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1. Introduction

The analogies between economic and biological evolution are extensively
discussed in the literature. Approaches that describe technological or eco-
nomic change from a biophysical perspective include concepts such as com-
petition and selection and corresponding mathematical models (Nelson et
al., 1976; Montroll, Shuler, 1979; Jiménez–Montaño, Ebeling, 1980; Nelson,
Winter, 1982; Dosi et al., 1988; Hanusch, 1988; Arthur, 1989; Witt, 1990;
Saviotti, Metcalfe, 1991; Weidlich, 1991; Allen et al., 1992; Karmeshu, 1992;
Weidlich, Braun, 1992; Day, Ping Chen, 1993; Witt, 1993; Leydesdorff, van
den Besselaar, 1994; Silverberg, Verspagen, 1994; Bruckner et al., 1996;
Kwasnicki, 1996; Saviotti, 1996; Karmeshu, Jain, 1997; Schweitzer, 1997).
Self-organization theories from the physical research tradition including ir-
reversibility, non-linearity and fluctuations have mainly influenced this di-
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rection. Recently, concepts like fractals, self-organized criticality and scaling
originating in statistical physics have been successfully applied to economic
problems, e.g., firm growth and financial market dynamics (Takayasu et
al., 1992; Sato, Takayasu, 1997; Mantegna et al., 1995; Stanley et al., 1996;
Lubashevsky et al., 1997). In this paper we describe the evolution of tech-
nological or firm populations as hill-climbing process in an adaptive fitness
landscape over a continuous characteristics space. The relevance of the con-
cept of an adaptive landscape for economic and technological evolution has
been discussed, notably by Allen (1994; 1995). Following this line we de-
velop in this paper a framework for continuous models of technological and
economic evolution. We demonstrate the potential of such models, which in
certain respects, goes beyond the widespread application of discrete repli-
cator dynamics.

1.1. CONCEPTUAL BACKGROUND

A technology can be described by a large number of attributes, features
or characteristics representing inherent technological aspects (performance,
size, chemical composition) and economic parameters (input coefficients
or certain product attributes) (Nelson, Winter, 1982). Often technological
change is visualized by means of the temporal evolution of a single char-
acteristic or some corresponding indicator. Some approaches extend such a
one-dimensional description to a multidimensional mapping of technological
evolution. Sahal (1981; 1985a) used a classification of design variables (e.g.,
the stroke length of an engine) and performance variables (e.g., the fuel
consumption) to build a “topography of technological evolution”. Based on
this concept technological models occupy different loci in parameter space.
The probability distribution of certain parameters forms a surface over the
space, and the movement of the occupied regions indicates technological
change. Saviotti and Metcalfe (1984) elaborated a methodological frame-
work for a characteristics space of product technologies. They use two sets of
output indicators, viz. technical characteristics and service characteristics,
and describe processes like substitution, specialization and innovation in
terms of changes in these parameter sets (see also (Saviotti, Bowman, 1984;
Saviotti, 1985; Saviotti, Mani, 1995)).

A similar description may be developed for the evolution of firms and,
in particular, their evaluation on the financial market. Indeed, the price of
a firm’s shares on the stock market depends on a multitude of characteristic
features such as the capital stock, the investment rate, the management, the
working skills, the technological profile and R&D strategies. The assessment
of a firm through the market environment depends not only on its inherent
properties, but also on its interactions with other firms (e.g., competitors,
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suppliers) and on the general properties of economic and political networks
like information flows.

In this paper we develop a framework of continuous evolutionary mod-
els combining the characteristics representation of a firm or a technology
with an additional dimension corresponding to a valuation or fitness func-
tion in evolutionary dynamics. This dynamics incorporates various interac-
tions between the participating competitors and feedback into the valuation
function. In the following we propose the model framework mainly in the
context of technological evolution. We want to emphasize, however, that
the model framework itself is more universal and has a broad spectrum of
applications. Therefore, an application of the modeling framework to mar-
ket dynamics is also proposed. Some possible implications of such type of
models for the relation of firm behavior and financial markets are brought
out in the conclusions.

Following the above mentioned concepts for mapping technological evo-
lution we assume that the characteristics space is formed by three sets of
indicators: technical characteristics X1, X2, X3, . . . ,Xl, service characteris-
tics Y1, Y2, Y3, . . . ,Ym and financial characteristics Z1, Z2, Z3, . . . ,Zk. Then,
each product model is represented by a point in this space described by a
certain vector ~q = (q1, q2, . . . , qd) = (X1, X2, . . . , Xl, Y1, Y2, . . . , Ym, Z1, Z2,
. . . , Zk) with d = l +m+ k. All real vectors span the characteristics space
Q which is a real Euclidean vector space. This space can be regarded as the
analog of phenotype space in biology. Obviously, only a subset of all possible
combinations of real numbers qi is realized in the real evolutionary process.
Most of the regions of Q are empty. Some combinations of parameter val-
ues are self- contradictory (see e.g., (Foray, Grübler, 1990)). Therefore, the
set of possible technological populations Q is restricted to certain compact
areas of Q.

Next we define a population density x(~q, t) = x(q1, q2, . . . , qd, t) as a
function over the characteristics space. Morphologically oriented investiga-
tions of technologies show that the dominant or the finally established tech-
nology is typically selected from a variety of possibilities (Foray, Grübler,
1990; Durand, 1992). In general, the value of the function stands for the
number or frequency that a certain product model is realized (more pre-
cisely, x(q)dq stands for the number of product models in the interval dq
while x(q, t) is the corresponding population density function). A more
precise definition will affect the focus of the competition and selection con-
sidered. Here, we refer to the number of commodities produced and sold
as a quantitative expression of population density. In this case, following
Dosi (1982), competition is clearly realized through the market. Further, in
order to understand the movement of technological populations in the char-
acteristics space and to follow their trajectory, especially between locations
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which are able to compete, it seems to be useful to also include models that
have been proposed but not yet market-proven. In light of this phenotypic
approach the realized technological populations result from a competition
and selection process through which the shape of the population density in
terms of its modality changes. The occurrence and movement of such rel-
atively stable populations corresponds clearly to concepts of technological
regimes and natural trajectories (Nelson, Winter, 1977), dominant design
(Utterback, Abernathy, 1975; Abernathy, Utterback, 1978), technological
guideposts (Sahal 1981, 1985b) and technological paradigms/technological
trajectories (Dosi, 1982). These approaches are relevant in more than one
respect for the modeling framework developed in this paper.

Further utilizing the analogy with biophysical evolution, we assume that
the dynamics of competing economic or technological populations corre-
sponds to a fitness function that spans a landscape over a multidimen-
sional characteristics space. The success of a firm or technology is defined
in economic terms through market environments (Nelson, Winter, 1982).
Defining the characteristics of the external environment in a quantitative
way seems to be extremely complex. Moreover, theory alone cannot tell us
the exact structure of this fitness landscape; however, from existing eco-
nomic/technological populations we can infer some of its characteristics.
Looking at the multiplicity of technologies, the landscape, globally con-
sidered, will clearly be multimodal. Even in a certain restricted region of
similar characteristics, specialization or the existence of niches can also be
understood as a sign of multimodality. Further, we can assume that changes
in the landscape will be smooth. Besides multimodality there are reasons to
believe that the landscape has a very complicated structure. One reason is
that economic structures and technologies normally represent compromises
between several needs. Finding the optimal solution under conflicting con-
ditions is a so-called “frustrated problem” with a chaotically shaped land-
scape (Anderson, 1983). However, using recently developed mathematical
techniques, it is possible to draw qualitative conclusions about the charac-
teristics of evolutionary processes under such conditions.

In this paper we use the conceptual setting developed to implement
a continuous evolutionary model framework as a new approach to eco-
nomic/technological evolution. If we see fitness as an unknown landscape
over characteristics space, economic and technological change is mainly a
search and learning-by-doing process. This is quite consistent with most
of the evolutionary theories of technological change and economic develop-
ment. By analogy with phenotypical evolution in biology, we describe the
search process for economic and technological improvements as hill-climbing
process in an adaptive evolutionary fitness landscape. In biophysics this
type of model, originally proposed by Wright (1932) and Conrad (1983), was
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mathematically developed by Feistel and Ebeling (1989) (see also (Ebeling
et al., 1990)).

The central point of the theory of the adaptive evolutionary landscape
is to link the growth and movement of populations to changes in the fitness.
This feedback can lead to an increase in the survival possibilities for some
parts of the population but to a decline for others. In technological evolution
the exclusive character of technological paradigms (or lock-in) (Arthur,
1988) seems to indicate such behavior.

2. Models of a Search Process in Complex Adaptive Landscapes

A formal model of an evolutionary search in a phenotype space reads in a
continuous formulation (Ebeling et al., 1984; Feistel, Ebeling, 1989; Ebeling
et al., 1990):

∂tx(q, t) = x(q, t) w (q; {x}) + Mx(q, t) (1)

where w is a function of q, and possibly also a functional of x(q). M is the
mutation operator. The function w describes the rate of growth or decline of
the population density x(q, t) (e.g., output of product models). In biophys-
ical models w stands for the process of self-reproduction (replication). The
“reproduction rate” w(q) defines an evolutionary landscape superimposed
on a high-dimensional space Q.

2.1. THE FISHER-EIGEN MODEL OF TECHNOLOGICAL EVOLUTION

In the rather simple Fisher-Eigen model w(q) is given as the difference
between a self-reproduction function E(q) and its (only time-dependent)
ensemble average (Feistel, Ebeling, 1982):

w(q, t) = E(q) − 〈E〉. (2)

Then, the linear functional w(q;x) is given as:

w = E(q) − N−1
∫
dq′ E(q′) x(q′) (3)

where

N =
∫
x(q′, t) dq′

is the overall population size. The population average 〈E〉 is defined by:

〈E〉 =
∫
dq′ E(q′) x(q′, t)∫

dq′ x(q′, t)
. (4)
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Figure 1: One-dimensional representation of a fitness landscape and locations of techno-
logical populations

The integral is extended over the whole of phenotype space. Since the shape
of the fitness functional will be unknown in general, we assume that E(q)
(and consequently w(q)) has the form of a correlated random landscape.
Then, in analogy with solid state physics we may consider E(q) as a “cor-
related random potential”. Several specific features of the search in high-
dimensional landscapes (d� 1) have been analyzed by Conrad and Ebeling
(1992). In particular, it has been shown that in high-dimensional correlated
landscapes the probability that a given stationary point is a saddle point
increases with the dimension. In other words, the searcher (or searching
population) is more often confronted with the problem of leaving a saddle
point than of escaping from a proper relative maximum.

The second term in (1) denotes a mutation operator. In the simplest
case it may be modeled as a diffusion term:

Mx(q, t) = D∆x(q, t) (5)

where ∆ is the Laplace operator and D is the diffusion coefficient. In a
more general form we introduce the diffusion matrix Dij

Mx(q, t) =
∑
i

∂i

d∑
j=1

Dij∂jx(q, t). (6)
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In a still more general setting M denotes a linear operator

Mx =
∫ [

A
(
q, q′

)
x
(
q′, t

)
− A

(
q′, q

)
x (q, t)

]
.dq′ (7)

Here the transition matrix may also take into account long range transitions
(as e.g. Cauchy or Levy-type transitions).

So far, a full analysis is available only for the simplest case given by
Eqs. (1), (3) and (5) (Feistel, Ebeling, 1989; Ebeling et al., 1990). The
dynamic properties of equations of this type were investigated by Zel-
dovich et al. (Zeldovich et al., 1985) and others (Engel, Ebeling, 1987;
Asselmeyer et al., 1996). Mathematically speaking, they are closely related
to the Bloch equations of statistical physics (Schrödinger equations with
imaginary time). The problem reduces more or less to the solution of a
Schrödinger eigenvalue problem for the potential U(q) = −E(q). It may
be considered as a great advantage of this kind of model that many re-
sults from quantum mechanics for more or less complicated potentials are
available.

As shown in Figure 1, in the Fisher-Eigen approach the self-reproduction
function E(q) can be considered as a landscape over the characteristics
space. The region of technological populations follows the maxima of this
function which lie above the ensemble average. The fitness landscape E(q)
is static, i.e. time-independent. Moreover, it does not depend on the inter-
action between the members of the populations. The more general func-
tion w(q) undergoes temporal changes only through the ensemble average
〈E(q)〉. Models of this kind can be used to understand, e.g., concentration
processes and the relation between continuity and discontinuity in techno-
logical evolution.

For the problem of economic and technological evolution it seems to
be very interesting to consider the case when changes of the fitness land-
scape are endogenously determined and are related to the movements of
the populations themselves. “In changing the relative significance of com-
peting technologies, selection also results in changes in the price structures
that evaluate performance characteristics, so reshaping the selection envi-
ronment. Indeed, one of the central themes of the evolutionary approach
to competition is that technologies and their selection environments co-
evolve.” (Metcalfe, Gibbons, 1989, p. 157). The dependence of the fitness
landscape on growth and movement of populations is central to the theory
of the adaptive evolutionary landscape. We will overcome the disadvantage
of the models considered so far for modeling this kind of feedback in more
advanced models exhibiting co-evolution of the competitors.
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2.2. LOTKA-VOLTERRA DYNAMICS OF TECHNOLOGICAL EVOLUTION

Such a more flexible dynamics results if w(q) is considered as a linear func-
tional in the following way

w (q;x(q, t)) = a(q) +
∫
b
(
q, q′

)
x
(
q′, t

)
dq′. (8)

The special case

a(q) = E(q), b (q, q′) = −E
(
q′
)

(9)

brings us back to the Fisher-Eigen case (3). In the general setting we find
non-linear equations of the type

∂tx(q, t) =
[
a(q) +

∫
b
(
q, q′

)
x
(
q′, t

)]
x(q, t) + Mx(q, t). (10)

The dynamics of this type of equations, which resemble the Hartree equa-
tions with imaginary time, has not been thoroughly investigated; only the
initial steps were carried out in (Feistel, Ebeling, 1989; Ebeling et al., 1990).
The first important result for the case D = 0 is due to Musher et al. (1995)
in connection with the theory of weak Langmuir turbulence. Zakharov pro-
posed recently modelling complicated nonlinear evolution processes includ-
ing economic and social processes using equations of the type of Eq. (10)
(Zakharov, 1995). In particular, it can be shown that nonlinear growth rates
as modeled by Eq. (10) lead to solutions with a self-accelerating character
(Ebeling et al., 1990; Bruckner et al., 1989). This entails an effect which
is sometimes called the Matthew effect: The rich become richer and the
poor become poorer or the principle of cumulative advantage (Merton, 1968;
Bonitz, 1997; Bonitz et al., 1997).

3. Technological Trajectories and Continuity versus Discontinu-
ity in the Process of Technological Change

To demonstrate the capabilities of such models we consider in more detail
the case of Fisher-Eigen dynamics. As a starting point we use the following
equation:

∂tx(q, t) = x(q, t) [E(q)− F (t)] + D∆x(q, t). (11)

This is a slightly generalized form of Fisher-Eigen dynamics (see Eq. (1)
and Eq. (2)) because F (t) is not identical to the population average of E(q).
Further, the mutation operator is modeled with a diffusion term (cf. Eq.
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(5)). We now compare Eq. (11) with the famous replicator model due to
Fisher-Eigen:

d

dt
xi(t) = (Ai −Di) xi +

∑
j

(Aij xj −Aji xi) − F (t) xi (12)

i = 1, . . . , n.

Here, Ai is the self-reproduction rate, Di is that for decline processes and
F (t) includes boundary conditions like a constant overall population. The
summation term includes error reproduction or mutations which in the case
of social systems can be understood as transition or exchange processes
(Bruckner et al., 1989; Bruckner et al., 1996).

In the continuous model framework the typological classification of pop-
ulations used in discrete replicator models is replaced by a characteristics
representation. Subsequently, the population density xi is replaced by the
function x(q, t) in a continuous phenotype-like space. If the population den-
sity is concentrated in certain regions of Q (“islands”) then these “islands”
can be related to the original classified populations. The “selective value”
E(q) is linked to the net reproduction rate (Ai − Di). The choice of a
diffusion-like mutation operator (cf. Eq. (5) and Eq. (11)) corresponds to
the assumption that the mutation rates Aij are symmetric, homogeneous
and of short range. For technological evolution - and for social processes in
general - it seems to be of particular interest to consider inhomogeneous and
“directed” mutations. The emergence of a new technology in the system is
related to a stepwise process ranging from research at the “pure science”-
level, to applied R&D level to production relevance. The final introduction
of a new technology, understood as a mutation in the system of established
technologies, is the result of a multi-level process. Different institutions
are the carriers of these processes (Freeman, 1974). At each level decisions
about selection between variants are taking place (Dosi, 1982). These are
influenced by feedback mechanisms. This kind of “contextual pre-selection”
can be understood as “selection of the ‘mutation generating’ mechanisms”
(Dosi, 1982) and can be modeled by means of more elaborate mutation op-
erators. Here, for the sake of mathematical simplicity we restrict ourselves
to the diffusion approach.

In contrast to discrete models, the vanishing, merging, division and
emergence of technologies are expressed by changes in the shape of the
function x(q), without having to consider changes in the taxonomy of the
model. This results in a greater mathematical complexity of the model.

As mentioned above, the population density follows the shape of the
fitness landscape. If we assume E(q) to be a random function, then the
shape of x(q, t) is sensitive to statistical properties of this function given
by the probability density functional P [E(q)].
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In Eq. (11) the term x(q, t)[E(q)−F (t)] describes the selection process.
This becomes evident if we consider the temporal evolution of populations
without mutations:

∂tx(q, t) = x(q, t) [E(q)− F (t)] (13)

For the Gaussian distribution P [E(q)], this was investigated in (Zeldovich
et al., 1983) using percolation theory. The result shows that with increasing
time the population is concentrated in islands which correspond to particu-
larly high values of the random function E(q). These islands of high density
are surrounded by regions of low density. This means that the selection pro-
cess leads to a concentration of the distribution around the maxima. The
diffusion process, on the other hand, leads to a widening of the distribution
and extending of its tails.

The mathematical solution of Eq. (11) in the presence of mutations is
more complicated. Using the analogy with the Schrödinger equation for an
electron in a random field some approximate expression for the time depen-
dent solution x(q, t) was given by Ebeling et al. (1984) (see also (Feistel,
Ebeling, 1989; Ebeling et al., 1990)). It can be shown that the existence of
technological trajectories and technological populations correspond to the
problem of the existence of localized states (according to the localization
problem in random potentials). A localized state can be understood as a
distribution of product models around a dominant design belonging to a
single technological population. Technological trajectories can be under-
stood as being formed by the movement of the localization centers. It is
well known that for high-dimensional spaces (d ≥ 4) and δ-correlated po-
tentials E(q), there are no localized states at all. Therefore, the existence of
a correlation length greater than zero seems to be a necessary condition for
the emergence of distinguishable parts (or populations) in the population
density function. This is in accordance with the smoothness postulate of
an adaptive landscape formulated by Conrad (1978; 1983). An evolutionary
system can only develop a strategy for search processes in a landscape with
correlations. Furthermore, this entails that we have to distinguish between
lack of information about the environment (which can be modeled by means
of a random fitness function with certain statistical properties) and com-
plete irregularity (stochasticity) where in principle no extrapolation from
the local knowledge is possible. From the existence of localized states in a
random unrestricted extension of the function E(q) (resp. w(q)) the follow-
ing statement for the time evolution of x(q, t) can be made: with increasing
time the density becomes concentrated in localized states with decreas-
ing localization radi (for mathematical details see (Feistel, Ebeling, 1989;
Ebeling et al., 1990)). This process can continue endlessly.
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Figure 2: Schematic representation of the transition time as a function of the target
fitness value

The concentration of populations in regions of the fitness landscape
with high valuation is one effect. For the continuation of evolution it seems
to be very interesting to ask about possibilities to abandon such regions
for new ones. Interesting characteristics of this transition process are the
mean distance between the starting point q′ and the nearest localization
center, and also the mean transition time between successive steps. The
most important result of the mathematical analysis (Ebeling et al., 1990)
is, that there exists a characteristic finite jump – the so-called “evolutionary
quantum”.

If we consider the transition from one localized state around a fitness
maximum w0 to the next nearest state with another maximum wn, the
transition time t as a function of the value of δw, has a specific form (see
Figure 2). The existence of a minimum tmin can be understood from the
dynamics of the system. Transitions to much higher maxima of w require
several successful mutations. Such big jumps are relatively rare. This is ex-
pressed by high values of the transition time for δw � δwmin. On the other
hand, shifts to maxima with similar fitnesses can be achieved much faster
by mutations, but the following selection process needs more time because
of the small improvement of the new area (population). This means that
the transition time also increases for δw � δwmin. Therefore, δwmin can be
understood as an optimal step of improvement - also called the “quantum
of evolution”. In characteristics space this discontinuity corresponds to a
step-like behavior.

Evolution in correlated valuation landscapes proceeds in a jump-like
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fashion. This means that longer periods of smooth evolution of technolo-
gies are sometimes interrupted by jumps. Therefore, “incremental” and
“radical” innovations are both part of the system dynamics driven by mu-
tations. From the perspective of the system “big jumps” occur as the radical
innovations changing the composition of the system. The drift stands for
continuous change (incremental innovations). It was shown by Zhang, En-
gel and one of the present authors (Zhang, 1986; Engel, Ebeling, 1987) that
there exists a definite scaling between the distance |δq| of the jump in the
characteristics space and the characteristic time τ for the jump

|δq| =
τ

[ln τ ]1/2
. (14)

4. Applications to Market Dynamics

The dynamics of the market is central to the competition and selection pro-
cesses in the real economy. In spite of the fact that the real dynamics is ex-
traordinarily complicated let us try to model typical features with the tools
developed above. So far, in the context of technological evolution we have
considered the market as a selective environment. Now we consider the mar-
ket itself in more detail. First we assume the market to be an environment
of a technological or economic system and assign the fluctuating properties
to the market itself. We start with the Fisher-Eigen equation. As mentioned
above, the determination of the valuation function is a difficult question.
So far, we have modeled principal uncertainty in terms of spatial fluctu-
ations of the valuation function over characteristics space. Now we intro-
duce time-related fluctuations. In some earlier work (Feistel, Ebeling, 1989;
Ebeling et al., 1990) the hypothesis was developed that the replication rate
of technological populations is proportional to the profit which a particular
technology can generate in the market

E(q, t) = const. Pf(q, t). (15)

Here, the profit Pf(q) is determined as the difference of the price Pc(q)
prevailing in the market and the production cost C(q). This leads to:

E(q, t) = const. (Pc(q, t)− C(q, t)) , (16)

and in the simplest case F (t) is determined by the mean

F (t) = const.
∫
dq x(q, t) [Pc(q, t)− C(q, t)]∫

dq x(q, t)
. (17)

If we consider firms as carriers of the evolutionary process (cf. (Bruckner
et al., 1996)) then E(q, t) can be understood as the net growth rate of
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firms with certain characteristics q (including the technology in use). In
this case the characteristic space has to be re-constructed conceptually in
terms of the characteristics of firms. According to recent findings (Amaral
et al., 1997) we may assume that the company growth rate consists of a
systematic part and a fluctuating part

E(q, t) = E(q) + δE(q, t) (18)

where the fluctuations obey certain scaling rules (Amaral et al., 1997).
In another extension of the model framework being discussed we will

consider the market itself as an evolving system. The interplay of sellers and
buyers in the stock market serves as an example. So far, our analysis was
entirely concentrated on Fisher-Eigen dynamics. Much less work has been
devoted to economic applications of the continuous Lotka-Volterra equa-
tion, in spite of numerous applications of its discrete counterpart (cf. (Levy,
Solomon, 1996)). As far as we see, continuous Lotka-Volterra equations are
quite appropriate to model the market dynamics expressed by the interplay
between buyers and sellers. Recently, Takayasu et al. (Takayasu et al., 1992;
Sato, Takayasu, 1997) have succeeded in describing stock market dynamics
by discrete stochastic models. In the Sato-Takayasu model dealer i on a
stock market is characterized by a minimum price Bi and by an interval
Li = δBi, giving the selling price Si = Bi+Li. If he succeeds to find another
dealer in the market with the buying price Bj such that

Bi < Bj ≤ Bi + δBi (19)

he can sell his product and make a profit. In case

Bj < Bi ≤ Bj + δBj (20)

dealer i may buy a product from dealer j. We are not going to describe the
details of the Sato-Takayasu model, which includes stochastic elements and
describes correctly the fluctuations observed in the stock markets.

A plausible continuous variant of the Sato- Takayasu model may be
formulated as follows. The interplay of buyers and sellers changes the
amount and the distribution of money in the system. The amount of money
forms a population over a space of characteristics of financial products.
For each point of this space we define buying prices B(q) and price inter-
vals L(q). Then the market dynamics is described by the Lotka-Volterra
equations (Eqs.(5) and Eq.(10)) with a correlated random growth function
a(q, t) = E(q, t). The act of selling and buying is consequently expressed
in the exchange term b(q, q′) which has to be antisymmetric. This kernel
should be a functional of B(q) and L(q). A possible choice for the kernel is
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the derivative of a Gaussian

b
(
q, q′

)
=

1
τ

B(q)−B(q′)√
L(q)

exp

[
−(B(q)−B(q′))2

2L(q)2

]
(21)

Then the dynamics works out as follows. If a dealer B(q) succeeds in finding
a partner with a higher buying price B(q′) such that B(q) ≤ B(q′) ≤
B(q) + L(q) he may sell his product and has a chance to grow. Otherwise,
he still has a chance to buy from a dealer in the corridor below his own
buying price and the possibility to sell the asset in the next turn.

5. Conclusions

In this paper a modeling framework for the co-evolution of economic or tech-
nological competitors in a continuous phenotype-like space is developed.
The introduction of a characteristics space allows us, in principle, to distin-
guish between drifts and jumps in technological progress. Furthermore, the
emergence, vanishing, differentiation or merging of different economic struc-
tures or technologies can be described. One purpose of the present paper is
to demonstrate the versatility of continuous models for such processes. In
this paper, the Fisher-Eigen dynamics and the Lotka-Volterra dynamics are
introduced. In both cases there are different kinds of feedback mechanisms
between the population density and the shape of the fitness landscape.

Concerning technological evolution, the adaptive landscape concept
seems to be important for the understanding of an “innovative environ-
ment” (Dosi, Metcalfe, 1991) and the relation between “blind” and “di-
rected” search strategies or the nature of change (Allen, Lesser, 1991). “Ir-
reversibility is not only the result of imperfect information and sequentiality
of decisions but is due to the fact that the world genuinely changes and it
changes as a consequence of the very actions of the agents.” (Dosi, Metcalfe,
1991, p. 146). The adaptive landscape concept is related to a Lotka-Volterra
dynamics which expresses the mutual dependence of changes in the popula-
tion density and changes in the fitness landscape. In as much as the fitness
functional w depends both on the characteristics values q and the popula-
tion density x(q, t), the following circle can be observed: self-reproduction
according to the fitness value leads to a change in the population density,
this influences the shape of the fitness and, therefore, the self-reproduction.
In this way, self-referentiality is introduced in the model.

A second objective of the present paper is to link the concept of an
adaptive landscape to complex search processes. Therefore, the structure
of the fitness landscape and, in particular, its different statistical properties
must be considered in greater detail. The fitness function is assumed to be
a correlated random potential. Thus links to mathematical techniques used
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in statistical physics can be established. In this paper some implications
from recent research trends for technological evolution are discussed. In
particular, for the Fisher-Eigen dynamics the occurrence of localized states
and the jump-like character of evolution have been considered. On a short
time scale the hill-climbing character of evolution due to the interaction
of selection and diffusion processes leads to the development of an island
structure in characteristics space. This corresponds to empirically observ-
able technological populations. In the continuous approach the existence of
such populations is not an initial assumption (like in discrete descriptions)
but the result of search processes in a random landscape. On a long time
scale hill-climbing proceeds by small but discrete steps. Transitions from
an initial region with a certain given fitness w0 to regions whose fitness is
better by exactly one “quantum” are preferred. Surprisingly, this discon-
tinuous character of evolution is the result of a continuous approach. This
indicates that the stepwise character of technological evolution as observed
is not a direct consequence of the discreteness of mutations but rather a
general feature of the selection-mutation processes. Concerning the relation
between incremental and radical innovations in the model framework devel-
oped here, shifts can be explained in terms of diffusion as well as jumps in
terms of relocation of populations. The occurrence of an optimal step-width
of improvement is probably related to the phenomenon of discrete steps of
technological change described in the literature as the apparent paradox of
a “ ‘discrete continuum’ of technological change” (Durand, 1992). Further-
more, a scaling behavior between distance and the characteristic time of
jumps can be observed.

Thus, the modeling framework developed here seems to be useful for
the description of economic and technological systems which behave in a
complicated unknown environment. The units of evolution can be described
by a set of varying characteristics. In this paper we mainly consider an ap-
proach which describes technological evolution in terms of the movement
of technological populations. In this case, product models or technological
processes are taken as carriers of the evolution process. Another widespread
approach to technological evolution considers the firms themselves as carri-
ers of the search process for technological improvement and market success
(Nelson, Winter, 1982; Allen, Lesser, 1991; Bruckner et al., 1996). In such
approaches and models, characteristics of firms such as size, age, belong-
ing to a sector or technology, capital, etc. appear as variables, parameters
and classification features. A possible extension of the model framework
is the inclusion of temporal fluctuations in the valuation function (fitness
landscape). Therefore, links to observed fluctuations in firms’ growth rates
can be established. According to the framework developed above, we can
imagine that a particular choice of such economic, financial, organizational
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and technological characteristics can be used to construct a characteristics
space in which firms occupy different regions, and populations are built by
groups of firms with similar characteristics. Evaluations of these popula-
tions are performed through market environments. The stock market can
be seen as a special case. The price of the shares of a firm on the stock
market depends on a multitude of its characteristic features, but also on
the interactions between the firms and on general properties of economic
and political networks like information flows. The concept of evolution in
an adaptive landscape can probably be used as an instrument to describe
interactions between the firms’ strategies and the reactions in the stock
market. In this paper we have considered as an example the relevance of
Lotka-Volterra models to stock market dynamics. In particular, a continu-
ous formulation of the Sato-Takayasu model has been introduced.

In this paper we hope to have given some starting-points for further
research on learning, problem solving and adaptation in economic and tech-
nological evolution, leading to a mathematical formulation of market dy-
namics.
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