent α = 0.55± 0.01 holding over two decades in time, i.e. from about
one week to two years. This finding clearly supports the existence of long-
range power-law correlations in the foreign exchange market as discussed
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Figure 1. The daily evolution of the JPY/USD exchange rate from January 1980 to
December 1996.

Figure 2. The fluctuations 〈F 〉 as a function of the box size t for the evolution of the
JPY/USD exchange rate from January 1980 to December 1996, i.e. the data of Fig. 1.

in [10]. These power laws are a signature of the propagation of information
across the economic system during very long times (up to two years in
this particular case). This is quite similar to the physical phenomenon of
anomalous diffusion [19, 20]. Liu et al. [21] have reported similar results,
i.e. long range correlations, for the intraday fluctuations of the New York
Stock Exchange.

Table 1. presents the results of the DFA applied to various currency
exchange rates. It is observed that a wide variety of behaviors, i.e. different
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α values, can be found on the foreign exchange market. Exponent values
and the range over which the power law (3) holds vary drastically from
one currency exchange rate to another. Nevertheless it appears that the
currency exchange rates can be put into three different categories.

TABLE 1. Values of α for various currency ex-
change rates obtained with the help of DFA.
The range of power-law validity (Eq.(3)) is also
given.

exchange rate α range (weeks)

USD/DEM 0.55± 0.02 1→ 50

JPY/USD 0.55± 0.02 1→ 101

GBP/DEM 0.55± 0.02 1→ 62

USD/CAD 0.50± 0.02 1→ 32

NLG/BEF 0.26± 0.03 1→ 10

DEM/BEF 0.23± 0.03 1→ 8

DKK/BEF 0.31± 0.03 1→ 8

FRF/BEF 0.37± 0.03 1→ 46

PLZ/BEF 0.33± 0.03 1→ 20

First, there are rates which exhibit an exponent α larger than 1/2 (per-
sistent behavior). It should be noted that these currency exchange rates
involve leading currencies (USD, JPY, GBP, FRF and DEM). In general,
the value of α is close to 0.55 in such cases. For all leading currencies, Eq.(3)
holds over two decades, i.e. from one week to one year.

The second category concerns the rates exhibiting strict randomness
(α = 1/2) within error bars. This is the case for example of the USD/CAD
rate.

The third category represents the currency echange rates with antiper-
sistent behaviour (α < 1/2) as e.g. DEM/BEF. These currencies most often
concern exchange rates between european currencies which are submitted to
strict monetary rules and to strict regulatory corrections by central banks
due to international multilateral conventions. Thus, it is not surprising to
obtain an antipersistent behavior with little excursion of the exchange rate
in these cases.

It should be pointed out that in general the range over which the an-
tipersistency signature, i.e. the power law, is valid occurs over a limited
time span in the third category. In fact, there is a crossover around t∗ ≈ 10
weeks. For longer time scales (t >> t∗), the economic signal y(t) becomes
again persistent or random. As an illustration of this crossover to a higher
exponent value of around t∗ ≈ 10 weeks, Fig.3 exhibits the fluctuation
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Figure 3. The fluctuations 〈F 〉 as a function of t for the daily evolution of the NLG/BEF
ratio during the period from January 1980 till December 1996. The arrow indicates the
position of the crossover t∗ from antipersistent to persistent behavior.

function 〈F 〉 for the NLG/BEF ratio. This crossover is similar to what
was observed by Liu et al. for intraday correlations on the New York stock
exchange [21]. The existence of a crossover t∗ also supports the idea that
there are multiple information levels, as there are for turbulence [22, 23].
As a consequence, a hierarchy of exponents are needed instead of a single
exponent α, but this is outside the scope of the present contribution.

5. Probing the Local Correlations

In the above, the DFA has been demonstrated to probe the existence of
long-range power-law correlations in currency exchange rates. It is also of
interest to know whether these correlations are stable along the data.

In order to probe the local nature of the correlations, we first construct
a so-called observation box (a probe) of “length” T placed at the beginning
of the data, and we calculate α for the data contained in that box. Then,
we move this box by a few points (e.g. 4 weeks) toward the right along
the financial sequence and again calculate α. Iterating this procedure for
the 1980-1996 period, we obtain a “local measurement” of the degree of
“long-range correlations” over T . With this method, it is crucial to choose
the best box size T . It seems natural to choose T of the same order of
magnitude as the maximum range t over which the power law Eq.(3) is
valid.

The evolution of the GBP/DEM ratio for the 1980-96 period is illus-
trated in Fig. 4a. For this ratio, a global exponent α = 0.55 has been found
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Figure 4. (a) The daily evolution of the GBP/DEM exchange rate from January 1980 to
December 1996. (b) The local exponent α for the evolution of the GBP/DEM exchange
rate. The upward (downward) arrows indicate increases (decreases) of the Bundesbank
discount rate (given in Table 2.).

(see Table 1.). In order to probe the local values of α, we have used a win-
dow of size T = 2 years, i.e. roughly twice the range over which Eq.(3)
is valid. Fig. 4b presents the results of this mobile Detrended Fluctuation
Analysis. The exponent α is mostly above 1/2. Averaging all local values of
α, one can find the global value α = 0.55. The horizontal dashed line in Fig.
4b corresponds to this global (averaged) value. The local value of α seems
to decrease at first, is stable between 1985 and 1991 and again between
1991 and 1995, but presents sharp variations at precise times. For example,
around spring-summer 1990, the local value of α decreases abruptly and
again in mid-1994. These events are probably to be associated with real
political or economic events having an impact on international monetary
policy.
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Following the reported events in the booklets of OCDE [25], we have
been able to interpret the last part of Fig. 4b. Between 1990 and 1995, the
monetary strategy of the Bundesbank in Germany seems to have controlled
the evolution of the exponent α. Indeed, we have noted the increases and
decreases of the discount rate imposed by the german central bank during
this period. These increases (decreases) are denoted in Fig. 4b by upward
(downward) arrows. Surprisingly, the increases (decreases) of the discount
rate imposed by the Bundesbank seem to imply increases (decreases) of the
local value of α. These dated events corresponding to variations of both α
and the discount rates are listed in Table 2. Such political data between
February 1993 and February 1994 were not available to us. During that
year, the trend in α is markedly negative (Fig. 4b). If the economic policy
data becomes available, its relationship to the drop of the discount rate
from 8% to 5.25% during this period will probably become clearer.

TABLE 2. Months and Years for both Bundes-
bank discount rate modifications, and the varia-
tions of the local value of α for the GBP/DEM
ratio during the time span 1991-94. Data from
OCDE, Brussels.

date Bundesbank discount rate α

Jan. 91 ↑ 6.50% 0.43 ↑
Aug. 91 ↑ 7.50% 0.50 ↑
Dec. 91 ↑ 8.00% 0.54 ↑
Jul. 92 ↑ 8.75% 0.55 ↑
Sep. 92 ↓ 8.25% 0.58 ↓
Feb. 93 ↓ 8.00% 0.57 ↓
Feb. 94 ↓ 5.25% 0.55 ↓
Apr. 94 ↓ 5.00% 0.50 ↓
May. 94 ↓ 4.50% 0.49 ↓

A similar analysis has been performed on other time series in order
to check the non-stationarity of α. The USD/DEM case was discussed in
Ref.[10]. For all such analyzed ratios, the local α value decreases smoothly
and seems to reach 1/2. This supports the idea that the foreign exchange
market is actually governed by random conditions or - in the more usual
terminology of economics - is efficient [6].
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6. Robustness of DFA: Linear vs. Cubic Detrending

6.1. ARTIFICIAL SIGNALS

It could be rightfully asked whether the valleys and peaks observed in the
time evolution of α are artefacts or not. In order to test the presence of
artefacts, we have performed a Detrended Fluctuation Analysis with a non-
linear detrending, i.e.

z(n) = cn3 + dn2 + en+ f (5)

on artificial self-affine signals in order to verify the robustness of the tech-
nique. Cubic detrending was used in order to avoid subtle effects which can
occur e.g. in the presence of asymmetrically large fluctuations [13, 14].

The artifical time series used for the following demonstration within the
successive random addition method originates in d = 1 landscape profile
construction. This method is also called “midpoint displacement” in the
literature [26]. With this iteration-based algorithm one generates a sequence
of length N = 2i + 1 where i is an iteration number. At each iteration,
one find the intermediate positions (midpoints) of couples of neighboring
points and calculates the values of the signal through some interpolation
with respect to neighboring couples. The values of y on the midpoints are
then displaced by random numbers chosen from a normal distribution with
zero mean and variance σ2/22iH . The parameter H is the Hurst exponent
of the resulting self-affine signal or fractional Brownian motion.

Using the successive random addition technique described above, we
have built time series of length N = 4096 (i = 12), i.e. the approximate
size of our time series investigated in the preceding sections. For various
signals v(t) with different H values, we have measured the global exponent
α.

Fig. 5 presents the relative error (H − α)/α. Both linear and cubic de-
trending are illustrated. As expected, we have found a global α value close
to H. For H close to zero, the relative error of the DFA technique is larger
than 30%. However, for H > 0.3, the relative error becomes quite small.
A systematic difference between α values determined with linear and cubic
detrendings seems to be present.

Local α values were estimated for these artifical signals using some ob-
servation window as described in Sec. 5. As expected, α is roughly constant
and near H for these artificial time series.

6.2. REAL SIGNALS

We have also performed cubic detrending on the economic series and we
have observed the same features (peaks and valleys) at the same dates as
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Figure 5. Relative error for the estimation of the measured α exponent as a function of
the input Hurst exponent H of the artificial time series. Both linear and cubic detrending
results are illustrated.

Figure 6. The local exponent α for the evolution of the USD/DEM exchange rate. Both
linear and cubic detrending results are illustrated.

for the linear detrending as an example. Fig. 6 presents both linear and
cubic detrendings for the USD/DEM ratio. No significant difference of the
α behavior is observed for either detrending. Thus, peaks and valleys of the
α exponent seem to be relevant and robust and can be trusted in economic
signals.
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6.3. ADDITIONAL REMARKS

This section is devoted to providing additional information to help begin-
ners in using the DFA method.

First, the DFA algorithm is “easy” to compute. However, the probing of
local correlations as well as non-linear detrending requires long computation
times. Non-linear detrendings are, however, needed in some cases. Indeed,
some events like a crash or an anomalous upsurge in stock markets can
lead to undesired jumps of α, thereby screening some information. This is
illustrated in Fig. 7 which presents the evolution of the Dow Jones Industrial
Average [24]. The linear DFA result of the latter signal is presented in Fig.
8. On October 19th, 1987, the Dow Jones index dropped by more than 20%
leading to a singularity in the data. We analyzed two time series: (i) the
original data and (ii) the data transformed after deleting the singularity
and rescaling (see the dashed line in Fig. 7). As observed in Fig. 8, the
linear DFA performed on the original time series gives a huge jump of α
around October 1987. This result suggests that the New York stock market
became persistent in 1987. However, the results for the rescaled time series
(the dashed line in Fig. 7) exhibit a small jump of α suggesting that the
New York stock market was antipersistent in 1987. This remaining jump
could be associated with a precursory or aftershock crash pattern [27, 28].
This observation is consistent with the antipersistent behavior taking place
in 1986 and 1988. As a consequence of the large difference obtained in the
results, we argue that an improved DFA method is necessary in order to
judiciously quantify financial data.

A second remark is that the local exponent α as measured here corre-
sponds to the center of the moving window since the different boxes are
averaged in this window. One may ask where/when the value of α is re-
ally measured. We prefer to consider that α is not measured at the origin
of the window as done in some other works [21]. This a posteriori remark
seems very crucial for associating dated political or economic policy events
with variations of the local exponent α. It can be shown that only when
taking into account the above remark, can the α jump in Fig. 8 be directly
associated with the date of the Dow Jones index crash.

7. Conclusion

The Detrended Fluctuation Analysis method has been hereby shown to
be useful for analyzing the nature (persistency or anti-persistency) of eco-
nomic fluctuations like those observed on daily currency exchange rates.
Several cases were used and currencies could indeed be categorized into
three different sets. These are associated with different economic and po-
litical conditions. It has been noted that known economic policy events, in
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Figure 7. The daily evolution of the Dow Jones Industrial Average from January 1984
till August 1997. Black Monday, i.e. the October 1987 crash is denoted by an arrow. The
continuous curve is for the original data, and the dashed line corresponds to the data for
which the Black Monday singularity is deleted.

Figure 8. The local exponent α for the daily evolution of the Dow Jones Industrial
Average from January 1984 till August 1997. Two results of the linear DFA are given:
(i) the continuous curve is for the original data, and (ii) the dashed line corresponds to
the data for which the Black Monday singularity is deleted.

particular through the leading central bank policies, have a signature in the
α exponent characterizing the DFA technique.

We have tested whether the α exponent behaves differently depending
on the detrending function. For the linear and the cubic cases which were
examined, no significant difference was found, but other detrending func-
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tions might be tested for better extraction of the α value if necessary and
on other signals.

Finally, we have tested the robustness of DFA over artificial signals and
given some warning on the output date at which the α exponent is supposed
to be measured. This resulted from a test of the Dow Jones Industrial Index
in the vicinity of the October 19, 1987 crash.
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