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1. Informal Sketch

There is a common belief that if nature (and human society, in particu-
lar) could be described in some unified terms, fundemental concepts from
physics may find their use there. The present paper follows this philosophy
and tries to draw parallels between the theory of financial markets and
quantum gauge theory. Since it is difficult to be equally comprehensible for
both physicists and economists, we first give an introduction, which is basi-
cally intuitive and designed to explain the main logic of our considerations.
Further sections are more mathematical and use notions of quantum field
theory.

1.1. NET PRESENT VALUE AS A PARALLEL TRANSPORT

First of all, let us recall what the NPV method is. The NPV investment
method works on the simple but fundamental principle that money has
a time value. This time value has to be taken into account through the
so-called discounting process.

To elucidate this idea we use an easy example from [2]: ”Suppose you
were made an offer: if you pay 500 pounds now, you will immediately re-
ceive 200 French Francs, 200 Japanese Yen and 200 German Marks. How
would you go about deciding whether the offer was worthwhile? What you
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certainly would not do is to say: I have to give up 500 pieces of paper and,
in return, I will get 600 pieces of paper. As I end up with 100 more pieces
of paper, the deal is worthwhile! Instead, you would recognize that in order
to evaluate the offer, you have to convert all the different currencies to a
common currency, and then undertake the comparison” (please, do not con-
sider this as Euro propaganda!). In the same way that money in different
currencies cannot be compared directly, but first has to be converted to a
common currency, money in the same currency but at different points in
time cannot be compared directly, but must first be converted to a common
point in time. This reflects the time value of money.

Intuitively it is clear that given the choice between $100 now or $100
in one year’s time, most people would take the $100 now, since the money
could be put in deposit (risk free investment) at some interest rate, r. Then,
in one year’s time the $100 will have turned itself into $(1 + r)100 instead
of remaining $100 only. Therefore, r — the interest rate — represents the
time value of money.

Skipping here some details (difference between simple and compound
interest rate, continuous compounding, flat and effective interest rates [3]),
we are now ready to formulate what the NPV is: if an amount of money
F is to be received in T years’ time, the Present Value of that amount
(NPV (F )) is the sum of money P (principal) which, if invested today,
would generate the compound amount F in T years’ time:

NPV (F ) ≡ P =
F

(1 + r)T
.

The interest rate involved in this calculation is known as the discount rate
and the term (1 + r)−T is known as the T-year discount factor DT :

DT = (1 + r)−T . (1)

In a similar way, to calculate the present value of a stream of payments,
the above formula is applied to each individual payment and the resulting
individual present values are then summed. So, the NPV method states
that if the NPV of an investment project has zero or positive value, the
company should invest in the project; if it has negative value, it should
not invest. The NPV is also useful for the comparative analysis of several
projects but we do not stop here for the details (see [2]).

What is really important here for our goals is the following geometrical
interpretation: the discounting procedure plays the role of a ”parallel trans-
port” of an amount of money through time (though in fixed currency). The
discounting factor (1) is then an element of a structural group of a fibre
bundle (which still has to be defined), and the discount rate coincides with
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the time component of the connection vector field. Recall that in differen-
tial geometry the connection field is responsible for pulling a fibre element
from one point of a base space to another. Moreover, it is obvious that the
”space” components of the connection have something to do with the ex-
change rates (see the example above). Indeed, the exchange rates or prices
are responsible for converting money in different currencies or different se-
curities (read points of discrete ”space”) to the same currency (point of the
space) at a fixed moment of time. Thus, they can be interpreted as elements
of the structural group which ”transports” the money in ”space” directions
and are space analogues of the discount factor. Summing up, we see that
there is some analogy between elements of a fibre bundle picture with some
connection field and a capital market. We make the analogy precise below.

1.2. ARBITRAGE AS A CURVATURE OF CONNECTION

The next keyword is arbitrage. What is arbitrage then? Basically it means
”getting something from nothing” and a free lunch after all. A stricter
definition states that arbitrage is an operational opportunity to make a
risk-free profit [4] with a rate of return higher than the risk-free interest
rate accrued on deposit (a formalized version can be found in [5]).

The arbitrage appears in the theory when we consider the curvature
of the connection. In more detail, the rate of excess return for an elemen-
tary arbitrage operation (the difference between the rate of return for the
operation and the risk-free interest rate) is an element of the curvature
tensor calculated from the connection. This can be understood keeping in
mind that the elements of the curvature tensor are related to the difference
between two results of infinitesimal parallel transports performed in differ-
ent order. In financial terms this means that the curvature tensor elements
measure a difference in gains accrued from two financial operations with
the same initial and final points or, in other words, a gain from an arbitrage
operation.

In a certain sense, the rate of excess return for an elementary arbitrage
operation is the analog of the electromagnetic field. In the absence of any
uncertainty (or, in other words, in the absence of ”walking” prices, exchange
and interest rates) the only state realised is the state of zero arbitrage.
However, if we introduce uncertainty in the game, prices and rates move
and some virtual arbitrage possibilities appear. Therefore, we can say that
uncertainty plays the same role in the theory to be developed here as the
quantization did for quantum gauge theory.
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Money flows as matter fields
The final ingredients to be added to our theory are ”matter” fields that in-
teract through the connection. By now it should be clear that the ”matter”
fields are money flow fields, which have to be gauged by the connection.
Indeed, we started the introduction of the concept with the example of the
NPV method, which shows how an amount of money units changes while
the payment is ”pulled” in time or one currency is converted to another.

Dilatations of money units (which do not change real wealth) play the
role of gauge transformations, which eliminate the effect of the dilatation by
appropriately tuning the connection (interest rate, exchange rates, prices
and so on), exactly as the Fisher formula does for the real interest rate
in the case of inflation [2]. The symmetry of real wealth with respect to a
local dilatation of money units (security splits and the like) is the gauge
symmetry of the theory.

Following a formal analogy with the U(1) gauge theory (electrodynam-
ics) case, we can say that the amount of a certain currency at a particular
moment in time is analogous to a value of a phase cross-section of the
U(1) ×M fibre bundle at some space-time point. If we want to compare
values of the U(1) ×M cross-section at different points of space-time, we
have to parallel transport the phase from one point of the base to another,
exactly as we have to convert one currency to another or discount money
in the financial setting.

A theory may contain several types of ”matter” fields, which may dif-
fer, for example, by a sign of the connection term as is the case for positive
and negative charges in electrodynamics. In the financial setting this cor-
responds to the different preferences of investors. Thus in this paper we
will deal with cash flows and debt flows, which behave differently under the
same gauge field: cash tries to maximize itself, while debts try to minimize
themselves. This is equivalent to the behaviour of positive and negative
charges in the same electric field, where they move in different directions.

The strategy of investors is not always optimal. This is due to partially
incomplete information, choice procedure, to some extent investor (or man-
ager) internal objectives. This means that the money flows are not certain
and fluctuate in the same manner as the prices and rates do. Therefore,
this requires a statistical description of the money flows, which, once again,
lead us back to an effective quantization of the theory.

1.3. THE NET RESULT: A QED-LIKE SYSTEM

Collecting all this together, we are ready to map the capital market to a sys-
tem of particles with positive (securities) and negative (”debts”) charges,
which interact with each other through the electromagnetic field (gauge
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field of the arbitrage). When there are virtual arbitrage opportunities present,
money flows into those regions of configuration space where these appear,
while debts try to escape from there. In-flowing positive charges and out-
flowing negative ones screen the profitable fluctuation and restore equilib-
rium, thereby cancelling the arbitrage opportunity.

Taking into account the uncertainty mentioned above, we come to a
quantum field theory with a gauge field and ”matter” fields of opposite
charges. At this point, the standard machinery of quantum field theory
may be applied to obtain distribution functions of the interest/exchange
rates and cash-debt flow correlators (which are essential for the response of
the system). We may use this model to predict the dynamical response of
a financial market, establish a dynamical portfolio theory and to approach
option pricing and other problems.

The last point to note in this subsection is the principal lattice nature of
the capital market theory, since there always exists a natural minimal time
interval (transaction time), and so our ”space” is a graph. This removes
the usual problems of quantum field theory with divergences due to the
continuous character of its space-time base.

To make the analogy between Quantum Electrodynamics and Capital
Market Theory more transparent, we give a ”dictionary” for translating
one language into the other:

1.4. BASIC ASSUMPTIONS

In the previous subsections we discussed the main assumption (or postu-
late), which is the existence of a local gauge invariance with the dilatation
gauge group. It can be shown that this postulate essentially dictates the
dynamical rules of the theory. However, there are a number of other as-
sumptions which we want to list here. For convenience we divide these
assumptions into two sets. The first set deals with the prices and rates, i.e.
contains assumptions concerning the connection field.

1. Exchange rates, prices of various securities and interest rates fluctuate,
providing local arbitrage opportunities.

2. The most probable configuration of the random connection is the con-
figuration with a minimal absolute value of the excess rate of return.

3. Arbitrage opportunities, in the absence of money flows, are generally
correlated at different space-time points, which is particularly impor-
tant for portfolio analysis. However, for the sake of simplicity, we con-
sider here statistically independent arbitrage events.

4. We assume an exponential distribution for the rate of return on a
local arbitrage operation. Its characteristics, in general, depend on both
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QED Capital Market Theory

Time component of connection Interest rate

Operator of parallel Discount factor

transport in time

Operators of parallel Exchange rates and prices

transport in space

Electromagnetic field Excess return on elementary

arbitrage operation

Quantization of Uncertainty in price

electromagnetic field movements

Matter fields Money flow fields

Quantization of Limited rationality

matter field of traders

Gauge transformations Change of asset units

Gauge invariance Independence on this change

Positive (negative) charges Securities in long (short) position

”space” and time coordinates. However, for the sake of simplicity, we
omit these details in the discussion below.

5. When a continuous limit will be taken, we assume all required smooth-
ness properties of relevant objects to hold.

The second set of main assumptions concern the behavior of cash-debt
flows i.e. the ”matter” fields.

1. We assume a perfect capital market environment, i.e. it is always pos-
sibile to deposit money and to borrow without any restrictions and at
the same interest rate [6].

2. There are transaction costs. Their presence is not just an unimportant
complication. Transaction costs play the role of inertia for cash-debt
flows and stabilize the system.

3. Investors are (limitedly) rational, and are trying to maximize their
gain from the securities, minimizing debts at the same time. The time
scale we are thinking about is of the order of several transaction times.
On this time scale, a trader does not ponder random processes and
portfolio analysis, but concentrates on maximizing his gain on the basis
of intuition or technical forecasts.
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4. Exactly as the rates and prices may fluctuate and are uncertain, flow
trajectories fluctuate around the most profitable trajectory (”classical
trajectory”). This reflects the fact that investors do not always behave
optimally.

Below we repeat the assumptions in a stricter form, which is useful for the
further formalization of the theory.

2. Formal Constructions

In this section we formalize the previous considerations. More precisely, we
give a description of the relevant fibre bundles, we construct the parallel
transport rules using elements of the structural group and give an interpre-
tation to the parallel transport operators. The corresponding curvature is
also defined and is shown to be equal to the rate of excess return on the
elementary plaquette arbitrage operation. This opens a way to the construc-
tion of the dynamics of the parallel transport factors giving a lattice gauge
theory formulation. The construction of the dynamics is then repeated for
the case of ”matter” fields representing cash-debts flows.

2.1. FIBER BUNDLE CONSTRUCTION

It is well-known that many important concepts in physics can be inter-
preted in terms of the geometry of fibre bundles [7]. Maxwell’s theory of
electromagnetism and Yang-Mills theories are essentially theories of the
connections on principal bundles with a given gauge group G as the fibre.
Einstein’s theory of gravitation deals with the Levi-Civita connection on
the frame bundle of the spacetime manifold. In this section we show how the
construction of fibre bundles can also be applied to describe a framework
in which to develop a capital market theory.

Construction of the base
We now have to construct a base for the fibre bundle. Let us order the com-
plete set of assets (which we want to analyze) and label them from 0 to N .
This set can be represented by N (asset) points on a 2-dimensional plane
(the dimension is a matter of convenience and can be chosen arbitrarily). To
add time to the construction, we attach a copy of a Z-lattice (i.e. set of all
integer number {...,−1, 0, 1, 2, ...}) to each asset point. We use discretized
time, since there is a natural time step and all real trading happens dis-
cretely, anyway. All together this gives the prebase set L0 = {1, 2, ..., N}×Z.

The next step in the construction is to define the connectivity of the
prebase. To this end, we start with the introduction of a matrix of links
Γ : L0 × L0 → {0,±1}, which is defined by the following rule for any
x ≡ (i, n) ∈ L0 and y ≡ (k,m) ∈ L0: Γ(x, y) = 0 except for
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1. i = k and n = m− 1 assuming that the i-th security exists at the n-th
moment and this moment is not an expiration date for the security;

2. n = m−1 and at n-th moment of time the i-th asset can be exchanged
to some quantity of the k-th asset at some rate (we assume that the
transaction takes one unit of time).

In the latter situation Γ(x, y) = 1 = −Γ(y, x).
Using the matrix Γ(., .) we define a curve γ(x, y) in L0 which links two

points x, y ∈ L0. We call the set γ(x, y) ≡ {xj}j=pj=1 a curve in L0 with ends
at points x, y ∈ L0 and p− 1 segments if x = x1, xp = y, ∀xj ∈ L0 and

Γ(xj , xj+1) = ±1 for ∀j = 1, ..., p− 1 .

The whole L0 can be divided into a set of connected components. A
connected component is a maximal set of elements of L0, which can be
linked by some curve for any pair of elements. The base L is defined now
as the connected component containing US dollars at, say, 15.30 on the
17th of June, 1997. This completes the construction of the base of the fibre
bundle.

Structural group
The structural group G to be used below is a group of dilatations. The
corresponding irreducible representation is the following: the group G is a
group of maps g of R+ ≡]0,+∞) to R+, which acts as a multiplication of
any x ∈ R+ by some positive constant λ(g) ∈ R+:

g(x) = λ(g) · x .

Transition functions of a fibre bundle with the structure group correspond
below to various swap rates, exchange rates, discount factors for assets.

2.1.1. Fibres
In the paper we use fibre bundles with the following fibres F :

1. F = G, i.e. the fibre coincides with the structure group. The corre-
sponding fibre bundle is called the principal fibre bundle EP . A gauge
theory in the fibre bundle in the next section corresponds to random
walks of prices and rates.

2. F = R+. This fibre bundle will be important for describing cash-debt
flows. Indeed, a cross-section (or simply a section) s (a rule which
assigns a preferred point s(x) on each fibre to each point x ∈ L of
the base) of the fibre bundle is a ”matter” field. In this context s(x ≡
(i,m)) gives the number of units of the i-th asset at the moment of
time m.
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Actions and the corresponding functional integrals will be written in terms
of cross sections of fibre bundles. The main property of the objects (ac-
tions and measures of the integrations) will be local gauge invariance, i.e.
independence with respect to a local action of the structural group.

The fibre bundle E we use below is trivial, i.e. E = L × F , and we do
not digress to define projections. The construction of the fibre bundles for
the simple stock exchange, the FX-market and financial derivatives can be
found in [1].

2.2. PARALLEL TRANSPORT, CURVATURE AND ARBITRAGE

A connection is a rule for parallel transporting an element of a fibre from
one point (x) of a base to another point (y). This means that an operator
of the parallel transport along the curve γ, U(γ) : Fx → Fy is an element
of the structural group of the fibre bundle [7]. Since we are not dealing
with the continuous case but restrict ourselves to a lattice formulation, we
do not need to introduce a vector-field of the connection, but rather use
elements of the structural group G. By definition, an operator of the parallel
transport along a curve γ, U(γ), is defined as the product of operators of
parallel transport along the links which constitute the curve γ:

U(γ) =
p−1∏
i=1

U(xi, xi+1) , γ ≡ {xi}i=1
i=p−1 , x1 = x, xp = y .

This means that we only need to define the parallel transport operators
along elementary links. Since U(γ) = U−1(γ−1), this restricts us to a def-
inition of those along an elementary link with positive connectivity. Sum-
ming up, the rules of parallel transport in the fibre bundles are completely
defined by a set of parallel transport operators along elementary links with
positive connectivity. The definition of the set is equivalent to a definition
of the parallel transport in the fibre bundle.

Since in subsection 2.1 the connectivity was defined by a possibility of
asset movements in ”space” and time, it allows us to give an interpretation
to parallel transport. In this subsection two principle kinds of links with
positive connectivity were defined. First one connects two points (i, n) and
(i, n+ 1) and represents a deposition of the i-th asset for one unit of time.
This deposition then results in a multiplication of the number of asset units
by an interest factor (or internal rate of return factor) calculated as:

U((i, n), (i, n+ 1)) = eri∆ ∈ G ,

where ∆ is a time unit and ri is an appropriate rate of return for the
i-th asset. In the continuous limit ri becomes a time component of the
corresponding connection vector field at the point (i,∆n).
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In the same way the parallel transport operator is defined for the second
kind of the elementary link, i.e. links between (i, n) and (k, n+ 1) if there
is a possibility to change at the n-th moment a unit of the i-th asset to Si,kn
units of the k-th asset:

U((i, n), (k, n+ 1)) = Si,kn ∈ G .

In general, an operator of parallel transport along a curve is a multiplier
by which a number of asset units is multiplied as a result of an operation
represented by the curve.

Results of parallel transports along two different curves with the same
boundary points are not equal for a generic set of parallel transport oper-
ators. A measure of the difference is the curvature tensor F . Its elements
give the change in multiplier if we parallel transport an asset around an
infitesimal elementary plaquette, whose sides are elements from the base L:

Fplaquette→0 =
∏
m

Um − 1 .

The index m runs over all plaquette links, {Um} are corresponding parallel
transport operators, with some convention for the orientation.

Now we show that the elements of the curvature tensor are, in fact,
the excess returns on the operation corresponding to the plaquette. Since
elements of the curvature tensor are local quantities, it is sufficient to con-
sider an elementary plaquette on a ”space”-time base graph. Let us, for
example, consider two different assets (for the moment, we will call them
share and cash), which can be exchanged to each other with some exchange
rate Si (one share is exchanged for Si units of cash) at some moment Ti,
and the reverse rate (cash to share) is S−1

i . We suppose that there exists
a transaction time ∆ and this ∆ is taken as a time unit. So the exchange
rates Si are quoted at a set of equidistant times: {Ti}Ni=1, Ti+1 − Ti = ∆.
The interest rate for cash is r1, so that between two subsequent times Ti
and Ti+1, the volume of cash is increased by a factor er1∆. The shares are
characterized by a rate r2. As we will show later, due to gauge invariance,
we can fix r1 to be the risk-free interest rate and r2 related to the average
rate of return of the share.

Let us consider an elementary (arbitrage) operation between two sub-
sequent times Ti and Ti+2. There are two possibilities for an investor who
possesses a cash unit at the moment Ti, to obtain shares by the moment
Ti+2. The first one is to put cash on a bank deposit with the interest rate
r1 at Ti, withdraw money at Ti+2, and buy shares for at the price of Si+1

each. In this way, the investor gets er1∆S−1
i+1 shares at the moment Ti+2 for

each unit of cash he had at Ti. The second way is to buy the shares for Si
each at the moment Ti. Then, at Ti+2 our investor will have S−1

i er2∆ shares
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for each unit of cash at Ti. If these two numbers (er1∆S−1
i+1 and S−1

i er2∆)
are not equal, then there is a possibility for arbitrage. Indeed, suppose that
er1∆S−1

i+1 < S−1
i er2∆, then at the moment Ti an arbitrager can borrow one

unit of cash, buy S−1
i shares and get S−1

i er2∆Si+1 units of cash from selling
shares at the moment Ti+1. The value of this cash discounted to the mo-
ment Ti is S−1

i er2∆Si+1e
−r1∆ > 1. This means that S−1

i er2∆Si+1e
−r1∆ − 1

is an arbitrage excess return on the operation. On the other hand, as we
have shown above, this represent the lattice regularisation of an element of
the curvature tensor along the plaquette. If er1∆S−1

i+1 > S−1
i er2∆, then an

arbitrager can borrow one share at the moment Ti, sell it for Si units of
cash, put cash in the bank and buy Sier∆S−1

i+1 shares at Ti+2. We have an
arbitrage situation again.

We consider the following quantity

(S−1
i er2∆Si+1e

−r1∆ + Sie
r1∆S−1

i+1e
−r2∆ − 2)/2∆ , (2)

which is the sum of excess returns on the plaquette arbitrage operations.
In the continuous limit this quantity converges, as usual, to the square of
the curvature tensor element. The absence of arbitrage is equivalent to the
equality

S−1
i er2∆Si+1e

−r1∆ = Sie
r1∆S−1

i+1e
−r2∆ = 1 ,

and we can use quantity (2) to measure the arbitrage (excess rate of return).
More formally, the expression (2) may be written as

R = (U1U2U
−1
3 U−1

4 + U3U4U
−1
2 U−1

1 − 2)/2∆ .

In this form it can be generalized to other plaquettes such as, for example,
”space”-”space” plaquettes.

As we have seen above, excess returns are elements of the lattice curva-
ture tensor calculated from the connection. In this sense, the rate of excess
return for an elementary arbitrage operation is the analog of the electro-
magnetic field. In the absence of uncertainty (or, in other words, in the
absence of walking prices, exchange and interest rates) the only state that
is realized is the state of zero arbitrage. However, if we introduce uncertainty
into the game, prices and the rates will move, and some virtual arbitrage
possibilities appear. Therefore, we can say that uncertainty plays the same
role in our theory, as quantization does for Quantum Gauge Theory.

The last point to add in this section is the notion of gauge transforma-
tion. Gauge transformation means a local change of a scale in fibres:

fx → g(x)fx ≡ f ′x , fx ∈ Fx , g(x) ∈ G , x ∈ E

together with the following transformation of the parallel transport opera-
tors:

U(y, x)→ g(y)U(y, x)g−1(x) ≡ U ′(y, x) ∈ G .
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It is easy to see that the parallel transport operation commutes with a
gauge transformation:

g(y)(U(y, x)fx) = U ′(y, x)f ′x (3)

and the curvature tensor is invariant under the transformation:

U1U2U
−1
3 U−1

4 = U ′1U
′
2(U ′3)−1(U ′4)−1 . (4)

2.3. GAUGE FIELD DYNAMICS

In the previous subsections we have shown that the exchange rates and
the interest rate (or, more generally, the internal rate of return) discount
factors are elements of the structural group of the fibre bundle. Moreover,
they are responsible for parallel transport in ”space” and time directions
correspondingly. In the present subsection we address the question of the
dynamics for the exchange/discount factors.

At first sight the dynamics is difficult to specify since it is not restricted,
and any attempt to formulate the dynamics seems to be arbitrary and not
sufficiently motivated. However, as we show below, the dynamics can be
derived from a few general and natural ssumptions. The main postulate of
the present analysis is an assumption about the local gauge invariance with
the dilatation group as the gauge group.

Postulate 1: Gauge invariant dynamics
We assume that no observable properties of the financial environment

(in particular, rules of dynamical processes) depend on the choice of units
of the assets. This means that all effects of, say, change of currency units
or share splittings may be eliminated by a corresponding change of interest
rates, exchange rates and prices [8]. This is a very natural assumption
which allows us, however, to make a step towards the specification of the
dynamics. Indeed, due to gauge invariance, the action which governs the
dynamics has to be constructed from gauge invariant quantities.

Postulate 2: Locality
Furthermore, we assume local dynamics for the exchange/interest rate

factors. This locality means that the dynamics of an asset is influenced by
connected (in the sense of Γ connectivity on the base graph L) assets only.

These two postulates allow us to make the following conclusion: the
action sgauge has to be a sum over plaquettes in the base graph of some
function of the (gauge invariant) curvature of the connection. This means
that the action is a sum over plaquettes of a function of the excess return
on the plaquette arbitrage operation as it was shown above.

Postulate 3: Free field theory – correspondence principle
We postulate that the action is linear in the plaquette curvatures on the

base graph, since this is the simplest choice. It will be shown later that this
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postulate is equivalent to the free field theory description in the absence
of matter fields and produces quasi-Brownian walks for exchange/interest
rates in the continuous time limit. This means that this approach gener-
alizes the standard constructions of mathematical finance. This fact serves
as a correspondence principle.

Postulate 4: Extremal action principle
In a fully rational and certain economic environment it should not be

possible to have ”something from nothing”, i.e. to have higher returns than
the riskless rate of return. In a more general form, the excess rate of return
(rate of return above the riskless rate) on any kind of operation takes on
the smallest possible value which is allowed by the external economic envi-
ronment. Together with the locality of the action, this give the extremality
principle for the action.

Postulate 5: Limited rationality and uncertainty
The real environment is not certain and not fully rational and there exist

nonzero probabilities to get different excess rates of return (exchange rates,
prices and interest rates fluctuate and bear local arbitrage opportunities).
We assume that the possibilities to have the excess return R(x, T ) at point
of ”space” x and time moment T = 0 are statistically independent for
different x, T , and are distributed with an exponential probability weight
e−βR(x,T ) with some effective measure of rationality β. If β →∞, we return
to a fully rational and certain economic environment.

Formally, we state that the probability P ({Ui,k}) to find a set of ex-
change rates/ interest rates {Ui,k} is given by the expression:

P ({Ui,k}) ∼ e
−β
∑

(x,T )
R(x,T ) ∼ e−βsgauge .

Now we are ready to write down the general action for the exchange/interest
rate factors. However, before doing so, we would like to consider in more
details a very simple example which gives some insight into the general
framework. Let us, once again, consider two-asset systems (cash-shares).

The first thing to mention is gauge fixing. Since the action is gauge
invariant, it is possible to perform a gauge transformation, which will not
change the dynamics, but will simplify further calculations. In lattice gauge
theory [9], there are several standard choices for fixing the gauge, and the
axial gauge is one of them. In the axial gauge an element of the structural
group is taken to be constant on links in the time direction (we keep them
er1,2∆), and one of the exchange rates (an element along the ”space” direc-
tion at some particular chosen time) is also fixed. Below, we fix the price of
shares at moment T = 0 taking S0 = S(0). This means that in the situation
of the ladder base the only dynamical variable is the exchange rate (price)
as a function of time and the corresponding measure of integration is the
invariant measure dSi

Si
.
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From the above derivation, the definition of the distribution function
for the exchange rate (price) S = S(T ) at the moment T = N∆ subject to
the condition that at moment T = 0 the exchange rate was S0 = S(0) is
given by:

P (0, S0;T, S) =
∞∫
0

. . .

∞∫
0

N−1∏
i=1

dSi
Si

exp

[
− β

2∆

N−1∑
i=0

(
S−1
i er2∆Si+1e

−r1∆ + Sie
r1∆S−1

i+1e
−r2∆ − 2

)]
.

(5)
It is not difficult to see that in the limit ∆→ 0 the expression in brackets
converges to the integral

−β
2

∫ T

0
dτ

(
∂S(τ)
∂τ

/S(τ) + (r2 − r1)
)2

,

which corresponds to a geometrical random walk. Evaluating the integral
and taking into account the normalization condition we come to the follow-
ing expression for the distribution function of the price S(T ):

P (S(T )) =
1

σS
√

2πT
e−(ln(S(T )/S(0))−(µ− 1

2
σ2)T )2/(2σ2T ) (6)

Here we introduced the so-called volatility σ as β = σ−2 and the average
rate of share return µ as µ = r1 − r2.

It is easy to give an interpretation to this last relation. The system
as a whole is not conservative, and both the interest rate r1 and the rate
r2 come from outside of the system (from banks and the performance of
the corresponding company). Let us imagine that the world is certain, and
that due to production performance, the value of the firm has increased.
For this amount new shares with the same price S1 have been issued (no
dividends have been paid). The number of new shares for each old share
is equal to er2∆. This means that the cumulative (old) share will have a
price S1e

r2∆, while the original price (at zero moment) was S0. Taking into
account discounting and certainty, we end up with the following expression:

S1 = e(r1−r2)∆S0 ,

which tells us that the rate of return on the share is equal to r1− r2. After
introducing an uncertainty, this last expression turns into an average rate
of return on the share.

Eq. (6) returns us to a justification of Postulate 3 which, together with
other Postulates, is equivalent to a log-normal model for price walks in the
absence of matter fields, which we consider in details in the next section.
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Now we give the general expression for the probability distribution of a
given exchange rate and internal rate of return profile:

P ({Si,k}, {ri,k}) ∼ exp

− β

2∆

∑
plaquettes

(∏
m

Um +
∏
m

U−1
m − 2

) , (7)

where the sum is calculated over all plaquettes in the base graph with all
links with nonzero connectivity Γ, the index m runs over all links of a
plaquette, {Um} are corresponding elements of the structural group, which
perform the parallel transport along the links.

To complete the gauge field consideration we want to return once again
to the gauge invariance principle. The next section is devoted to the consid-
eration of the “matter” field which interacts through the connection. It is
clear now that the field represents a number of assets (as a phase in electro-
dynamics) and has to be gauged by the connection. Dilatations of money
units (which do not change rules of investors behaviour) play the role of
gauge transformation, which eliminates the effect of the dilatation by an
appropriate tuning of the connection (interest rate, exchange rates, prices
and so on), exactly as it is in the Fisher formula for the real interest rate
in the case of inflation [2]. The symmetry with respect to a local dilatation
of money units (security splits and the like) is the gauge symmetry of the
theory.

2.4. EFFECTIVE THEORY OF CASH-DEBT FLOWS: MATTER FIELDS

Now let us turn our attention to ”matter” fields. These fields represent
cash-debt flows on the market. The importance of the cash-debt flows for
our considerations is due to their role in the stabilization of market prices.
Indeed, if, say, some bond prices eventually go down and create a possibility
to get bigger returns than from other assets, then an effective cash flow
appears, directed to these more valuable bonds. This causes an upward
shift of the prices, due to the supply and demand mechanism. Altogether
these effects smooth the price movements. The same picture is valid for
debt flows, if there is a possibility for debt restructuring. As we will see all
these features will find their place in our framework.

To formulate an effective theory for the flows we will assume that:

1. Any particular trader tries to maximize his return on cash and mini-
mize his debts.

2. Traders’ behaviour is limitedly rational i.e. there are deviations from
pure rational strategy because of, for example, lack of complete infor-
mation, specific financial manager’s objectives [2] and so on.
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We start with a construction of an effective theory for the cash flows and
then generalize it to allow for the presence of debts. The first assumption
tells us that an investor tries to maximize the following expression for the
multiplier of the value of his investment (in the case of cash, shares and
securities):

s(C) = ln(U1U2....UN )/∆

by a certain choice of the strategy which results in the corresponding tra-
jectory in ”space”-time for assets. Here {Ui}Ni=i are exchange (price) or
interest factors which came from a choice of traders’ behaviour at the i-th
step on the trajectory C and boundary points (at times T = 0 and T = N)
are fixed. We assume that there is a transaction time, which is the smallest
time in the systems and is equal to ∆. In other words, a rational trader will
choose the trajectory C0 such that

s(C0) = max{C}s(C) .

Choosing the best strategy, a fully rational investor maximizes his return
s. However, as we have assumed limited rationality, in analogy with the
corresponding consideration of the connection field probability weights, we
define the following probability weight for a certain trajectory C with N
steps:

P (C) ∼ eβ′s(C)/∆ ≡ eβs(C), (8)

with some ”effective temperature” 1/β which represents a measure of the
average irrationality of the traders per unit time.

It is possible to generalize the approach to a case of many investors
operating with cash and debts. The corresponding functional integral rep-
resentation for the transition probability (up to a normalization constant)
has the form [1]:∫

Dψ+
1 Dψ1Dψ

+
2 Dψ2Dχ

+
1 Dχ1Dχ

+
2 Dχ2e

β(A+A′) ,

with the actions for cash and debt flows:

A =
1
β

∑
i

(ψ+
1,i+1e

βr1∆ψ1,i − ψ+
1,iψ1,i + ψ+

2,i+1e
βr2∆ψ2,i − ψ+

2,iψ2,i

+(1− t)βSβi ψ
+
1,i+1ψ2,i + (1− t)βS−βi ψ+

2,i+iψ1,i) , (9)

A′ =
1
β

∑
i

(χ+
1,i+1e

−βr1∆χ1,i − χ+
1,iχ1,i + χ+

2,i+1e
−βr2∆χ2,i

−χ+
2,iχ2,i + (1 + t)−βS−βi χ+

1,i+1χ2,i + (1 + t)−βSβi χ
+
2,i+1χ1,i) . (10)
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We do not stop here to describe the boundary conditions, which are dis-
cussed in details in [1, 10].

It is interesting to note that Eq. (10) may be transformed to Eq. (9)
by inverting the signs of ri and inverting exchange rates S in the absence
of transaction costs. This corresponds to the transformation from nega-
tive to positive charges. The transaction costs make this symmetry only
approximate.

In the absence of restructuring of debts (i.e. one kind of debts cannot
be transformed into another kind of debt) the last terms containing S have
to be cancelled. Then the action takes the particularly simple form:

A′0 =
1
β

∑
i

(χ+
1,i+1e

−βr1∆χ1,i−χ+
1,iχ1,i +χ+

2,i+1e
−βr2∆χ2,i−χ+

2,iχ2,i) . (11)

Everything that we have said above was related to the particular case
of the two assets problem. Now we give a form of the action for the most
general situation. As it was shown before, a general system of assets is
described by a form of the ”space”-time base graph L of the fibre bundle.
Elements of the graph are labeled by (i, k), where the index i, i = 0, .., N ,
represents a particular asset (a point in ”space”) and the index k labels
time intervals. By the definition of the base L any two points of the base
can be linked by a curve γ, each formed by elementary segments with a
nonzero connectivity Γ. On its own, each of the segments is provided with
an element of the structural group U , which performs a parallel transport
along this (directed) link. These allow us to give the most general form of
the action A ((i12, k12) ≡ (i1, k1), (i2, k2) ∈ L : Γ((i1, k1), (i2, k2)) = 1):

A =
1
β

∑
(i12,k12)

(ψ+
(i1,k1)U

β
(i12,k12)[1− t(1− δi1,i2)]βψ(i2,k2) (12)

− δ(i1,k1),(i2,k2)ψ
+
(i1,k1)ψ(i1,k1)) .

In the same way, the action for the debt flows can be written:

A′ =
1
β

∑
(i12,k12)

(χ+
(i1,k1)U

−β
(i12,k12)[1 + t(1− δi1,i2)]−βχ(i2,k2) (13)

− δ(i1,k1),(i2,k2)χ
+
(i1,k1)χ(i1,k1)) .

3. Conclusion

We have proposed a mapping of Capital Market Theory onto Lattice Quan-
tum Gauge Theory, where the gauge field represents the interest rate and
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prices and ”matter” fields are cash-debts flows. Based on the mapping, we
have derived action functionals for both the gauge field and ”matter” fields
assuming several postulates. The main assumption is the gauge invariance
of the dynamics which means that the dynamics does not depend on par-
ticular values of units of assets, and a change of the values of the units may
be compensated for by a proper change of the gauge field. The developed
formalism has been applied to some issues of Capital Market Theory. Thus,
it was shown in [10] that a deviation of the distribution function from the
log-normal distribution may be explained by an active trading behavior of
arbitragers. In this framework, such effects as changes in shape of the distri-
bution function, “screening” of its wings for large values of the price and the
non-Markovian character (memory) of price random walks turned out to be
consequences of the damping of the arbitrage and directed price movements
caused by speculators. In [11] consequences of the bid-ask spread and the
corresponding gauge invariance breaking have been examined. In particu-
lar, it turned out that the distribution function is also influenced by the
bid-ask spread and the change of its form may be explained by this factor
as well. So, the complete analysis of the statistical characteristics of prices
have to account for both these factors. Moreover, it is possible to show [12]
that the Black-Scholes equation for financial derivatives can be obtained
in the present formalism in the absence of speculators (i.e. absence of the
arbitrage game).

Let us now make two final remarks.
1. In all the above cited references a very simple model of the stock ex-

change was considered, where only one kind of security is traded. This
can be generalized to a more realistic situation with a set of traded
securities. Following this line, dynamical portfolio theory can be con-
structed and, in the static (equilibrium) limit, it will coincide with
standard portfolio theory [13]. In the dynamical theory time-dependent
correlation functions will play the role of response functions of the mar-
ket to an external perturbation, such as a new information or a change
in the macroeconomic environment. Taking into account virtual arbi-
trage fluctuations will lead to a time-dependent modification of CAPM
or ARBM [3].

2. Since the influence of the speculators leads to the non-Markovian char-
acter of price walks, there is no possibility to eliminate risk using ar-
bitrage arguments to derive an equation for the price of a derivative.
Then, virtual arbitrage and corresponding asset flows have to be con-
sidered, leading to a correction of the Black-Scholes equation.
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