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1. Introduction

We are going to look at some examples of scale-invariant correlations that
are of interest to social scientists.

At one time, it was imagined that the “scale-free” phenomena are rel-
evant to only a fairly narrow slice of physical phenomena [1]. However,
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the range of systems that apparently display power law and hence scale-
invariant correlations has increased dramatically in recent years, ranging
from base pair correlations in noncoding DNA [2, 3], lung inflation [4, 5]
and interbeat intervals of the human heart [6–9] to complex systems in-
volving large numbers of interacting subunits that display “free will,” such
as city growth [10–12] and even economics [13–15].

2. Scale Invariance of Animal Behavior

The Wandering Albatross, a giant seabird, was recently the subject of a
popular work of the noted science writer Ivars Peterson [16, 17]. He describes
an analysis done in collaboration with three workers at the British Antarctic
Service, who have been leg-banding these birds with tracking devices [18].
On analyzing the data, we found that the migratory paths of these birds
obey Lévy flight statistics, and recently other foraging animals were found
to obey well-defined statistical rules [19].

3. Scale Invariance in Human Behavior: Urban Growth Patterns

Predicting urban growth is important for the challenge it presents to the-
oretical frameworks for cluster dynamics [20–22]. Recently, the model of
diffusion limited aggregation (DLA) has been applied to describe urban
growth [20], and results in tree-like dendritic structures which have a core
or “central business district” (CBD). The DLA model predicts that there
exists only one large fractal cluster that is almost perfectly screened from
incoming “development units” (people, capital, resources, etc), so that al-
most all the cluster growth occurs in the extreme peripheral tips. In a
recent work [10] an alternative model to DLA that better describes the
morphology and the area distribution of systems of cities, as well as the
scaling of the urban perimeter of individual cities, has been developed. The
results agree both qualitatively and quantitatively with actual urban data.
The resulting growth morphology can be understood in terms of the effects
of interactions among the constituent units forming a urban region, and
can be modeled using the correlated percolation model in the presence of
a gradient.

In the model one takes into account the following points:

(i) Urban data on the population density ρ(r) of actual urban systems
are known to conform to the relation [23] ρ(r) = ρ0e

−λr, where r is
the radial distance from the CBD situated at the core, and λ is the
density gradient. Therefore, in our model the development units are
positioned with an occupancy probability p(r) ≡ ρ(r)/ρ0 that behaves
in the same fashion as is known experimentally.
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(ii) In actual urban systems, the development units are not positioned
at random. Rather, there exist correlations arising from the fact that
when a development unit is located in a given place, the probability of
adjacent development units increases naturally — i.e., each site is not
independently occupied by a development unit, but is occupied with a
probability that depends on the occupancy of the neighborhood.

In order to quantify these ideas, consider the correlated percolation
model [24, 25]. In the limit where correlations are so small as to be negligi-
ble, a site at position r is occupied if the occupancy variable u(r) is smaller
than the occupation probability p(r); the variables u(r) are uncorrelated
random numbers. To introduce correlation among the variables, convolute
the uncorrelated variables u(r) with a suitable power law kernel [25], and
define a new set of random variables η(r) with long-range power-law cor-
relations that decay as r−α, where r ≡ |r|. The assumption of power-law
interactions is motivated by the fact that the “decision” for a development
unit to be placed in a given location decays gradually with the distance
from an occupied neighborhood. The correlation exponent α is the only
parameter to be determined by empirical observations.

To discuss the morphology of a system of cities generated in the present
model, Makse and co-workers performed simulations of correlated urban
systems for a fixed value of the density gradient λ, and for different degrees
of correlations. The correlations have the effect of agglomerating the units
around an urban area. In the simulated systems the largest city is situated
in the core, which is regarded as the attractive center of the city, and is
surrounded by small clusters or “towns.” The correlated clusters are nearly
compact near their centers and become less compact near their boundaries,
in qualitative agreement with empirical data on actual large cities such as
Berlin, Paris and London [20, 26].

So far, we have argued how correlations between occupancy probabilities
can account for the irregular morphology of towns in an urban system.
The towns surrounding a large city like Berlin are characterized by a wide
range of sizes. We are interested in the laws that quantify the town size
distribution N(A), where A is the area occupied by a given town or “mass”
of the agglomeration, so we calculate the actual distribution of the areas of
the urban settlements around Berlin and London, and find that for both
cities, N(A) follows a power-law.

This new result of a power law area distribution of towns, N(A), can be
understood in the context of our model. Insight into this distribution can
be developed by first noting that the small clusters surrounding the largest
cluster are all situated at distances r from the CBD such that p(r) < pc
or r > rf . Therefore, we find N(A), the cumulative area distribution of
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clusters of area A, to be

N(A) ≡
∫ pc

0
n(A, p) dp ∼ A−(τ+1/dfν).

Here, n(A, p) ∼ A−τg(A/A0) is defined to be the average number of clusters
containing A sites for a given p at a fixed distance r, and τ = 1 + 2/df .
Here, A0(r) ∼ |p(r) − pc|−dfν corresponds to the maximum typical area
occupied by a cluster situated at a distance r from the CBD, while g(A/A0)
is a scaling function that decays rapidly (exponentially) for A > A0. The
exponent ν = ν(α) is defined by ξ(r) ∼ |p(r) − pc|−ν , where ξ(r) is the
connectedness length that represents the mean linear extension of a cluster
at a distance r > rf from the CBD.

4. Scale Invariance of Human Behavior: Finance and Economics

In 1963, Benoit Mandelbrot wrote a seminal article about fluctuations in
cotton prices [13], described in many popular books about fractals. In it,
he points out the possibility of scaling in financial indices. His analysis has
been recently extended to data sets available now [14], and the presence
of scale invariance has been confirmed. Furthermore, it appears that the
distribution function conforms to a truncated Lévy flight distribution (a
Lévy distribution with a exponential truncation in the wings [27]). Recently,
the general approach of Mantegna and Stanley has been extended to study
the scale invariance of one measure of the volatility of a financial index
[28, 29].

Economics is different than finance, and we have also looked at economic
data. Specifically, in collaboration with a card-carrying economist, Michael
Salinger — we studied the possibility that all the companies in a given
economy might interact, more or less, like an Edwards-Anderson spin glass.
As in an Edwards-Anderson spin glass, each spin interacts with other spins
— but not with the same coupling and not even with the same sign.

If the sales in a given company x decrease by, e.g., 10%, it will have
repercussions in the economy. Some of the repercussions will be favorable
— company y, which competes with x, may experience an increase in mar-
ket share. Others will be negative — service industries that provide per-
sonal services for company x employees may experience a drop-off in sales
as employee salaries will surely decline. There are positive and negative
correlations for almost any economic change. Can we view the economy as
a complicated Ising system or spin glass?

To approach this interesting bit of statistical “poetry” and make sense
of it, we first located and secured a database that lists the actual size of
every firm in the United States. With this information, we did an analysis
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Figure 1. Distribution of population growth rates Rs ≡ Ns(t + 1)/Ns(t) across all
species in an entire 31-year data set. The growth rate Rs is calculated by dividing species
abundances in successive years. Abundances are taken as the total number of individuals
of a particular species counted within each survey route [34].

to determine how the distribution of firm size changes from one year to the
next. We then made a histogram for each of three characteristic firm sizes.
The largest firms have a very narrow distribution — plausible because the
percentage of size change from year to year for the largest firms cannot be
that great. On the other hand, a tiny company or a garage-based start-up
can radically increase (or decrease) in size from year to year. The histograms
have a width determined by the size of the firm. When this width is plotted
on the y axis of log-log paper as a function of the size of the firm on the
x axis, the data are approximately linear over 8 orders of magnitude, from
the tiniest firms in the database to the largest. The width scales as the firm
size to an exponent β, with β ≈ 1/6 [15, 30]. We can therefore normalize
the growth rate and show that all the data collapse on a single curve —
demonstrating the scaling of this measure of firm size.

Why does this occur? We’re working on that. We model this firm struc-
ture as an approximate Cayley tree, in which each subunit of a firm reacts
to its directives from above with a certain probability distribution. This
model, developed primarily by Sergey Buldyrev, seems to be consistent
with the critical exponent −1/6 [31]. More recently, Amaral et al. [32] have
proposed a microscopic model, and Takayasu [33] has extended the empir-
ical results to a wide range of countries.
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5. Scaling and Population Biology

Recently, Keitt and Stanley [34, 35] have applied to a 30-year data set on
bird populations the same sort of techniques used to describe long-term
data sets on economics and finance. They find statistical properties that are
remarkably similar (Fig. 1), and consistent with the idea that “every bird
species interacts with every other bird species,” just as the economic anal-
ysis supports the notion that “every firm interacts with every other firm.”
This empirical result is not without interest, since it serves to cast doubt
on models of bird population (and of economic systems) in which one par-
titions the entire data set into strongly-interacting and weakly-interacting
subsets, and then ignores or oversimplifies the interactions in the weakly-
interacting subset.

6. Discussion

Is the point of this paper just to show that a lot of different systems appear
to develop scale-invariant correlations? If so, how do we understand this
empirical fact?

Bak’s idea that systems self-organize themselves such that they are in
effect near a critical point is an appealing unifying principle. Near a critical
point, there is a delicate balance between the exponentially-growing number
of different one-dimensional paths connecting any two faraway subunits and
the exponentially-decaying correlations along each one-dimensional path
(this concept is illustrated, e.g., in Fig. 9.4 of Ref. [1]. If the control pa-
rameter (say coupling constant) is too small, the correlations die out so
fast along each one-dimensional path that subunits far from one another
are not well correlated. However, at a critical point, the exponentially-large
number of paths connecting each pair of subunits is sufficient to balance
out the exponential decay along each path and the “correction factor” wins
out — this correction factor is the power law that governs the total number
of one-dimensional paths connecting two distant subunits. The exponent in
this correction factor depends primarily on the system dimension, and not
at all on the actual arrangement of the subunits (lattice or no-lattice).

Could it be that somehow social systems push themselves “up to the
limit” — just as a sandpile is pushed to the limit before an avalanche starts,
an image that has attracted recent attention in the debate between “self-
organized criticality” and “plain old criticality” (see, e.g., Vespignani and
Zapperi [36] and references therein)? For example, in economics every sub-
unit plays according to rules and pushes itself up against the limits imposed
by these rules. But social systems display a variety of rich forms of “order”,
far richer than we anticipate from studies of ferromagnets and antiferro-
magnets (see, e.g., some of the papers appearing in Knobler et al. [37].
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Could such orderings arise from the complex nature of the interactions? Or
from the range of different “sizes” of the constituent subunits as, e.g., one
finds ordering in sandpiles when sand particles of two different grain sizes
are dropped onto a heap — see, e.g., the Refs. [38–42]? These are questions
that occupy us now.
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26. P. Frankhauser, La Fractalité des Structures Urbaines (Collection Villes/Anthropos,

Paris, 1994).
27. R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946 (1994).
28. Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng and H. E. Stanley, Physica 245, 437 (1997).
29. P. Cizeau, Y. Liu, M. Meyer, C.-K. Peng and H. E. Stanley, Physica 245, 441 (1997).
30. S. V. Buldyrev, L. A. N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger,

H. E. Stanley and M. H. R. Stanley, J. Phys. I France 7, 635 (1997); S. V. Buldyrev,
H. Leschhorn, P. Maass, H. E. Stanley, M. H. R. Stanley, L. A. N. Amaral, S.
Havlin, and M. A. Salinger, “Scaling Behavior in Economics: Empirical Results
and Modeling of Company Growth,” in Proceedings of the International School
of Physics “Enrico Fermi,” Course CXXXIV, edited by F. Mallamace and H. E.
Stanley (IOS Press, Amsterdam, 1997).

31. S. V. Buldyrev, L. A. N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger,
H. E. Stanley and M. H. R. Stanley, J. Phys. I France 7, 635 (1997).

32. L. A. N. Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger and H. E. Stanley, Phys.
Rev. Lett. 80, 1385 (1998).

33. H. Takayasu and K. Okuyama, Fractals 6, xxx (1998).
34. T. Keitt and H. E. Stanley, “Dynamics of North American Breeding Bird Popula-

tions,” Nature 393, xxx (May 1998).
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