
BEYOND IMPLIED VOLATILITY: EXTRACTING INFORMATION
FROM OPTIONS PRICES

RAMA CONT
Ecole Polytechnique Fédérale
IPT-EPFL CH-1015 Lausanne, Switzerland†.

1. Introduction

Option pricing has become an important field of theoretical and applied
research both in probability theory and in finance, attracting the attention
of many mathematicians, financial economists and physicists. Meanwhile,
the rapid expansion of the options market has made option pricing and
hedging an important issue for market practitioners. This interest in op-
tion pricing theory culminated in the awarding of the 1997 Nobel prize in
Economics to Myron Scholes and Robert Merton for their pioneering work
on this subject.

While option pricing theory has traditionally focused on obtaining meth-
ods for pricing and hedging of derivative securities based on parameters of
the underlying assets, recent approaches tend to consider the market prices
of options as given and view them as a source of information on the market.
While there are many excellent textbooks and monographs on the former
approach (Duffie, 1992; Musiela & Rutkowski, 1997), the latter has only
been developed in the recent literature and is less well known. It is this ap-
proach on which we will focus here: We will try to show why market prices
of options can be considered as a source of information, describe different
theoretical tools and procedures for extracting their information content
and show how this information can be interpreted in economic terms and
used in applications.

The following text is divided into four sections. Section 2 is a general
review of option pricing theory and introduces notations used throughout
the text. Section 3 discusses the informational content of option prices and
defines the notions of implied volatility and state price density. Section 4
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presents various methods which have been proposed to extract the informa-
tion content of option prices. Section 5 discusses how these results may be
interpreted in economic terms and used in applications. Section 6 highlights
the salient features of the results obtained in various empirical studies and
the important points to keep in mind when interpreting and using them.

2. Option Pricing: A Review

2.1. OPTIONS AND DERIVATIVE SECURITIES

A derivative security or contingent claim is a financial asset whose (future)
payoff is defined to be a function of the future price(s) of another (or several
other) assets, called the underlying assets. Option pricing theory focuses on
the problem of pricing and hedging derivative securities in a consistent way
given a market in which the underlying assets are represented as stochastic
processes.

Consider an investor participating in a stock market, where stock prices
fluctuate according to a random process. One of the simplest types of deriva-
tive securities is a contract which entitles its bearer to buy, if she wishes,
one share of stock at a specified date T in the future for a price K specified
in advance. Such a contract is called a European call option on the stock,
with exercise price or strike K and maturity T . The stock is said to be the
underlying asset. Let St be the price of the underlying asset at time t. If
at the expiration date T of the option the stock price is below the exercise
price i.e. ST ≤ K the holder will not exercise his option to buy : the option
will then be worthless. If the stock price at expiration is above the exercise
price i.e. ST ≥ K then bearer can exercise the option i.e. use it to buy
one share of stock at the strike price K and sell it at the current price ST ,
making a profit of ST −K. A European call option is thus equivalent to a
ticket entitling the bearer to a payment of max(0, ST−K) at the expiration
date T of the option. The function h(ST ) = max(0, ST −K) is called the
payoff of the option.

A European call option has therefore a non-negative payoff in all cases:
the stock price may rise or fall but in either case the bearer of the option will
not lose money. An option may be viewed as an insurance against the rise
of the stock price above a specified level K which is precisely the exercise
price. Like any insurance contract, an option must therefore have a certain
value. Options are financial assets themselves, and may be bought or sold
on a market, like stocks. Since 1975, when the first options exchange floor
was opened in Chicago, options have been traded on organized markets.
The question for the buyer or the seller of an option is then: what is the
value of such a contract? How much should an investor be willing to pay
for an option? A related question is: once an option has been sold, what
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strategy should the seller (underwriter) of the option follow in order to
minimize his/her risk of having to pay off a large sum in the case the
option is exercised? The first two questions are concerned with pricing while
the last one is concerned with hedging. The response to these questions
has stimulated a vast literature, initiated by the seminal work of Black
and Scholes (Black & Scholes, 1973), and has led to the development of a
sophisticated theoretical framework known as option valuation theory1.

There are a great variety of derivative securities with more complicated
payoff structures. The payoff h may depend in a complicated fashion not
only on the final price of the underlying asset but also on its trajectory
(path-dependent options). The option may also have early exercise features
(American options) or depend on the prices of more than one underlying
asset (spread options). We will consider here only the simplest type of
option, namely the European call option defined above. In fact, contrarily
to what is suggested by many popular textbooks, even the pricing and
hedging of such a simple option is non-trivial under realistic assumptions
for the price process of the underlying asset.

2.2. EXPECTATION PRICING AND ARBITRAGE PRICING

A naive approach to the pricing of an option would be to state that the
present value of an uncertain future cash flow h(ST ) is simply equal to the
discounted expected value of the cash flow:

E(h) = e−r(T−t)
∫ ∞

0
dST h(ST )p(ST ) (1)

where p is the probability density function of the random variable ST repre-
senting the stock price at a future date T . The exponential is a discounting
factor taking into account the effect of a constant interest rate r. Under
some stationarity hypothesis on the increments of the price process, the
density p may be obtained by an appropriate statistical analysis of the
historical evolution of prices. For this reason, we will allude to it as the his-
torical density. We will refer to such a pricing rule as “expectation pricing”.

However, nothing guarantees that such a pricing rule is consistent in
the sense that one cannot find a riskless strategy for making a profit by
trading at these prices. Such a strategy is called an arbitrage opportunity.
The consistency of prices requires that if two dynamical trading strategies
have the same final payoff (with probability one) then they must have the
same initial cost otherwise this will create an arbitrage opportunity for
any investor aware of this inconsistency. This is precisely the cornerstone

1For a general introduction to option markets, see (Cox & Rubinstein, 1985). A math-
ematical treatment is given in (Duffie, 1992) or (Musiela & Rutkowski, 1997).



4 RAMA CONT

of the mathematical approach to option pricing, which postulates that in
a liquid market there should be no arbitrage opportunities: the market is
efficient enough to make price inconsistencies disappear almost as soon as
they appear.

The first example of this approach was given by Black & Scholes (Black
& Scholes, 1973) who remarked that when the price of the underlying asset
St is described by a geometric Brownian motion process:

St = exp(µt+ σBt) (2)

where Bt is a Brownian motion (Wiener) process, then the expectation
pricing rule gives inconsistent prices: pricing European call options accord-
ing to Eq. (1) can create arbitrage opportunities. Furthermore they showed
that requiring the absence of arbitrage opportunities is sufficient to define
a unique price for a European call option, independently of the preferences
of market agents. This price is given by the Black-Scholes formula:

CBS(St,K, σ, t, T ) = StN(d1)−Ke−r(T−t)N(d2) (3)

d1 =
ln(St/K) + (T − t)(r + σ2

2 )
σ
√
T − t

(4)

d2 =
ln(St/K) + (T − t)(r − σ2

2 )
σ
√
T − t

(5)

where N is the cumulative distribution function of a standard Gaussian
random variable:

N(u) =
1√
2π

∫ u

−∞
exp(−u

2

2
)du . (6)

However the method used by Black & Scholes (Black & Scholes, 1973) and
Merton (Merton, 1992) relies in an essential way on the hypothesis that the
underlying asset follows geometric Brownian motion (Eq. 2), which does not
adequately describe the real dynamics of asset prices.

The methodology of Black & Scholes was subsequently generalized (Mer-
ton, 1992; Harrison & Kreps, 1979; Harrison & Pliska, 1981) to diffusion
processes defined as solutions of stochastic differential equations

dSt = St(µ(St)dt+ σ(St)dWt) (7)

where dWt is Gaussian white noise (increment of a Wiener process) and µ, σ
deterministic functions of the price St. A good introduction to arbitrage
pricing techniques is given in (Baxter & Rennie, 1996).
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2.3. ONE ASSET, TWO DISTRIBUTIONS

Even though naive, the representation Eq. (1) of the price of an option as its
expected future payoff is appealing to economic intuition: the present value
of an uncertain cash flow should be somehow related to its expected value.
Harrison & Kreps (Harrison & Kreps, 1979) have shown that even in the
arbitrage pricing framework, it is still possible to express prices of contin-
gent claims as expectations of their payoff, but at a certain price (!): These
expectations are no longer calculated with the density p of the underlying
asset, but with another density q, different from p.

More precisely, Harrison & Kreps show that in a market where asset
prices are described by stochastic processes satisfying certain regularity
conditions, the absence of arbitrage opportunities is equivalent to the exis-
tence of a probability measure Q equivalent2 to P , called an equivalent mar-
tingale measure, such that all (discounted) asset prices are Q-martingales:
that is, if one denotes by qt,T the conditional density of the stock price at
maturity ST under the measure Q given the past history up to time t, then
the price Xt of any derivative asset with payoff hX verifies3

e−r(T−t)
∫
qt,T (ST )hX(ST )dXT = Xt. (8)

In particular the (discounted) stock price itself is a Q-martingale:

e−r(T−t)
∫
qt,T (ST )STdST = St. (9)

This does not imply that real asset prices are martingales or even driftless
processes: in fact there is a positive drift in most asset prices and also some
degree of predictability. Eq. (8) should be considered as a property defining
qt,T and not as a property of the price process St whose probabilistic prop-
erties are described by the historical density p. The density qt,T is merely
a mathematical intermediary expressing the relation between the prices of
different options with the same maturity T . It should not be confused with
the historical density pt,T .

The martingale property (Eq. 8) then implies that the price of any
European option can be calculated as the expectation of its payoff under
the probability measure Q. In particular, the price of any call option is then
given by:

C(St,K, T − t, r) = e−r(T−t)
∫ ∞

0
max(ST −K, 0)qt,T (ST )dST (10)

2Two probability measures Q and P are said to be equivalent if for any event A,
P (A) = 0 iff Q(A) = 0 i.e. if they define the same set of impossible events. In the case of
a single asset considered here, this is a rather mild restriction .

3The mathematical definition of a martingale also requires the finiteness of the first
absolute moment < |Xt| > which does not give any additional information here.
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Under the assumption of stationarity, qt,T will only depend on τ = T − t,
but this assumption does not necessarily hold in real markets.

The density q has been given several names in the literature: “risk-
neutral probability”, “state price deflator” (Duffie, 1992), state price den-
sity, equivalent martingale measure. While these different notions coincide
in the case of the Black-Scholes model, they correspond to different objects
in the general case of an incomplete market (see below). The term “risk-
neutral density” refers precisely to the case where, as in the Black-Scholes
model, all contingent payoffs can be replicated by a self-financing portfolio
strategy. This is not true in general, neither theoretically nor empirically
(Bouchaud et al., 1995; Föllmer & Sondermann, 1986), so we will refrain
from using the term “risk-neutral” density. The term “martingale measure”
refers to the property that asset prices are expected to be Q-martingales:
again, this property does not define Q uniquely in the case of an incom-
plete market. We will use the term state price density to refer to a density
q, such that the market prices of options can be expressed by Eq. (10):
the state price density should not be viewed as a mathematical property of
the underlying asset’s stochastic process but as a way of characterizing the
prices of options on this asset.

From the point of view of economic theory, one can consider the for-
malism introduced by Harrison & Kreps as an extension of the Arrow-
Debreu theory (Debreu, 1959) to a continuous time/continuous state space
framework. The state price density q is thus the continuum equivalent of
the Arrow-Debreu state prices. However, while the emphasis of the Arrow-
Debreu theory is on the notion of value, the emphasis of (Harrison & Kreps,
1979; Harrison & Pliska, 1981) is on the notions of dynamic hedging and
arbitrage, which are important concerns for market operators.

The situation can thus be summarized as follows. In the framework
of an arbitrage-free market, each asset is characterized by two different
probability densities: the historical density pt,T which describes the random
variations of the asset price S between t and T and the state price density
qt,T which is used for pricing options on the underlying asset S. These two
densities are different a priori and, except in very special cases such as the
Black-Scholes model (Black & Scholes, 1973) arbitrage arguments do not
enable us to calculate one of them given the other.

2.4. INCOMPLETE MARKETS AND THE MARKET MEASURE

The main results of the arbitrage approach are existence theorems which
state that the absence of arbitrage opportunities leads to the existence of
a density q, such that all option prices are expectations of their payoffs
with respect to q, but do not say anything about the uniqueness of such
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a measure q. Indeed, except in very special cases like the Black-Scholes or
the binomial tree model (Cox & Rubinstein, 1985) where q is determined
uniquely by arbitrage conditions there are in general infinitely many den-
sities qt,T which satisfy no-arbitrage requirements. In this case the market
is said to be incomplete.

One could argue, however, that market prices are not unique either:
there are always two prices- a bid price and an ask price- quoted for each
option. This has led to theoretical efforts to express the bid and ask prices
as the supremum/infimum of arbitrage-free prices, the supremum/infimum
being taken either over all martingale measures (Eberlein & Jacod, 1997)
or over a set of dominating strategies. Elegant as they may seem, these ap-
proaches give disappointing results. For example, Eberlein & Jacod (Eber-
lein & Jacod, 1997) have shown that in the case of a purely discontinu-
ous price process taking the supremum/infimum over all martingale mea-
sures leads to trivial bounds on the option prices which give no information
whatsoever: for a derivative asset with payoff h(ST ), arbitrage constraints
impose that the price should lie in the interval [e−r(T−t)h(er(T−t)St), St].
For a call option h(x) = max(x −K, 0) and the arbitrage bounds become
[St −Ke−r(T−t), St]. The lower bound is the price of a futures contract of
exercice price K: arbitrage arguments simply tell us that the price of an
option lies between the price of the underlying asset and the price of a
futures contract, a result which can be retrieved by elementary arguments
(Cox & Rubinstein, 1985). More importantly, the price interval predicted
by such an approach is far too large compared to real bid-ask spreads.

These results show that arbitrage constraints alone are not sufficient for
determining the price of a simple option such as a European call as soon
as the underlying stochastic process has a more complex behavior than
(geometric) Brownian motion, which is the case for real asset prices (Cont,
1998). One therefore needs to use constraints other than those imposed by
arbitrage in order to determine the market price of the option.

One can represent the situation as if the market had chosen among all
the possible arbitrage-free pricing systems a particular one which could be
represented by a particular martingale measure Q, the market measure.
The situation may be compared to that encountered in the ergodic theory
of dynamical systems. For a given dynamical system there may be several
invariant measures. However, a given trajectory of the dynamical system
will reach a stationary state described by a probability measure called the
“physical measure” of the system (Ruelle, 1987). The procedure by which
the physical measure is selected among all possible invariant measures in-
volves other physical mechanisms and is not described by the probabilistic
formulation.

The first approach is to choose, among all state price densities q, one



8 RAMA CONT

which satisfies a certain optimization criterion. The price of the option is
then determined by Eq. (10) using the SPD q thus chosen. The optimiza-
tion criterion can either correspond to the minimization of hedging risk
(Föllmer & Sondermann, 1986) or to a certain trade-off between the cost
and accuracy of hedging (Schäl, 1994). Föllmer & Schweizer (Föllmer &
Schweizer, 1990) propose to choose among all martingales me asures q the
one which is the closest to the historical probability p in terms of relat ive
entropy (see below). In any case, the minimization of the criterion over all
martingale densities leads to the selection of a unique density q which is
then assumed to be the state price density.

Another approach to option pricing in incomplete markets, proposed
by El Karoui et al., is based on dynamic optimization techniques: it leads
to lower and upper bounds on the price of options (El Karoui & Quenez,
1991).

A different approach proposed by Bouchaud et al. is to abandon arbi-
trage arguments and define the price of the option as the cost of the best
hedging strategy i.e. the hedging strategy which minimizes hedging risk in
a quadratic sense (Bouchaud et al., 1995). This approach, which is further
developed in (Bouchaud & Potters, 1997) is not based on arbitrage pricing
and although the prices obtained coincide with the arbitrage–free ones in
the case where arbitrage arguments define a unique price, they may not be
arbitrage–free a priori in the mathematical sense of the term. In particu-
lar they are not necessarily the same as the ones obtained by the quadratic
risk minimization approaches of Föllmer & Schweizer (Föllmer & Schweizer,
1990) and Schäl (Schäl, 1994).

3. Option Prices as a Source of Information

The options market has drastically changed since Black & Scholes published
their famous article in 1973; today, many options are liquid assets and their
price is determined by the interplay between market supply and demand.
“Pricing” such options may therefore not be the priority of market operators
since their market price is an observation and not a quantity to be fixed by
a mathematical approach4. This has led in recent years to the emergence of
a new direction in research: what can the observed market prices of options
tell us about the statistical properties of the underlying asset? Or, in the
terms defined above: what can one infer for the densities p and q from the
observation of market prices of options?

4Note however that hedging remains an important issue even for liquid options.
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3.1. IMPLIED VOLATILITY AND THE SMILE EFFECT

In the Black-Scholes lognormal model, all option prices are described by
a single parameter: the volatility of the underlying asset. Therefore the
knowledge of either the price or the volatility enables one to calculate the
other parameter. In practice, the volatility is not an observable variable,
whereas the market price P of the option is; one can therefore invert the
Black-Scholes formula to determine the value σBS of the volatility param-
eter which would give a Black-Scholes price corresponding to the observed
market price:

∃σBS(K,T ), C(St,K, σBS(K,T ), T ) = P (11)

This value is called the (Black-Scholes) implied volatility (Schmalensee &
Trippi, 1978). σBS(K,T ) can be obtained through a numerical resolution
of the above equation. Actually this is how the Black-Scholes formula is
used by options traders: not so much as a pricing tool but as a means
for switching back and forth between market prices of options and their
associated implied volatilities.

The implied volatility is the simplest example of a statistical parameter
implicit in option prices. Note that the implied volatility is not necessarily
equal to the variance of the underlying asset’s return: it is extracted from
option prices and not from historical data from the underlying asset. In
general the two values are different. It has been conjectured that the implied
volatility is a good predictor of the future volatility of the underlying asset
but the results highly depend on the type of data and averaging period
used to calculate the volatility (Chiras & Manaster, 1978; Schmalensee &
Trippi, 1978).

In a Black-Scholes universe, the implied volatility σBS(K,T ) would in
fact be a constant equal to the true volatility of the underlying asset. The
non-dependence of implied volatility on the strike price K can be viewed as
a specification test for the Black-Scholes model. However, empirical studies
of implied volatilities show a systematic dependence of implied volatilities
on the exercise price and on maturity (Dumas et al., 1996; Jackwerth,
1996). In many cases the implied volatility presents a minimum at-the-
money (when St = K) and has a convex, parabolic shape called the “smile”
(Jackwerth, 1996; Potters, Cont & Bouchaud, 1998) an example of which is
given in figure 3.1. This is not always the case however: the implied volatility
plotted as a function of the strike price K may take various forms. Some of
these alternative patterns, well known to options traders, are documented
in (Dumas et al., 1996). On many markets, the convex parabolic “smile”
pattern observed frequently after the 1987 crash has been replaced in the
recent years by a still convex but monotonically decreasing profile.
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Figure 1. Implied volatility smile for BUND options traded on the London Financial
Futures Exchange (LIFFE).

3.2. IMPLIED DISTRIBUTIONS

The empirical evidence alluded to above points to the misspecification of
the Black-Scholes model and calls for a satisfying explanation. If the SPD
is not a lognormal then there is no reason that a single parameter, the
implied volatility, should adequately summarize the information content
of option prices. On the other hand, the availability of large data sets of
option prices from organized markets such as the CBOE (Chicago Board
of Options Exchange) add a complementary dimension to the data sets
available for empirical research in finance: whereas time series data give one
observation per date, options prices contain a whole cross section of prices
for each maturity date and thus enable comparison between cross sectional
and time series information, giving a richer view of market variables.

In theory, the information content of option prices is fully reflected by
the knowledge of the entire density qt,T : this has led to the development of
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methods which, starting from a set of option prices search for a density q
such that Eq. (10) holds. Such a distribution q is called an implied distribu-
tion, by analogy with implied volatility5. If one adheres to the assumption
of absence of arbitrage opportunities, the notion of implied distribution co-
incides with the concept of state price density defined above. But even if
one does not adopt this point of view, the implied distribution still contains
important information about the market. In the following we will use the
terms “implied distribution” and “state price density” interchangeably for
qt,T . Let us now describe various methods for extracting information about
the state price density from option prices.

4. Estimating State Price Densities

Given that all options prices can be expressed in terms of a single function,
the state price density q, one can imagine statistical procedures to extract
q from a sufficiently large set of option prices. Different methods have been
proposed to reach this objective, among which we distinguish three different
approaches. Expansion methods use a series expansion of the SPD which
is then truncated to give a parametric approximation, the parameters of
which can be calibrated to observed option prices. Non parametric methods
do not make any specific assumption on the form of the SPD but require
a lot of data. Parametric methods postulate a particular form for the SPD
and fit the parameters to observed option prices.

4.1. EXPANSION METHODS

We regroup in this section various methods which have in common the use
of a series expansion for the state price density. The general methodology
can be stated as follows. One starts with an expansion formula for the state
price density considered as a general probability distribution:

P (ST − St ≤ x) = P0(x) +
∞∑
k=1

ukPk(x) (12)

the first term of the expansion P0 corresponding either to the lognormal
or the normal distribution. The following terms can therefore be consid-
ered as successive corrections to the lognormal or normal approximations.
The series is then truncated at a finite order, which gives a parametric
approximation to the SPD which, if analytically tractable, enables explicit
expressions to be obtained for prices of options. These expressions are then

5Note that except when qt,T is a lognormal, the variance of the implied distribution
qt,T does not coincide with the Black-Scholes implied volatility σBS .
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used to estimate the parameters of the model from market prices for op-
tions. Then the expansion enables oneto retrieve an approximate expression
for the SPD.

A general feature of these methods is that even when the infinite sum
in the expansion represents a probability distribution, finite order approx-
imations of it may become negative which leads to negative probabilities
far enough in the tails. This drawback should not be viewed as prohibitive
however: it only means that these methods should not be used to price
options too far from the money.

We will review here three expansion methods: lognormal Edgeworth
expansions (Jarrow & Rudd, 1982), cumulant expansions (Potters, Cont &
Bouchaud, 1998) and Hermite polynomials (Abken et al., 1996).

4.1.1. Cumulants and Edgeworth expansions
All these methods are based on a series expansion of the Fourier transform
of a probability distribution q (here, the state price density) defined by:

ΦT (z) =
∫
qt,T (x)eizxdx (13)

The cumulants of the probability density p are then defined as the coeffi-
cients of the Taylor expansion:

ln ΦT (z) =
n∑
j=1

cj(T )
(iz)j

j!
+ o(zn) (14)

The cumulants are related to the central moments µj by the relations

c1 = µ1

c2 = σ2

c3 = µ3

c4 = µ4 − 3µ2
2

One can normalize the cumulants cj to obtain dimensionless quantities:

λj =
cj
σj
, (15)

s = λ3 is called the skewness of the distribution p, κ = λ4 the kurtosis.
The skewness is a measure of the assymmetry of the distribution: for a
distribution symmetric about its mean s = 0, while s > 0 indicates more
weight on the right hand side of the distribution. The kurtosis measures
the fatness of the tails: κ = 0 for a normal distribution, a positive value
of κ indicates a slowly decaying tail while distributions with a compact
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support often have negative kurtosis. A distribution with κ > 0 is said to
be leptokurtic. An Edgeworth expansion is an expansion of the difference
between two probability densities p1 and p2 in terms of their cumulants:

p1(x)− p2(x) =
c2(p1)− c2(p2)

2
d2p2

dx2
− c3(p1)− c3(p2)

3!
d3p2

dx3

+
c4(p1)− c4(p2) + 3(c2(p1)− c2(p2))2

4!
d4p2

dx4
+ ...(16)

4.1.2. Lognormal Edgeworth expansions
Since the density of reference used for evaluating payoffs in the Black-
Scholes model is the lognormal density, Jarrow & Rudd (Jarrow & Rudd,
1982) suggested the use of the expansion above, taking p1 = q as the state
price density and p2 as the lognormal density. The price of a call option,
expressed by Eq. (10), is given by:

C(St,K, T ) = CBS(St,K, σ, T )− (s− sLN )e−rT (
σ3

3!
dLN(K)
dK

)

+(κ− κLN )e−rT (
σ4

4!
d2LN(K)
dK2

) + ... (17)

where CBS is the Black-Scholes price, σ the implied variance of the SPD
and s, sLN and κ, κLN are the skewness and the kurtosis of the SPD and
of the lognormal distribution, respectively. Given a set of option prices for
maturity T , Eq. (17) can then be used to determine the implied variance σ
and the implied cumulants s and κ.

This method has been applied by Corrado & Su (Corrado & Su, 1996)
to S&P options: they extract the implied cumulants s and κ for various
maturities from option prices and show evidence of significant kurtosis and
skewness in the implied distribution. Using the representation above, they
propose to correct the Black-Scholes pricing formula for skewness and kur-
tosis by adding the first two terms in Eq. (17). No comparison is made
however between implied and historical parameters (cumulants of pt,T ).

4.1.3. Cumulant expansions and smile generators
Another method, proposed by Potters, Cont & Bouchaud (Potters, Cont
& Bouchaud, 1998), is based on an expansion of the state price density q
starting from a normal distribution.

Q(x)− Φ(x) =
1√
2π
e−x

2/2
∞∑
k=3

Pk(x). (18)
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The first two terms are given by

P3(x) =
s

6
(1− x2) (19)

P4(x) =
10
24
s2x5 + (

1
24
κ− 5

36
s2)x3 + (

5s2

24
− κ

8
)x (20)

where s is the skewness and κ the kurtosis of the density q. Although
the mathematical starting point here is quite similar to the Hermite or
Edgeworth expansion, the procedure used by Potters et al is very different:
instead of directly matching the parameters to option prices, they focus on
reproducing correctly the shape of the volatility smile. Their procedure is
the following: starting from the expansion (18) an analytic expression for
the option price can be obtained in the form of series expansion containing
the cumulants. The series is then truncated at a finite order n and the
expression for the option price inverted to give an analytical approximation
for the volatility smile in terms of the cumulants up to order n, expression
σ(K) as a polynomial of degree n in K. This expression is then fitted to
the observed volatility smile (for example using a least squares method) to
yield the implied cumulants.

An advantage of this formulation is that it corresponds more closely to
market habits: indeed, option traders do not work with prices, but with
implied volatilities, which they rightly consider to be more stable in time
than option prices.

This analysis can be repeated for different maturities to yield the implied
cumulants as a function of maturity T : the resulting term structure of the
cumulants then (shown in Fig. 2) gives an insight into the evolution of
the state price density q under time-aggregation. By applying this method
to options on BUND contracts on the LIFFE market, the authors show
that the term structure of the implied kurtosis matches closely that of the
historical kurtosis, at least for short maturities for which kurtosis effects are
very important. This observation shows that the densities pt,T and qt,T have
similar time-aggregation properties (dependence on T − t) a fact which is
not easily explained in the arbitrage pricing framework where the relation
between pt,T and qt,T is unknown in incomplete markets.

Although the expansion given in (Potters, Cont & Bouchaud, 1998) uses
only the skewness and the kurtosis, one could in principle move further in
the expansion and use higher cumulants, which would lead to a polynomial
expression for the implied volatility smile. However, empirical estimates
of higher order cumulants are unreliable because of their high standard
deviations.
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Figure 2. Comparison of the implied kurtosis with the historical kurtosis as a function
of maturity T (in units of 5 minutes) for BUND options traded on the London Financial
Futures Exchange (LIFFE). The representation on a logarithmic scale shows an depen-
dence on T different from that of a random walk for which the kurtosis would decrease
as 1/T.

4.1.4. Hermite polynomial expansions
The k-th Hermite polynomial is defined as:

φk(x) = ex
2/2d

kφ0

dxk
φ0(x) =

e−x
2/2

√
2π

(21)

The method recently proposed by Abken et al (Abken et al., 1996) uses
a Hermite polynomial expansion for both Q and the payoff function h.
Although the starting point is similar to the approach of (Potters, Cont
& Bouchaud, 1998), the method is different: it is based on the properties
of Hermite polynomials which form an orthonormal basis for the scalar
product:

< f, g >=
1√
2π

∫
g(x)f(x)e−x

2/2dx (22)

The state price density qt,T can be expanded on this basis:

qt,T (x) =
1√
2π

∞∑
k=0

qkφk(x)e−x
2/2 qk =

∫
qt,T (x)φk(x)dx (23)
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Madan & Milne also use a representation of the payoff function h in the
Hermite polynomial basis:

h(x) =
∞∑
k=0

akφk(x) ak =< h, φk > . (24)

Therefore, in contrast with the cumulant expansion method, not only is the
SPD approximated, but also the payoff. The coefficients ak can be calcu-
lated analytically for a given payoff function h. In the case of a European
call the coefficients are given in (Abken et al., 1996). The price Ch of an
option with payoff h is then given by:

Ch = e−r(T−t)
∫
qt,T (x)h(x)dx = e−r(T−t)

∞∑
k=0

akqk (25)

The price of any option can therefore be expressed as a linear combination
of the coefficients qk, which correspond to the market price of “Hermite
polynomial risk”. In order to retrieve these coefficients from option prices,
one can truncate the expansion in Eq. (25) at a certain order n and, know-
ing the coefficients ak, calculate qk, 1 ≤ k ≤ n so as to reproduce as closely
as possible a set of option prices, for example using a least-squares method.
The state price density can then be reconstructed using Eq. (23). An em-
pirical example is given in (Abken et al., 1996) with n = 4: the empirical
results show that both the historical and state price densities have signifi-
cant kurtosis; however, the tails of the state price density are found to be
fatter than those of the historical density, especially the left tail: the inter-
pretation is that the market fears large negative jumps in the price that
have not (yet!) been observed in recent price history. Such results have
also been reported in several other studies of option prices (Bates, 1991;
Ait-Sahalia et al., 1997).

4.2. NON-PARAMETRIC METHODS

One of the drawbacks of the Black-Scholes model is that it is based on a
strong assumption for the form of the distribution of the underlying assets
fluctuations, namely their lognormality. Although everybody agrees on the
weaknesses of the lognormal model, it is not easy to propose an alternative
stochastic process reproducing in a satisfying manner the dynamics of asset
prices (Cont, 1998).

Non-parametric methods enable one to avoid this problem by using
model-free statistical methods based on very few assumptions about the
process generating the data. Two types of non-parametric methods have
been proposed in the context of the study of option prices: kernel regression
and maximum entropy techniques.
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4.2.1. Kernel estimators
Ait Sahalia & Lo (Ait-Sahalia & Lo, 1996) have introduced another method
based on the following observation by Breeden & Litzenberger (Breeden &
Litzenberger, 1978): if C(St,K, r) denotes the price of a call option, then
the state price density can be obtained by taking the second derivative of
C with respect to the exercise price K:

q(ST ) = exp r(T − t) ∂
2C

∂K2
(26)

If one observed a sufficient range of exercise prices K, then Eq. (26) could
be used in discrete form to estimate q. However, it is well known that the
discrete derivative of an empirically estimated curve need not necessarily
yield a good estimator of the theoretical derivative, let alone the second-
order derivative. Ait-Sahalia & Lo propose to avoid this difficulty by using
non-parametric kernel regression (Härdle, 1990): kernel methods yield a
smooth estimator of the function C and under certain regularity conditions
it can be shown that the second derivative of the estimator converges to
q(ST ) for large samples. However, the convergence is slowed down both
because of differentiation and because of the “curse of dimensionality” i.e.
the large number of parameters in the function C.

Applying this method to S&P futures options, Ait-Sahalia & Lo ob-
tain an estimator of the state price density for various maturities varying
between 21 days and 9 months. The densities obtained are systematically
different from a lognormal density and present significant skewness and
kurtosis. But the interesting feature of this approach is that it yields the
entire distribution and not only the moments or cumulants. One can then
plot the SPD and compare it with the historical density or with various an-
alytical distributions. Another important feature is that the method used
by Ait-Sahalia & Lo also estimated the dependence on the maturity T
of the option prices, yielding, as in the cumulant expansion method, the
term-structure (scaling behavior) of various statistical parameters as a by-
product. However it is numerically intensive and difficult to use in real-time
applications.

4.2.2. Maximum entropy method
The non-parametric methods described above minimize the distance be-
tween observed option prices and theoretical option prices obtained from a
certain state price density q. However such a problem has in principle an
infinite number of solutions since the density q has an infinite number of
degrees of freedom constrained by a finite number of option prices. Indeed,
different non-parametric procedures will not lead in general to the same es-
timated densities. This leads to the need for a criterion to choose between
the numerous densities reproducing correctly the observed prices.
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Two recent papers (Buchen & Kelly, 1996; Stutzer, 1996) have pro-
posed a method for estimating the state price density based on a statistical
mechanics/ information theoretic approach, namely the maximum entropy
method. The entropy of a probability density p is defined as:

S(p) = −
∫ ∞

0
p(x) ln p(x) dx (27)

S(p) is a measure of the information content. The idea is to choose amongst
all densities which correctly price an observed set of options, the one which
has the maximum entropy, i.e. maximizes S(q) under the constraint:∫ ∞

0
q(x) dx = 1 (28)

and subject to the constraint that a certain set of observed option prices
Ci are correctly reproduced:

Ci = e−r(T−t)
∫ ∞

0
max(S −Ki, 0)q(S) dS (29)

This approach is interesting in several respects. First, it is based on the min-
imization of an information criterion which seems less arbitrary than other
penalty functions, such as those used in other non-parametric methods.
Secondly, one can generalize this method to minimize the Kullback-Leibler
distance between q and the historical density p, defined as:

S(p, q) =
∫
p(x) ln

p(x)
q(x)

dx (30)

Minimizing this distance gives the state price density q0 which is the “clos-
est” to the historical density p in an information-theoretic sense. This den-
sity q0 should be related to the minimal martingale measure proposed by
(Föllmer & Schweizer, 1990). The value of S(p, q) can then give a straight-
forward answer to the question (Potters, Cont & Bouchaud, 1998): how
different is the SPD from the historical distribution? Or: how different are
market prices of options from those obtained by naive expectation pricing
(see section 2.2)?

However the absence of smoothness constraints has its drawbacks. One
of the characteristics of this method is that it typically gives “bumpy”, i.e.
multimodal estimates of the state price density. This is due to the fact that
there is no constraint on the smoothness of the density. This may seem a
bit strange because it is not the type of feature one expects to observe:
for example, the historical PDFs of stock returns are always unimodal.
This has to be contrasted with the high degree of smoothness required
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in kernel regression methods. Some authors have argued that these bumps
may be “intrinsic properties” of market data and should not be dismissed as
aberrations but no economic explanation has been proposed. Jackwerth &
Rubinstein (Jackwerth & Rubinstein, 1996) solve this problem by imposing
smoothness constraints on the density: this can be done by subtracting from
the optimization criterion S(q) a term penalizing large variations in the
derivative dq/dx. However, the relative weight of smoothness vs. entropy
terms may modify the results.

4.3. PARAMETRIC METHODS

4.3.1. Implied binomial trees
Apart from the Black-Scholes model, the other widely used option pricing
model is the discrete-time binomial tree model (Cox & Rubinstein, 1985).
In the same way that continuous-time models can be used to extract con-
tinuous state price densities from market prices of options, the binomial
tree model can be used to extract from option prices an “implied tree” the
parameters of which are conditioned to reproduce correctly a set of ob-
served option prices. Rubinstein (Rubinstein, 1994) proposes an algorithm
which, starting from a set of option prices at a given maturity, constructs
an implied binomial tree which reproduces them exactly. The implied tree
contains the same type of information as the state price density presented
above. The tree can then be used to price other options. Although dis-
crete by definition, binomial trees can approximate as closely as one wishes
any continuous state price density, provided the number of nodes is large
enough.

Rubinstein’s approach is easier to implement from a practical point of
view than kernel methods and can perfectly fit a given set of option prices
for any single maturity. However, the large number of parameters may be a
drawback when it comes to parameter stability: in practice the nodes of the
binomial tree have to be recalculated every day and, as in the case of the
Black-Scholes implied volatility, the implied transition probabilities will in
general change with time.

4.3.2. Mixtures of lognormals
The habit of working with the lognormal distribution by reference to the
Black-Scholes model has led to parametric models representing the state
price density as a mixture of lognormals of different variances:

q(ST , T, t, St) =
N∑
k=1

ωkLN(
St − µk
σk
√
T

)
N∑
k=1

ωk = 1 (31)
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where LN(x) is a lognormal distribution with unit variance and mean r,
the (risk-free) interest rate. The advantage of such a procedure is that
the price of an option is simply obtained as the average of Black-Scholes
prices for the different volatilities σk weighted by the respective weights ωk
of each distribution in the mixture. In principle one could interpret such
a mixture as the outcome of a switching procedure between regimes of
different volatility, the conditional SPD being lognormal in each case. Such
models have been fitted to options prices in various markets by (Melick &
Thomas, 1997).

Their results are not surprising: by construction, a mixture of lognor-
mals has thin tails unless one allows high values of variance. But the major
drawback of such a parametric form is probably its absence of theoretical
or economic justification. Remember that the density which is modeled as
a mixture of lognormals is not the historical density but the state price
density: even when we assume market completeness, it is not clear what
sort of stochastic process for the underlying asset would give rise to such a
state price density.

TABLE 1. Advantages and drawbacks of various methods for extracting information
from option prices.

Method Advantage Disadvantage

Mixture of lognormals Link with Black-Scholes Too thin tails

Expansion methods Easy to implement and interpret Negative tails

Maximum entropy Link with historical probability Multimodality

Kernel methods Gives the entire distribution Slow convergence

Implied trees Perfect fit of cross-sectional data Parameter instability

5. Applications

5.1. MEASURING INVESTORS’ PREFERENCES

If one considers a simple exchange economy (Lucas, 1978) with a represen-
tative investor, then from the knowledge of any two of the three following
ingredients it is theoretically possible to deduce the third one:

1. The preferences of the representative investor.
2. The stochastic process of the underlying asset.
3. The prices of derivative assets.
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Therefore, at least in theory, knowing the prices of a sufficient number of
options and using time series data to obtain information about the price
process of the underlying asset one can draw conclusions about the char-
acteristics of the representative agents preferences. Such an approach has
been proposed by Jackwerth (Jackwerth, 1996) to extract the degree of risk
aversion of investors implied by option prices.

Exciting as it may seem, as it stands, such an approach is limited for sev-
eral reasons. First, while a representative investor approach may be justified
in a normative context (which is the one adopted implicitly in option pricing
theory) it does not make sense in a positive approach to the study of market
prices. The limits of the concept of a representative agent have already been
pointed out by many authors. Taking seriously the idea of a representative
investor would imply all sorts of paradoxes, the absence of trade not be-
ing the least of them. Furthermore, even if the representative agent model
were qualitatively correct, in order to obtain quantitative information on
their preferences, one would have to choose a parametric representation
for the decision criterion adopted by the representative investor. Typically,
this amounts to postulating that the representative investor maximizes the
expectation of a certain utility function U(w) of her wealth w; depending
on the choice for the form of the function, one may obtain different results
from the procedure described above. Given that utility functions are not
empirically observable objects, the choice of a parametric family for U(x)
is often ad-hoc, thus making such an approach less interesting from an
empirical point of view.

5.2. PRICING ILLIQUID OPTIONS

Not all options traded on a given underlying asset have the same liquid-
ity: typically, there are a few strikes and maturities for which the market
activity is intense, and the further one moves away from the money and
towards longer maturities, the less liquid the options become. It is therefore
reasonable to assume that some options prices are more “accurate” than
others in the sense that their prices are more carefully arbitraged. These
considerations must be taken into account when choosing the data to base
the estimations on; for further discussion of this issue see (Ait-Sahalia &
Lo, 1996).

Given this fact, one can then use the information contained in the mar-
ket prices of liquid options — considered to be priced more “efficiently” —
to price less liquid options in a coherent, arbitrage-free fashion. The idea
is simple: first, the state price density is estimated by one of the methods
explained above based only on market prices of liquid options; the esti-
mated SPD is then used to calculate the values of other, less liquid options.
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This method may be used, for example, to interpolate between existing
maturities or exercice prices.

5.3. ARBITRAGE STRATEGIES

If one has an efficient method for pricing illiquid options ’better’ than the
market, then such a method can potentially be used for obtaining profits
by systematically buying underpriced options and selling overpriced ones.
These strategies are not arbitrage strategies in a textbook sense, i.e. riskless
strategies with positive payoff, but they are statistical arbitrage strategies:
they are supposed to give consistently positive returns in the long run.

The first such test was conducted by (Chiras & Manaster, 1978) who
used the implied volatility as a predictor of future price volatility of the
underlying asset. More recently Ait-Sahalia et al (Ait-Sahalia et al., 1997)
have proposed an arbitrage strategy based on non-parametric kernel esti-
mators of the SPD. The idea is the following: one starts with a diffusion
model for the stock price:

dSt = St(µdt+ σ(St)dWt) (32)

where the instantaneous volatility σ is considered to be a deterministic
function of the price level St. The function σ(S) is then estimated from the
historical price series of the underlying assets using a non-parametric ap-
proach. Under the assumption of a complete market, the state price density
may be calculated from σ(S), yielding an estimator q∗t,T . Another estima-
tor qt,T may be obtained by a kernel method as explained above. If options
were priced according to the theory based on the assumption in Eq. (32),
then one would observe q = q∗, a hypothesis which is rejected by the data.
The authors then propose to exploit the difference between the two distri-
butions to implement a simple trading strategy, which boils down to buying
options for which the theoretical price calculated with q∗ is lower than the
market price (given by q) and selling in the opposite case. They show that
their strategy yields a steady profit (34.5% annualized with a Sharpe ratio
around 1.0) when tested on historical data. Such results have yet to be
confirmed on other markets and data sets and it should be noted that large
data sets are needed to implement them.

6. Discussion

We have described different methods for extracting the statistical informa-
tion contained in the market prices of options. There are several points
which, in our opinion, should be kept in mind when using the results of
such methods either in a theoretical context or in applications:
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1. All methods point to the existence of fat tails, excess kurtosis and
skewness in the state price density and clearly show that the state
price density is different from a lognormal, as assumed in the Black-
Scholes model. The Black-Scholes formula is simply used as a tool for
translating prices into implied volatilities and not as a pricing method.

2. The study of the evolution of the state price density under time ag-
gregation shows a nontrivial term structure of the implied cumulants,
resembling the terms structure of the historical cumulants. For exam-
ple the term structure of the implied kurtosis shows a slow decrease
with maturity which bears a striking similarity with that of historical
kurtosis (Potters, Cont & Bouchaud, 1998). In the terms used in the
mathematical finance literature, the “risk-neutral” dynamics is not well
described by a random walk / (geometric) Brownian motion model.

3. One should not confuse the state price densities estimated by the ap-
proaches discussed above with the historical densities obtained from
the historical evolution of the underlying asset. Many of the articles
cited above suffer from this error: it amounts to implicitly assuming an
expectation pricing rule. The two densities reflect two different types of
information: while the historical densities reflect the fluctuations in the
market price of the underlying asset, option prices and therefore the
state price density reflects the anticipations and preferences of market
participants rather than the actual (past or future) evolution of prices.
This distinction is clearly emphasized in (Abken et al., 1996) and more
explicitly in the maximum entropy method (Stutzer, 1996) where even
by minimizing the distance of the SPD with the historical distribution,
one finds two different distributions. Another way of stating this result
is that option prices are not simply given by historical averages of their
payoffs.

4. More specifically, accessing the state price density empirically enables
a direct comparison with the historical density, which provides a tool
for studying a central question in option pricing theory: the relation
between the historical and the so-called “risk-neutral” density. The
results show that the two distributions not only differ in their mean
but may also differ in higher moments such as skewness or kurtosis.
In particular the “intuition” conveyed by the Black-Scholes model that
the pricing density is simply a centered (zero-mean) version of the his-
torical density is not correct. In this sense one sees that the Black-
Scholes model is a “singularity” and its properties should not be con-
sidered as generic.

5. Although this is implicitly assumed by many authors, it is not ob-
vious that the state price densities estimated from options data do
actually correspond to the “risk-neutral probabilities” or “martingale
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measures” (Harrison & Kreps, 1979; Musiela & Rutkowski, 1997) used
in the mathematical finance literature. Although constraint of the ab-
sence of arbitrage opportunities theoretically forces all option prices
to be expressed as expectations of their payoff with respect to the
same density, the introduction of transaction costs and other market
imperfections (limited liquidity, for example) can allow for the simulta-
neous existence of several SPDs compatible with the observed prices.
Indeed the presence of market imperfections may drastically modify
the conclusions of arbitrage-based pricing theories (Figlewski, 1989).
In statistical terms, it is not clear whether a set of option prices deter-
mine the SPD uniquely in the presence of market imperfections even
from a theoretical point of view (e.g. if one could observe an infinite
number of strikes K). This point has yet to be investigated both from
a theoretical and an empirical point of view.

The methods described above are becoming increasingly common in ap-
plications and will lead to an enhancement of arbitrage activities between
the spot and option markets. Given the rapid development of options mar-
kets, the volume of such arbitrage trades is not negligible compared to the
initial volume of the spot market, giving rise to non-negligible feedback
effects. The existence of feedback implies that derivative asset such as call
options cannot be priced in a framework where the underlying asset is con-
sidered as a totally exogenous stochastic process: the distinction between
underlying and derivative assets becomes less clear-cut than what text-book
definitions tend to make us think. The development of such “integrated”
approaches to asset pricing should certainly be on the agenda of future
research.
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