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1. Introduction

Many markets are characterised by trading relationships. In certain markets
individuals systematically trade with particular partners, whilst in others
no such stable links are observed. Yet the way in which such organisation
develops and its economic consequences are not considered in standard
theoretical models.

A number of models have been developed to provide at least partial
answers to these questions. Such models examine situations in which sell-
ers set prices individually and in which buyers choose which seller to buy
from. The best known of these are ”search models”, (see, for example Di-
amond (1989)), which are usually for a market with a single commodity.
More complete models with individuals setting prices and buyers searching

fLaboratory associated with CNRS (URA 1306), Ecole Normale Supérieure and
Universities Paris 6 and Paris 7
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have been developed for example by Fisher (1973) and Lesourne (1992). In
standard search models, buyers sample sellers according to some rule and
buy from the cheapest. All sellers are anonymous and are searched with
equal probability. There is no memory of where favourable opportunities
were found in the past. Such models seem to be plausible for transactions
which take place infrequently, when sellers may have some knowledge of the
distribution of prices but cannot be sure as to the prices charged by par-
ticular individual sellers. This is the case, for example, when an individual
makes an infrequent purchase such as buying a car, seeking a job, or when
a firm invests in a large capital item.

Yet on many markets individuals trade frequently with each other. Of
particular interest are markets for perishable goods. Since sellers cannot
hold inventories, they only supply the quantities they expect to sell during
one session. A buyer who takes a considerable amount of time searching for
the best price runs the risk of not finding anything to buy by the end of
the session. Rather than gathering a lot of new information at each session,
the best strategy for him is to use the experience gained from transactions
made with different suppliers during previous sessions. We shall show that
trading relationships develop because buyers learn about the value of trad-
ing with particular partners. Stable trading relationships are also profitable
to sellers, who can then predict with some accuracy the demand they will
face in each session and determine their supply accordingly. The more loyal
the customers, the better the prediction and the more likely the customer
is to find the goods he is seeking. Thus the establishment of regular trading
relationships may be mutually profitable. The basic aim of this paper is to
suggest and test a simple search mechanism that would result in the estab-
lishment of stable trading relationships and to characterize the conditions
under which this happens.

The standard game theoretic approach to the problem of trading rela-
tionships is to develop a game theoretic equilibrium notion for the network
of trading links, in the sense that no individual has any interest in adding
or removing any of the links in which he is involved. This is the approach
adopted by Jackson and Wolinsky (1996). Whilst such models provide a
benchmark with which various trading structures can be compared, they
do not explain how such structures might develop and, in addition, they
assume that agents can exactly predict the consequences of changing links
and of the reaction of other participants to such changes.

By contrast, our model falls into the class of adaptive economic models.
In such models, agents are not endowed with perfect rationality, but behave
according to some procedural rationality, using information obtained from
other agents or from their own experience. Modelling economic agents as
adaptive rather than perfectly rational makes sense in particular when they
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have incomplete information, which is the case for buyers in the Marseille
wholesale fish market, where prices are not posted and may vary according
to seller, time of the day and from day to day.

A typical example of the sort of procedural rationality that we have in
mind is that of modifying one’s behaviour by attributing greater weight to
the use of rules that have proved to be profitable in the past. This is the
approach developed by (Arthur et al., 1996) for example. Another example
is the idea that one may, in the light of observation or experience, wish to
imitate the behaviour of others. Such imitation may be motivated by the
success of other agents or by inference about the information they possess
and may be based on more or less sophisticated reasoning. A number of
authors have adopted this approach to ”social learning”, in particular those
who use discrete choice theory (see e.g. Aoki (1996), Brock and Durlauf
(1995), Durlauf (1990), Kirman (1993), Lesourne (1992); see Anderson et
al (1992) for a recent review of the discrete choice theory literature).

In this paper, however, we shall focus on situations in which individuals
have to rely on their own experience and do not observe that of others
directly. We shall be interested here, in particular, in markets in which
transactions are not made public, that is, there is no central market clear-
ing mechanism and no prices are posted. In such markets agents have to
rely on their own information. This is the case for many markets, such
as the Marseille fish market from which our empirical evidence is drawn.
An important aspect of this particular market, and of other markets for
perishable goods, is that agents face a trade-off between finding the best
possible transaction and being sure that they can actually make a trans-
action. They are aware of the possibility of short supply by the end of the
session: since sellers only bring to the market the quantities they expect to
sell during one session, a buyer who searches until he finds the best price
may not find anything to buy by the end of the session. Similarly, a seller
first offering too high a price and re-adjusting only by the end of the ses-
sion would realise too late that buyers have been served elsewhere. We will
therefore develop a model which seeks to explain some of the phenomena
that characterise this type of market and which will be based on learning
from past experience.

We will adopt an approach which allows us to obtain analytical results
for the simplest version of our model and we then use simulations to check
that these results still hold in more complicated and realistic versions.

The structure of the paper is as follows. We start by proposing a very
simple model of a market for a perishable commodity, in which at each time
step buyers (retailers) meet sellers (wholesalers) and buy quantities of the
homogeneous good to resell on their own local market. They do this in a
shop which is chosen according to the information gathered during previous
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purchases. We then discuss the dynamics obtained according to how choices
are made with respect to information. These models are analytically solved
using the "mean field” approximation. For the case of exponential choice
functions, which we use in the rest of the paper, the theory predicts that
two distinct types of behaviour for the agents should be observed according
to their learning and choice parameters: some agents should remain loyal
to one selected shop, while others should keep on shopping around forever.
We then use multi-agent simulations to study more complex, and more
realistic versions of the model, allowing, for instance, several purchases per
buyer during the same day, varying prices, and more complicated adaptive
behaviour on the part of buyers and sellers. Our simulations show that
the same patterns of dynamic behaviour persist. We finally verify that
our theoretical predictions are consistent with the empirical data from the
wholesale fish market in Marseille, while other theories are not.

2. The Simplest Model
2.1. BASIC ASSUMPTIONS

Let us consider a set of n buyers ¢ and a set of m sellers j. In order to
simplify assumptions as much as possible, let us suppose that:

(i) Customers choose one shop each day according to their memory of
previous transactions. As long as the shop has supplies, a customer
purchases a quantity ¢;(t) implying a profit m;(¢). Whether the cus-
tomer is served when he visits the shop depends on which shop j is
visited at time ¢, how many customers that shop had before, and what
quantity of stocks the shop had at the beginning of the day.

(ii) Since the good is perishable, and therefore cannot be stored overnight,
each day a seller supplies some quantity Q;(t), which he expects to
sell on that day. In the simplest version of the model, this quantity is
simply the quantity he sold yesterday.

(iii) Each day the same market scenario is repeated.

These simplistic assumptions will be used in Secs. 2, 3 and 4. More realistic
assumptions will be made in Sec. 5.

2.2. A GENERAL FRAMEWORK FOR STUDYING BUYERS’ DYNAMICS

We are interested in modelling buyers’ behaviour. In this paper we assume
that each buyer makes use of previous experience to select a seller. Since
we want to emphasise the role of the individual buyers’ choice functions, we
assume that there is no direct interaction between buyers. We also assume
that information on a seller is only obtained through transactions with him
(there are no ”posted” prices; see (Weisbuch et al., 1997) for a real instance
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information . coding . choice decision
(observations) function (seller selection)

Figure 1. The general model

of such a condition). The general framework, illustrated in Fig. 1, is thus
the following. Each time a buyer makes a transaction with a seller, he
acquires some information about what he can expect from this particular
seller (quality of goods, profit,...). This information will be encoded in some
way which updates the previously acquired information about sellers. This
stored information is the input to the (possibly probabilistic) choice (or
decision) rule used by the buyer to select a seller for the next transaction.

Let us illustrate this general model with simple specific examples. Con-
sidering a given buyer, we will denote by J = {J;,j = 1,..., N} the stored
information, J; being the information concerning the jth seller. In the sim-
plest case, J; is a scalar. For instance, J; may be the profit obtained the
last time the buyer dealt with the jth seller; or it may be some moving
average value of past profits from seller j, e.g.,

Jj(t) = (1 =7)Jj(t = 1) +m;(?) (1)

where 7;(t) is the actual profit at time ¢ if j is the seller visited at time
t, and 7;(t) = 0 otherwise. The parameter v is smaller than 1: events far
in the past are progressively forgotten. An updating rule such as (1) is an
example of a coding scheme. One may consider more involved rules, taking
into account not only the mean profit obtained from each seller, but also
some information on the frequency of visits to each seller. In the following,
we will only consider the case of a single variable J; stored for each seller.
We note, however, that our approach can be easily generalised to more
complicated situations.

The choice rule, to be denoted by P(j|J), is the probability that the
buyer will choose the jth seller based on the stored information J. A large
class of model encountered in the literature corresponds to a decision rule
defined by

f(J5)

P(j|3) = ST (2)

where f(.) > 0 is some function chosen a priori — to be called below the
choice function. If, as above, J; is a scalar, f is a real valued function of a
single variable. Typical choices for f are a linear or affine function (Kilani
and Lesourne, 1995), or an exponential function(Anderson et al., 1993;
Blume, 1993), in which case the choice rule is called the logit rule.
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2.3. CHOICE FUNCTIONS AND PHASE TRANSITION

2.3.1. Mean field approximation

In this section we consider, for a general choice function, the mean field
approximation as used in (Weisbuch et al., 1997) for the logit case (the
mean field approach has been also applied to other economic problems, see
e.g. (Aoki, 1996; Brock and Durlauf, 1995)). We consider a buyer whose
choice rule is as defined in (2), and the coding rule as in (1) (the discussion
can be easily generalised to other coding rules). Moreover, for simplicity we
assume a constant, seller independent profit 7 from each transaction (this
implies in particular that the transaction is always possible and realized
between the buyer and the chosen seller). Hence we have:

mj(t) = m if jis chosen,
= 0 otherwise. (3)

The mean field approach (Derrida, 1986) consists in replacing randomly
fluctuating quantities by their expectations, thus neglecting fluctuations.
Averaging (1), one gets

Ji(t) = (1 =7)J;(t —1) +7P(j|I(t - 1)). (4)
In the large time limit, one gets the fixed point (mean field) equations:

5= G/ (5)

Ak f( )

In the above equation we have replaced P(j|J) by its expression (2).

Let us study now the solutions of the mean field equations. More pre-
cisely, the equations (5) are fixed point equations of a dynamical process:
among the solutions only the stable ones are meaningful, so we will have
to study the stability of the solutions.

As a preliminary remark, summing over j the fixed point equations (5)
one sees that any solution J satisfies

ZJ]-:%. (6)
J

Obviously,
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is always a solution. Developing (4) in the vicinity of this symmetric fixed
point (7)!, one finds that it is stable if the quantity «, defined by

dln f(x)
dlnzx x (8)

LE:N

«

is smaller than 1. Otherwise, that is if
a>1 9)

the symmetric solution (7) is unstable: there must exist other, stable solu-
tions.

To simplify the discussion, let us consider the simplest case of two sellers,
N = 2. In that case, we can work with the single variable Ji, since according
to (6) the other one, Js, is equal to 7 — 1. Then the mean field equations
become simply

™ f(J1)
Jp = — - =g(J1). 10
LT ey Y 10
In fact, it is clear that if J; is a solution, then Z — J; is also a solution.

Hence we have at least two stable solutions. Since we have Jy = g— J1, each
pair of solutions can be written {J1, J2}. To keep the discussion simple, we
will restrict the discussion below to the simplest case of a unique stable pair
of solutions (hence one unstable and two stable solutions). Geometrically,
a solutions J; of (10) is given in the plane {z,y} by the intersection of
the straight line y = z with the curve y = g(z). One can show that the

parameter o defined above is here equal to the slope of g at that value 2=

2y
of Ji. Hence the condition for having the symmetric point unstable is
dg(x)
= >1. 11
@ dx LA ( )

r=35-

Remark: if f(0) = 0, it is easily seen that there are always (at least)
three solutions, the symmetric point (7), and the pair {0, %} Performing

the stability analysis one finds that the non symmetric solutions {0, g} are
stable if
™ f'(0)

/(%)

<1. (12)

2.3.2. Interpretation
If the only stable solution of the equilibrium equations is J; = Niw the
frequencies of visiting any seller are equal. The probability of visiting a

'"We use the fact that the derivative of the denominator of Eq. (2) is zero at the
symmetric fixed point because of Eq. (6)
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seller simply fluctuates without any stable preference for one particular
seller emerging.

If there are other stable solutions J; # -, the frequency of visiting
some seller is larger than for the others. The buyer has a stable preference
for one seller. According to the above discussion, the qualitative behaviour
of the buyer depends on the choice function f(.), the number of sellers IV,
the memory parameter 7, and the profit = only through the quantity «
defined in equation (8). If the buyer modifies his choice strategy, or if his
profit varies in such a way that his « changes, an abrupt change of behaviour
will be observed when « crosses the critical value 1. This is analogous to
a second order phase transition in physical systems, where the parameter
« has the meaning of the inverse of the temperature. If one starts with a
small value of «, the stable solution {J; = NL'W j=1,..., N} remains valid
until « reaches 1. Just above the transition, J starts to depart from the
symmetric solution, with

Jj—%‘wx/a—l. (13)

Now it is reasonable to assume that the buyers on a market have dif-
ferent choice strategies, and/or make different profits, so that they have
different values of ae. When there exists a wide range of « values distributed
around the critical value 1, one will observe two categories of buyers: the
ones who choose the seller they will visit randomly and the others, who
have strong preferences. We say that the distribution is bimodal.

2.3.3. Specific choice functions

The linear and affine cases:

Let us consider the simplest case, that is an affine choice function. As can
be seen from the definition (2) of the choice rule, f(z) and af(x), for any
a > 0, give the same choice rule. Without loss of generality, an affine choice
function can thus be defined by

f(J;) =BJ;+1, (14)
with 8 > 0. For that case the quantity « is

1
1+852°

o (15)

The purely linear case f(J;) = J; (studied in (Kilani and Lesourne, 1995)) is
obtained for § — oo. For this case, % = 0, the number of solutions is infinite:

every J = {Jj,j =1,..., N} such that 3, J; = g is a stable solution. This
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is analogous to what happens in the classical model of Blackwell’s urns. If
0 < oo, this degeneracy does not subsist. There is only one solution, the
symmetric one {J; = Ni,y,j =1,..., N} (which is indeed stable: o < 1). In
any case, that is whatever the value of (§ is, there will be no transition.
The power law case:

Let us consider the power law case, a simple generalization of the affine
case:

f(J;) = (BJ;)" +1 (16)
with n > 0 and 8 > 0. For this choice function « is given by
n
o= ———. (17)
N~y
1+ (%)

For n = 1 one recovers the results for the linear and affine cases: « is
always smaller than 1 for 8 < oo, and equal to 1 if % =0.Forn<1a«a
is always smaller than 1 and there is no transition as found in (Kilani and
Lesourne, 1995).

For n > 1, there exists the possibility of observing a transition, hence a
bimodal situation: « is larger than 1 for f,—: > (n— 1)7%.

Remark: in the particular case § — oo, that is for f(J;) = (J;)", one
has f(0) = 0. Since n > 1, f/(0) = 0, so that according to (12), the non

symmetric solutions {0, 7} are stable.

Finally in this case (16) the convexity of f is a necessary condition for
observing a bimodal behaviour.

The exponential case:
The standard logit case corresponds to an exponential choice function:

f(Jj) = exp(BJj) - (18)
In that case « is simply given by

_ pr
a—m. (19)

The symmetric point is unstable if o = ﬁ,—: > 1.

The exponential choice function will be used consistently in the next
sections. Presently our main conclusion is that according to the value of
B with respect to a critical point defined by £, = %, two behaviors are
possible for buyers: fidelity to one shop for 8 > . or random search among

all shops for g < g..
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2.4. DERIVATION OF THE LOGIT FUNCTION FROM AN OPTIMIZATION
PRINCIPLE

2.4.1. An exploration-exploitation compromise

In the previous section we studied the qualitative behaviour that we can
expect for a general choice function. The next question is then: in what
sense is a given choice function efficient? One attractive feature of a choice
function is that it may represent some sort of ”best behaviour” with re-
spect to some criterion. Here we will show that the logit function can be
derived from an optimization strategy. In particular, we argue below that,
for modeling the buyers’ strategy, one can define a maximization principle,
formally identical to the so-called mazimum entropy principle considered
in statistical physics (Balian, 1992) — to be briefly presented later for com-
parison.

Let us assume that the buyer wants to find a compromise between get-
ting the best profit at the next transaction and keeping the best possible
knowledge of a market in order to be able to make good choices in the
future: the market can vary in time because of external events or because
the sellers’ strategies change. This requires that he visits every seller as
frequently as possible (he can only get information about a seller by mak-
ing transactions with this seller). If p; is the probability of visiting seller
J,pj = p? = 1/N would correspond to maximum information. The proper

measure of the similarity between this uniform distribution {pg-) é\le and

N

the actual distribution {p;};_; is the entropy S,

S:—ijlnpj. (20)
J

The entropy is a measure of the uncertainty in the occurrence of the events
j=1,...,N. In the context of Information Theory (Blahut, 1988), it is the
minimal amount of information (measured in bits if the logarithm in (20)
is taken in base 2) required in order to code the set of events.

One may thus want to choose the p;’s by a compromise between the
maximization of entropy and a maximization of immediate profit. Taking
the (moving) average J; as an estimate of the profit to be obtained from
seller 7, we thus maximise

C=S+8Y pjJ (21)
J

over all possible p;’s. The quantity 1%2 is the amount of profit considered
to be equivalent to one bit of information.
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Introducing a Lagrangian multiplier A in order to impose the normal-
ization constraint »_; p; = 1, one finally maximises

C:S+szjjj_)\(z,pj_1) (22)

Taking the derivative of C with respect to p;, one gets
—l—lnpj—i-ﬁjj—)\:o (23)

which gives precisely

1
pj = - exp(BJ;) (24)
with Z =37, exp(8J;).
The logit strategy is thus obtained as a consequence of the optimization
of a cost function which expresses the compromise between short term profit
and preservation of information for long term profits.

2.4.2. Link with physics and inference theory

The exponential family of probability distributions plays a central role in
statistical physics, where it is derived from the mazimum entropy principle
(Balian, 1992). More generally, the maximum entropy principle is a tool for
making inferences. In fact, it has already been used in economics in order
to justify the choice of an exponential distribution - see e.g. (de Palma et
al., 1996; Williams, 1977).

For completeness, we restate here this inference principle. One con-
structs a probability distribution {pj,j7 = 1,..., N} based on some prior
knowledge, in such a way that the resulting probability law does not con-
tain more information than what can be gained from this prior knowledge.
The measure of uncertainty in the occurrence of the events is given by the
entropy S of the probability distribution, as defined in (20). If we know
some mean value F of an observable quantity F;, we estimate the p;’s by
maximizing the entropy S under the constraint that E is given. This leads
to

pj = 5 exp(~E)) (25)

where Z is the normalization constant (the ”partition function”). For a
; — 1 .

physical system T = 5 Is the temperature, and E is the energy. If one

works at a given value of 3 (instead of a given value of E), one sees that

as T goes to zero (3 goes to oco) the system will choose the states with

the smallest possible values of energy. In our model of buyers’ strategy, the

quantity which plays the role of the energy is thus minus the mean profit
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(since the profit has to be maximised). With the maximum entropy principle
one predicts the probability distribution without making any hypotheses
on the dynamics. The resulting probability distribution is the best guess
based on the knowledge we have about the system: the logit function can
be understood as the best description of the buyer’s strategy based on the
knowledge of the mean profit he obtains.

The specificity of statistical physics is that the application of this infer-
ence principle leads precisely to the correct physical description - the law of
thermodynamics. Clearly, there is no reason a priori for expecting such suc-
cess in the context of economics. Nevertheless, there are several approaches
tending to show that the exponential family may play a fundamental role in
economics, too, as discussed in particular in (de Palma et al., 1996). What
we have shown in this paper is that the maximum entropy principle has
an appealing ”physical” interpretation in the context of the search for an
exploitation/exploration compromise.

A final remark is in order. One should note that to derive a choice
function from an optimization principle does not imply that one assumes
the buyer to be aware of optimizing some criterion. An analogy can be
made with living systems evolving according to past experiences. One of
the main approach to modelling evolution in nature assumes the optimiza-
tion of some cost function, the survival fitness. Clearly, no genetic system
is aware of what is really going on, and only mutation rules can be ob-
served at the level of individuals. Similarly, it is commonly believed that
the organization of the brain is optimally fitted to the tasks it has to solve,
through evolution and adaptation. It is not unreasonable to expect that
a buyer follows some empirical rule, the rule itself being chosen according
to some kind of cultural knowledge based on past experiences, possibly in-
cluding those of previous generations, in such a way that, implicitly, the
rule implements the optimization of some cost function.

2.4.3. Interpretation

The above analysis shows that as long as the mean field approximation
remains valid, the qualitative behavior of the dynamics, ordered or disor-
dered, only depends on the ratio between (3 and .. As long as 3/, is kept
constant, changing the original parameters m, 3, and 7, only changes the
scale of equilibrium variables, such as the actual profits of the buyers or the
fraction of unsold goods. The time scale of learning depends on ~: order,
when achieved, is reached faster for larger values of ~.

Within the approximations made in this section, buyer dynamics are
uncoupled: each buyer behaves independently of other buyers. As a result, if
we now consider a set of buyers with a distribution of 7, 3 and ~ parameters,
we expect to observe two distinct classes of buyers within the same market:
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loyal buyers with 8 > (., who visit the same shop most of the time, and
searchers with § < (., who wander from shop to shop. Indeed, precisely
this sort of ”division of labour” is observed on the Marseille fish market
which was the empirical starting point for this paper and which will be
discussed in Section 6. Furthermore, because of the sharp transition in
behavior when ( goes across the transition, the distribution of behavior is
expected to be bimodal even if the distribution of the characteristics w,
and « is unimodal.

We can now compare the predictions of our model where agents learn
individually from their past experience with those models where agents
imitate each others’ behavior through social interactions (Fo6llmer, 1974;
Arthur and Lane, 1993; Brock and Durlauf, 1995; Orlean, 1995). Both type
of models exhibit an abrupt phase transition between order for the large 3
values and disorder for small 3’s. There are two main differences:

(i) In the ordered regime, in the case of imitation, all agents make the
same choice (at least when interactions among all agents are a priori
possible?); in our model different agents are loyal to different shops.
Imitation and positive social interactions favor uniformity, while deci-
sions based on agents’ memory favour diversity.

(ii) In our model heterogeneity of buyer parameters results in having two
classes of behavior, searchers and loyal buyers. Order is a property
of buyers, not of the market. In imitation models, the market as a
whole is organised or disorganised, even for heterogenous agents (this
statement applies rigorously to the mean field approach: in the case
of large heterogeneity of local interactions in Markov random fields,
ordered and disordered regions might coexist).

2.4.4. Hysteresis

Up to this point we have considered a situation in which sellers propose
the same prices, resulting in equal profits for buyers. However it is of some
interest to examine what happens when profits differ. Let us come back
once more to the case of two shops 1 and 2, and now suppose that they
offer different prices and hence different profits 7 and 7y (we can assume
without loss of generality that m > m2). Replacing profit 7 in equation (5)

2Imitation favors uniformity, but according to whether one uses a mean field approach
(all interactions being possible) as in (Arthur and Lane, 1993; Brock and Durlauf, 1995;
Orlean, 1995), or Markov random fields (interactions restricted to some neighborhood)
as in (Follmer, 1974), one observes global or local order. All agents make the same choice
in the first case. Different choices can be made in the second case, with local patches of
agents making the same choice.
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by m;, the computation of A = J; — J; gives

_m—m _ @exp(BA) -1

A _
2~ v exp(BA) + 1.

=G(A) (26)

with
™= (71'1 +7T2)/2.

It is the equation A = G(A), as given above in (26), that one has to study
instead of equation (10). One finds that the critical (. is 2v/7.

If 6 < (. then there remains only one stable solution, in which there is
a small difference in preferences proportional to the difference in profits (if
BA is small):

N 2(7T 1— T 2)
Ji— Jy =~ (B —B)7 (27)
If G is above f., the three intersections remain, as long as the difference
in profits is not too large. Which of the two asymmetric intersections is
actually reached by the learning dynamics depends on initial conditions.

Thus, as illustrated in Fig. 2, buyers can remain loyal to a shop asking
for a higher price (which results in a lower profit for the buyer), provided
that they became attached to this shop when it charged a lower price.
When the most often frequented shop changes its prices, the loyalty to that
shop describes the upper branch of the loyalty versus profit curve (Fig. 1).
The loyalty remains on the upper branch as long as it exists, i.e. until the
point where the slope is vertical. When profit decreases beyond that level,
a sudden and discontinuous transition to the lower branch occurs. This is
the point when customers change their policy and start visiting the other
shop. But, if the first shop reverses its high price/low buyer profit policy
when loyalty is on the lower branch, the transition to the higher branch
only occurs when the slope of the lower branch becomes vertical, i.e at a
higher profit than for the downward transition.

Thus an important qualitative result of the mean field approach is the
existence of hysteresis effects: buyers might still have a strong preference for
one shop that offered good deals in the past, even though the current deals
they offer are less attractive than those now offered by other shops. A con-
sequence of this phenomenon is that in order to attract customers who are
loyal to another shop, a challenger has to offer a profit significantly greater
than the profit offered by the well-established shop: when preference coef-
ficients have reached equilibrium in the ordered regime, customers switch
only for differences in profits corresponding to those where the slopes of the
curves J(7) in Fig. 1 are vertical (i.e. not when profits are equalised!). In
other words, economic rationality (i.e. choosing the shop offering the best
deal) is not ensured in the region where hysteresis occurs.
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Figure 2. Hysteresis of preference coefficients. Plot of both preference coefficients versus
71, the profit to be obtained from shop number 1 when 72, the profit to be obtained
from shop number 2 is held equal to 1 (3 = 0.5 and v = 0.2). The thick lines correspond
to stable equilibria for both preference coefficients, Ji and J2, and the thin lines around
w1 = w2 = 1 to unstable equilibria. In the region of three solutions, the larger value of
Ji is reached from initial conditions when J; is already large. Thus if m; is decreased
from above one, Ji is kept large (and Js is kept small), even when m; becomes less than
2. The stability of this metastable attractor is lost when m; = 0.89. In a symmetrical
manner, the high Jo attractor existing at low 71 can be maintained up to 71 = 1.095.
(the figure was drawn using GRIND software, De Boer 1983).

3. Results
3.1. INDICATORS OF ORDER

We next proceeded to run a number of numerical simulations of our model.
This first enabled us to check whether the theoretical results obtained from
the mean field approximation were consistent with those obtained by run-
ning the discrete stochastic process as described by equation 2 and 3. Sec-
ondly, as discussed in the next section, it allowed us to compare the simple
model with more complicated, analytically intractable versions.
Simulations generate a large number of data about individual trans-
actions such as which shop was visited, purchased quantities, and agents’
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profits. The organization process itself, involving the dynamics of vectors
of buyers J;;’s is harder to monitor. We used two methods to do this.

Firstly, adapting a measure used in (Derrida [1986]) for instance, we
defined an order parameter y by

YL (28)
P T
In the organized regime when the customer is loyal to only one shop, y;
is close to 1 (all J;; except one being close to zero). On the other hand,
when a buyer visits n shops with equal probability, y; is of order 1/n. More
generally, y; can be interpreted as the inverse number of shops visited. We
usually monitor y, the average of y; over all buyers.

Secondly, when the number of shops is small (2 or 3), a simplex plot
can be used to monitor on line the loyalty of every single buyer. Figures
2a and 3a, for instance, display simplex plots of a simulation at different
steps. Each agent is represented by a small circle of a specific colour or
shade, which represents the agent’s probabilistic choice, i.e. the probability
distribution over the 3 shops (corresponding to the 3 apices of the triangle).
Proximity to one corner is an indication of loyalty to the shop corresponding
to that apex. Agents represented by circles close to the center search all
shops with equal probability.

3.2. A SIMPLE MODEL

A simple model was run with 3 sellers and 30 buyers for a large variety
of parameter configurations and initial conditions. In the simulations time
is discrete and buyers receive equal profits when a transaction is made.
Sellers’ stocks at the begining of each session are finite, which implies that
Prob(¢; > 0) does not have to be one, as in the simplest version solved
analytically. The following Figs. 3 and 4 correspond to a memory constant
~ = 0.1. The critical non-linear parameter corresponding to a unitary profit
is then . = 0.3 (Eq. 13). Initial J;; were all 0. Depending on the value of the
non-linear parameter 3, the two predicted behaviours, order and disorder,
are observed.

3.2.1. Disorganized behavior

For low values of the non-linear parameter 3, buyers never build up any
loyalty. This is observed in Fig. 3, which describes the dynamics obtained
with 8 = 0.153.. The daily profit of buyers averaged over all buyers and
over 100 days after a transition period of 100 days, is only a fraction of
the buyer’s profit per transaction.This is due to all those occasions on
which a buyer visited an empty shop. The daily profit of sellers averaged
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over all sellers and over 100 days after a transition period of 100 days
is a fraction of ten times the seller profit per transaction (the factor 10
corresponds to the average number of buyers per shop). This difference was
also generated indirectly by buyers who visited empty shops, since some
shops with supplies were not visited, and this resulted in losses for their
owners. (The exact percentage figures depend on the specific demand and
supply functions, i.e. on the relationship between purchase and resale price
for both, sellers and buyers. The simulations presented here were done with
the specific functions discussed in Sec. 5.1. However, the observed decrease
in profit for buyers and sellers is generic.)

As seen on the simplex plot, even at time 50, agents are still scattered
around the barycenter of the triangle, an indication of a disordered regime
without loyalty of any agent to any shop. Similarly, the order parameter y
fluctuates well below 0.50, and thus corresponds to randomly distributed
Jij. Figure 3 shows that the performance of shop number 1 exhibits large
fluctuations. The same is true for the two other shops.

3.2.2. Organized behavior

In sharp contrast to the above, the same analysis performed with § = 20,
shows a great deal of organisation (see Figure 3).

The order parameter y steadily increases to 1 in 200 time steps. As seen
on the simplex plot at time 50, each customer has built up loyalty to one
particular shop. Performance of shop number one also stabilizes in time,
and variations from stationarity are not observed after 20 time steps.

The daily profit of buyers averaged over all buyers and over 100 days
after a transition period of 100 days is very close to their profit per trans-
action times the number of daily transactions. Because buyers have not
changed shops during the last 100 days, sellers have learnt to purchase the
exact quantity needed to satisfy all their buyers, and they had no losses.

By avoiding daily fluctuations in the number of customers visiting a
shop, the ordered regime is beneficial to both customers and sellers, that is
both obtain higher profits than in the disorganised situation. In that sense,
the ordered regime is Pareto superior to the disordered regime.

3.2.3. Heterogeneity of buyers

Let us recall at this stage that in the case of real markets, we expect a mix-
ture of buyers with different § and ~ parameters, such that some buyers
will be loyal to certain sellers, while others will continue to search. Her-
reiner (1997) shows that buyer heterogeneity does not qualitatively change
the results described above. Organized or disorganized behavior is here a
property of buyers, not a property of markets.
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Figure 8. Charts for the disorganized regime (30 agents visiting 3 shops, when the
learning parameter v = 0.1 and 8 = 0.158.). The first three graphs monitor market
organization by simplex plots taken at time 10, 22 and 50. The fourth graph shows
a time plot of the order parameter y (vertical axis: [0.3,0.5]). The last graph gives a
record of shop 1. The time charts display the initial and the final stocks, the number of
customers, the number of customers refusing the proposed price (see Sec. 5.2), and the
number of unsatisfied customers who did not manage to buy anything.

3.3. BEYOND THE MEAN FIELD APPROXIMATION

The results of the mean field approach have been obtained from a differ-
ential equation modeling a discrete time algorithm. They are valid when
the changes at each step of the algorithm can be considered small. The
variables v and 7 thus have to be small, which is true for the simulation
results given in Figs. 2 and 3. One of the features noticed by observing
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Figure 4. Charts for the organized regime (30 agents visiting 3 shops, when the learning
parameter v = 0.1 and 8 = 283;). All charts and notation are the same as for Fig. 2,
except for the scale of the order parameter plot (y). Starting from all J;; equal to 1,
all representative circles move to the triangle corners representing the preferred shops.
The order parameter y varies from 0.33 (equal interest for all shops) to nearly 1 (strong
preference for only one shop). Due to organization, fluctuations of performance diminish
in time.

the motion of individual buyers on the simplex plots on-line is that agents
sometimes move ”backward” towards shops which are not the shops that
they prefer in the ordered regime. But since most of the time they move
towards their preferred shops, these ”infidelities” never make them change
shops and preferences permanently. They commit ”adultery”, but do not
”divorce”.
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When variables v and 7 are increased, infidelities have more important
consequences, and customers might change loyalty: they may ”divorce” one
shop for another one. Indeed increasing « results in larger steps taken by
customers on the simplex, which might make them go from one corner
neighborhood to another one in a few time steps. In fact, the probability
of a given path on the simplex varies as the product of probabilities of in-
dividual time steps: when fewer steps are needed, the probability that the
process will generate such changes becomes higher. Because of the expo-
nential growth of time of the "divorce” process with respect to v and m,
a small change in the relevant parameters m or «y results in a switch from
a no-divorce regime to a divorce regime. Divorces are observable on the
simplex plots on-line and also by examining the evolution of the number
of customers of a given shop as a function of time: ”infidelities” appear as
peaks and ”divorces” as steps.

4. More Complicated Models and Results

We will discuss in this section further refinements of the simple model
and see what influence they have on the behaviour of the agents. All the
variants to be discussed share the same fundamental mechanism by which
buyers choose sellers, and the same way of updating preference coefficients
as defined in Sec. 2.2.

These more realistic variants of the model are no longer analytically
tractable and we therefore have to resort to computer simulations to com-
pare their dynamical properties with those of the simple soluble model and
with empirical data.

It is important at this stage to specify the type of comparison that
we intend to make between the variants of the model and empirical evi-
dence. We certainly expect some changes to occur at the global level when
modifications are introduced in the way in which individual agents make
their decisions. Nevertheless, the main point here is to check whether the
generic properties of the dynamics are still preserved after these changes.
The existence of two distinct, ordered and disordered regimes, separated by
a transition is such a generic property. On the other hand, we consider as
non-generic the values of the parameters at the transition and the values of
variables in the ordered or disordered regime. Since even the more elaborate
versions of our model are so simplified in comparison with a very complex
reality, a direct numerical fit of our model to empirical data would not
be very satisfactory, if only because it would involve so many parameters
which are not directly observable. But the search for genericity is based on
the conjecture? that the large set of models which share the same generic

3This conjecture, which is basic in the dynamic modeling of complex systems, rests
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properties also includes the “true” model of the real system itself.

4.1. PRICES

We first need some assumption about the specific relationship between
prices, purchased quantities and profits to run more realistic simulations.
Let us suppose rationality at the level of a single transaction. Each buyer,
being himself a retailer, faces a local demand function p(q), which deter-
mines the relationship between the price and the quantity ¢ that he brings
to the local market. Let us suppose to simplify matters that p(q) is known
by the buyers, is the same for all buyers, and that it is a simple function of
q, such as*:
b
qg+c’

The buyer’s profit in this particular example is then:

7Tb=q<qic—p>, (30)

p(q) (29)

where p is the price asked for by the seller. We then suppose that the buyer
knows the demand curve he faces, and is thus able to compute the quantity
that will maximise his profit for a given price p. This quantity is:

bc
q:\/;—c. (31)

We make similar assumptions for the sellers, in particular that they know
that the behavior of buyers is described by the three equations above, and
they can therefore maximize their own profit per transaction:

WSZQ(p_pa):<\/%_C> (P —pa) (32)

with respect to the price p that they charge to the buyers®, where py is the
price at which the sellers themselves purchase the goods.

on rigorous proofs about specific systems, such as classes of universality in physics or
structural stability in mathematics.

4This particular choice of the function p(q) is of no importance, it allows to run
simulations and to make comparisons between the different scenarios. Any monotonic
decreasing function would do for our model.

5The profit-maximizing price p is the solution of a cubic equation with first-order
condition .

3 2
P = Pt pa)” =0, (33)

which we calculate for the specific values used in the simulations.
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4.2. TWO SESSIONS

The one-session model described in Sec. 2 is a considerable simplification
of the way buyers search for sellers. As is commonly observed in several
markets with the sort of structure we are modelling here, customers that
refuse a deal with one seller usually shop around to find other offers. Indeed,
this is generally regarded as the main motivation for refusal in standard
search models. An alternative explanation is that customers refuse deals in
order to induce better offers in the future. In either case, to take this into
account, we have to consider a model in which customers are given at least
two occasions to purchase goods.

One further assumption to relax, particularly in the case of perishable
goods, is the idea of a constant price for all sessions. In fact, p is the price
sellers would charge at each transaction if they were sure to sell exactly
all the quantity they bring to the market. If they were able to predict
precisely how many customers will visit their shop and accept this price,
they would know exactly how much to supply. But when their forecasts are
not perfect, they may not have excess stocks at the close of the market.
It might therefore be better for them to sell at a lower price than to keep
goods that they are not, by assumption, able to sell the next day. We ran
the simulations with a constant afternoon price, which is the morning price
lowered by a factor of 1 —e. A more intelligent choice for the sellers, namely
monitoring previous fluctuations of the number of buyers and decreasing
afternoon prices in proportion was also tested.

To summarise, we divide the day into two periods:

1 During the morning, sellers maximize their profit and sell at a price
Pam €qual to p. Buyers visit one shop in the morning.

2 During the afternoon, they sell at a lower price pp, = (1 —€)-p in
order to reduce losses from unsold quantities. We assume that because
prices are lower in the afternoon, all buyers return for the afternoon
session. Buyers visit one shop in the afternoon.

Sellers arrive in the morning with a quantity @ of the commodity corre-
sponding to the number of customers they expect times ¢, plus some extra,
in case they have more customers than expected. The profit they expect
from this additional amount is that obtained by satisfying new customers
or unexpected former customers who might appear.

Buyers have to decide every morning whether to buy at the morning
price or to wait for a better price in the afternoon. Of course waiting has
a trade-off: they might not find anything to buy in the afternoon and thus
make no profit. They choose according to their expectations of the average
afternoon profit with respect to what they would get by buying in the
morning, which they know from equation 30. The average afternoon profit is
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estimated from their past history of afternoon profits. In the simulations we
used a simple quadratic fit of the afternoon profits as a function of morning
prices. But for all reasonable choices of afternoon prices and extra supply
by the sellers, expected afternoon profits for buyers are much smaller than
morning profits, essentially because their chances of finding goods in the
afternoon were smaller than in the morning. We discovered that even with
their primitive prediction abilities, buyers soon (say after 50 time steps)
realised that they would do better to accept the morning offers. Further
investigations of the refusal issue can be found in Herreiner 1997.

All numerical simulations show that the introduction of a second session
does not change the qualitative behaviour of the system: a low 3 disordered
regime and a high ( ordered regime still exist with the same characteristics
as in the one session model. But the time to eventually reach the ordered
regime and the width of the transition are increased. The estimated® 3, is
at most 20 percent higher with two sessions than with one.

A change induced by the introduction of an afternoon session is that
divorces are observed in the ordered regime for a wider range of the learning
parameter -y, for instance as soon as <y is larger than 0.1, as opposed to y
larger than 0.3 for the one session model. This is because when an infidelity
occurs, since a buyer has a much better chance of making a higher afternoon
profit with a new shop that has extra supplies, she then takes larger steps
across the simplex.

4.3. SELLERS’ INITIAL STOCK

We mentioned earlier that the sellers may want to adjust their initial stock
to take into account the expected number of customers and possible fluctu-
ations of that number. To do this sellers would need to know the probability
distribution of the number of customers. Let us assume for the sake of com-
parison to results in search theory that this distribution is continuous: f(n;)
with np € [0,n]. By maximizing the expected payoff (E(7s)) with respect
to 7, the sellers determine the optimal initial stock Q =n-q by:

n _ Da
1 —/O f(np)dny = " (34)

The rule defined by Eq. (34) is optimal only for short-run considerations,
when sellers assume that every market day is a one-shot game. It prevents
the strategic use of stock, when a seller tries to gain additional loyal cus-
tomers by having extra units for unexpected customers.

5Since the transition is not abrupt as in the theoretical model, we have chosen a
critical value for y, y = 0.5 to determine (., i.e. # such that y = 0.5.
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In line with our general approach, we did not suppose for the simula-
tions that sellers have a perfect knowledge of the probability distribution
of visitors, but that they use a simple routine to add extra stock whenever
they observe fluctuations in the number of visits. The extra stock at time
t is computed according to

alt)=(1—¢)-at—1)+¢e-var(ny), (35)

where € is small and var(np) is the variance of the number of buyers com-
puted from the beginning of the simulation. The initial value of « is non
zero at the beginning of the simulation. This equation simply describes the
reduction of « in the absence of fluctuations. We checked by several nu-
merical simulations with different choices of initial o and of € that the only
observable changes were variations of 3., the critical threshold for order, in
the 10 % range. The existence of two dynamic regimes persists.

Another possible refinement would be to improve the predictive ability
of the seller of the number of customers. We tried a moving average predic-
tion rather than the prediction based only on the preceding day but this
only reduced performance (3. increases).

4.4. PRICE FLUCTUATIONS

The idea of a market with a uniform price is not realistic, and we wanted
to check the influence of price variations over time on the agents’ behavior.
In fact, Sec. 3.2 above on hysteresis already gives us a clue to the possible
results of price changes: price differences resulting in profit differences for
the buyer lower than the width of the hysteresis curve do not change loyalty
and then should not distroy order. For the parameter values of Fig. 2, one
shop could increase its prices to 19 % more than the other shop before
loosing its customers.

We ran simulations with the morning price p(¢) fluctuating in each shop
with an auto-regressive trend towards the morning price computed to maxi-
mize profits p. Price is also decreased when potential buyers refuse the offer,
a situation seldom encountered by the end of the simulations, as mentioned
earlier. The morning price of each shop is then varied in the simulations
according to the following expression:

plt+1) = n(t) [p<t>—A(p<t>—p)—u;—ﬁ, with n(t) © Ull—e, 1+, e € [0,1),

(36)
n; and 7, are respectively the number of customers the shop has and the
number of customers who have refused the previous price during the last
session.
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The simulation results are remarkably close to the results obtained with
constant morning prices for both sessions: the transition is sharpened and
order is obtained for slightly lower values of 5.

5. Empirical Evidence

In order to see whether there was any empirical evidence of ordered or
disordered behaviour of buyers in a market, we started from a data base
for transactions on the wholesale fish market in Marseille (M.I.N Saumaty).
The data base contains the following information:

No. of buyers 700
No of sellers 40
For each individual transaction:

Name of buyer

Name of seller

Type of fish

Weight of fish

Price

Order in seller’s transactions

Dates: from 02 / 01/ 1988 to 29 / 06 / 1991
Total number of transactions: 237162.

The market is organised as in our model, that is, no prices are posted,
sellers start with a stock of fish which is to be disposed of rapidly because
of its perishable nature. Buyers are either retailers or restaurant owners.
Deals are made on a bilateral basis and the market closes at a fixed time. Of
course the model is an extreme simplification of the real situation: there are
different kinds of fish on the market, each species of fish is heterogeneous,
buyers demand different quantities of fish and the alternative for a buyer
to purchasing his optimal good is, in fact, to purchase some, in his view,
inferior alternative.

Direct examination of the data file with the help of standard sorting
facilities reveals a lot of organisation in terms of prices and buyers pref-
erences for sellers. In particular, one immediately observes that the most
frequent buyers, those who visit the market more than once per week, with
very few exceptions, visit only one seller, while less frequent buyers would
visit several sellers, which is consistent with our model. The data will be
analysed in this section only in terms of the organisation issue. Other as-
pects, such as price dynamics showing persistent dispersion, were analysed
in Kirman and Vignes (1991) and Hérdle and Kirman (1995).
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5.1. TESTING OUR MODEL

A first step in comparing our theory with the empirical data is to check
whether individual buyers displayed ordered or disordered behaviour during
those three years. Since the classical approach to agent behaviour predicts
searching for the best price, and since searching behaviour implies visit-
ing different shops, any manifestation of order would tend to support our
theoretical prediction. If we find evidence of ordered behaviour for certain
participants, a second step is then to relate the difference in the observed
behaviours of these traders to some difference between their characteristics
and those of other buyers.

TABLE 1. Loyalty in Cod, Whiting, and Sole Market

market shares monthly purchase
of share bought
largest seller from one seller
| Ist | 2nd [ 3rd [[ 95% | 80% |
| cod | 43% | 14% | 12% || 48% | |
| whiting || 27% | 8% | 8% || 24% | 53% |
| sole || 15% | 14% | 14% || 33% | 55% |

For the first step,we consider statistics for cod, whiting and sole trans-
actions in 1989, see table 1.

Since we are interested in loyalty issues, we have concentrated on the
buyers who were present in the market for at least 8 months. As can be
seen in the first three columns of table 1, the market for cod is much more
concentrated than the market for whiting or sole. In the cod market almost
half the buyers (86 of 178) buy more than 95% of their monthly purchases
from one seller only, see the fourth colum of table. In the whiting and sole
market buyers are also loyal, but to a lesser degree: more than one half of
them” buy more than 80% from one seller. Hence, there are large fractions
of loyal buyers in all three markets.

For the second step, recall that our theory relates loyalty to the param-
eters (§ (discrimination rate) and 7/ (cumulated profit). 3 probably varies
from buyer to buyer, but we have no direct way to test it apriori. However,
/v is strongly and positively related to the monthly purchases of buyers,
and we therefore use the latter as a proxy variable.

"Whiting 124 of 229, and sole 154 of 280.
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Figure 4 summarises the loyalty of buyers in terms of the relative fre-
quency of visits to their favorite seller as a function of their monthly pur-
chase of cod . One may observe that loyalty is in general is high, that
a number of buyers visit only one seller, and that a cubic fit shows that
loyalty increases with monthly purchase. All three features are consistent
with our theory, and contradict a random search behavior for all buyers.
We also used standard statistical tests to check the idea that the popula-
tion of buyers should exhibit two types of behaviour. We divided the buyers
of cod into two groups. We have chosen as our dividing criterion a total
purchase of two tons of cod over 36 months. We calculated the fraction of
transactions with the most often visited seller and found 0.85 for the big
buyers and 0.56 for the small buyers. If we consider, as in the model, that
the two populations consist of individuals drawing their ”favorite seller”
with probability P1 in one population and P2 in the other one, we can test
the hypothesis P1=P2. Given the two values for the tested data set, both
the standard Maximum Likelihood test and Fisher’s Exact Test rejected
the hypothesis P1=P2 at all levels of confidence.

5.2. TESTING ALTERNATIVE MODELS FOR ORDER

The observed agreement between our model and empirical evidence does
not “prove” that it is the only possible model. As is often the case with
complex systems, several explanations at different levels of generality can
be used to describe observed phenomena. Furthermore, different models
might not be mutually exclusive as we shall see.

One alternative explanation that has been offered is that contractual
arrangements develop between buyers and sellers. Discussion with Marseille
sellers reveals that they do not offer fish for specific customers but that ”he
(the buyer) comes here because he knows that he will find the sort of fish
that he requires”. Similarly, the buyers do not order fish; they make the
statement such as "I go there because he has the fish that I want”. This
is consistent with the mutual reinforcement mechanism suggested by our
theory. If a particular buyer does not appear, this is not regarded as a
breach of contract and if this happens over a period and some quantity
of fish remains unsold, the seller will simply readjust his supply of fish
accordingly. In connection with the points now discussed, it is peharps
worth emphasizing that the basic theory of this paper has been elaborated
in the light of conversations with market participants who often were able
to explain certain features of the data.

At the same level of generality, another alternative explanation could
be based on the idea of “niches”: a buyer would prefer a given seller be-
cause he provides him a product closer to his specific needs. Let us first
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Figure 5. Each dot is an empirical evidence from Marseilles fishmarket representing
a buyer’s loyalty to his favorite seller (relative frequency of visits) as a function of his
monthly purchase of cod in kilograms. Low purchases correspond to unfrequent buyers,
who generally visit once a week, while large purchase are those of buyers who visit nearly
everyday the market opens. The continuous line is a cubic fit which shows that loyalty
increases with monthly purchase.

note that the two hypotheses are not mutually exclusive: even if niches were
an important factor, one would still have to explain why sellers choose a
niche stategy rather than selling a large choice of fish. Loyalty of buyers
might be a pre-condition for the profitability of “niches”. Anyway, direct
examination and surveys show that even though certain sellers specialise
in serving supermarkets or institution cafeterias, almost all niches are oc-
cupied by several sellers. This is also consistent with the fact that many
buyers are retailers who have to serve many different clients on their lo-
cal markets. Another check for the existence of niches is clustering analysis
according to average prices and quantities sold by sellers. Sellers are consid-
ered as members of the same cluster, when their distribution of prices and
quantities significantly overlap. We did find two clusters of cod sellers, low
cost bulk sellers (5 sellers) and expensive low quantity sellers (30 sellers).
Since loyalty and search behaviour are observed in these two multi-member
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niches, the niche phenomenon cannot account by itself for the existence of
loyalty; but according to our theory, it facilitates loyalty by decreasing the
number of sellers in competition, and thus lowering the critical transition
parameter.

The model we used, including its variants, considers buyers as active
agents and sellers as rather passive. Alternative and/or complementary
explanations of the observed organisation could be based on a more active
role of sellers. A possible test of the necessity of extra hypotheses implying
that loyalty is due to sellers’ behaviour is to check whether different sellers
have different fractions of loyal buyers among their customers, and if so,
why. We did measure the fractions of loyal buyers of each seller and found
them to be strongly® and positively correlated with the average quantity
of fish per transaction sold by the seller (at least for all sellers making
more than one transaction per day on average). We therefore conclude
that the buyers’ learning and search behaviour as described in our model
is sufficient to explain the observed organisation, without the necessity of
further assumptions about seller behaviour.

6. Conclusions

We have examined a simple model of a market in order to see how the
”order” that is observed on many markets for perishable goods develops.
Here ”Order” means the establishment of stable trading relationships over
many periods in which the market is open.

In the simplest model, we have shown analytically that an ordered
regime appears whenever the agents’ discrimination rate between shops
divided by the number of shops is larger than the reciprocal of the dis-
counted sum of their profit. When an individual’s parameters put him into
the organized regime, a buyer has strong preferences for one shop over all
others. On the other hand, in the disordered regime, agents do not show
any preference. The transition between the ordered and disordered regimes
is continuous but very abrupt (at least for the simplest one session model)
in terms of the order parameter.

Since individual properties of buyers govern the ratio of their discrim-
ination rate (3 to the threshold rate 5. = nvy/7, a bimodal distribution of
buyers, some with an ordered behavior some not, is to be expected in real
markets. A comparison with empirical data from the Marseille fishmarket
indeed shows the existence of a bimodal distribution of searchers and loyal

8The fact that the correlation is stronger for sellers, with much less noise than for
buyers, is due to the fact that sellers’ statistics involve more averaging than buyers
statistics.
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buyers, and the positive correlation of loyal behavior with the frequency of
transactions.

When more realistic assumptions are introduced, such as the adaptive
behavior of sellers, fluctuations in prices, and later sessions with lower prices
to clear the market, simulations show that the critical value of the transition
parameter is increased, and the transition becomes somewhat less abrupt.
However, both regimes can still be observed. The simple model is thus
robust with respect to changes that can be made to improve realism: its
main qualitative property, namely the existence of two regimes of dynamical
behavior is maintained.

Thus what we have shown within the context of an admittedly very
simple model is that the presence of "order” and ”organisation” in a market
is strongly dependent on, and very sensitive to, the way in which agents
react to their previous experience. As has been seen, ”order” in our model
is more efficient in terms than disorder, and it is therefore of considerable
economic interest to identify under which conditions ”order” emerges.
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