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1. Introduction

Price fluctuations in financial markets are random, but not Gaussian. Closer
analysis reveals more intricate structures. Understanding them is important
for both forecasting and risk analysis. However, up to now it is not clear
how to characterize these structures.

There is a huge econometric literature on how to model financial time
series. The main approach consists in modelling the stochastic properties
but there are also models that grow from the market structure.

Another approach consists in using analogies with phenomena in other
fields, physics in particular. Frequently, physics has served as a reference
for explaining phenomena in other fields. An analogy with a phenomenon
in physics may turn out to be very fruitful, but one should bear in mind the
limits of any analogy, considering the pecularities of economic phenomena.

In modern physics, the study of collective phenomena has become in-
creasingly important. Keywords are phase transitions, pattern formation,
self-organized criticality, and hydrodynamic turbulence. The corresponding
theories are quite different from those belonging to the 19th century mecha-
nistic framework. From a fundamental point of view the main characteristic
of collective phenomena is the emergence of new behaviour which is not dis-
played by the constituent parts of the system and cannot be deduced by
simple aggregation; it is essentially due to the interaction of the parts. Of-
ten the new features are largely independent of the nature of the parts of
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the system, and nonlinearities play an essential role. Theories describing
this kind of behaviour are likely to be also useful in the social sciences.

Frequent findings in complex systems displaying collective behaviour are
scaling laws, which show up for quite different phenomena. They essentially
state the absence of a natural scale. In economics, they have first been
observed for fluctuations of cotton prices [1]. Later they were also found
to hold for other financial instruments such as foreign exchange (FX) rates
[2, 3] and stock exchange indices [4]. Scaling laws may have different origins
but often hierarchical (or self-similar) structures are at their root. In any
case, one should try to find the underlying structural (or dynamic) factors
and work out more specific consequences of such factors.

The assumption underlying the hypothesis presented in this paper is
that the pricing process in financial markets is a hierarchically structured
collective phenomenon. It is argued that this process shares important fea-
tures with fully-developed hydrodynamic turbulence. In hydrodynamic tur-
bulence there is a (nearly) self-similar hierarchy of vortices caused by a flow
of energy from large to small spatial scales. It is this cascade that gives rise
to the scaling behaviour of the moments of the distribution of velocity fluc-
tuations in a turbulent flow. Another consequence of the energy cascade is
that the distribution of differences of the velocities at two points in the flow
is not Gaussian and its shape changes when the distance between the points
is varied. This distribution can be represented as a mixture of Gaussians,
and the Gaussian components can be recovered from the experimental data.

The essence of the analogy with turbulence is that in some financial
markets such as the FX market, there is a cascade from long to short tem-
poral scales similar to the energy cascade in a turbulent flow [5]. As in
turbulence, this cascade does not only account for the scaling behaviour
of the moments of the return distribution but also its change in shape as
a function of the time delay. This distribution has been represented as a
mixture of Gaussians, and the Gaussian components have been (approxi-
mately) recovered from the series of quotes [6]. Following the hypothesis
proposed by Ghashghaie et al. [5] of a cascade across the temporal scales in
the FX market, Arneodo et al. [7] visualized a cascade for stock market data
and showed that the multiplicative cascade-model implied by the analogy
with turbulence reproduces the slowly decaying volatility autocorrelation
function well.

The outline of this paper is as follows. We start Sec. 2 with an account
of the most important facts about the FX market. A description of the
main characteristics of FX data follows. Sec. 3 deals with basic facts about
hydrodynamic turbulence, in particular those concerning the statistical be-
haviour of velocity differences and their relation to the underlying energy
cascade. In the second part of this section, some similarities between tur-
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bulence and price dynamics in the FX market are reviewed. In Sec. 4, two
implications of the hierarchical structures in the FX market are presented,
and in the final section we end with a discussion.

2. The structure of the foreign exchange market

2.1. ORGANISATION OF THE MARKET

Since the breakdown of the Bretton Woods agreement in the early seven-
ties, the major exchange rates have been determined by the market and,
consequently, they are constantly fluctuating. Since that time, different re-
gional markets have been growing together and nowadays they form a single
global market the participants of which are connected via computer net-
works. The market is active practically round-the-clock with a short gap
between the close down of the markets on the west coast in the US and the
opening of those in the Far East. Trading is interrupted only during the
weekends and world wide holidays. Traditionally, deals were executed via
telephone. In the recent past, computer trading has been gaining ground
at the expense of the telephone.

In the FX market there is practically no private information. The liqui-
dity is very large: the volume traded per day amounts to more than 1012

US-dollars (approximately the GNP of Italy). Typical sizes of individual
deals are of the order of 106 to 107 US dollars.

Unfortunately, volume data is scarce. (Some of the rare studies with
FX volume data are found in [8, 9, 10].) The quotes, which are distributed
via computer networks, can be easily collected, but they are only indicative
prices, which may differ from prices at which the deals are actually executed.
Comfortingly, Evans [10] found that price quotes and trading activitiy are
closely related, even though quote intensity will typically understate trade
intensity in busy market conditions.

Our analysis has been performed with a data set collected by Olsen &
Associates1 containing the FX quotes of the spot rates for the three major
currencies in the period from October 1, 1992 till September 30, 1993.

2.2. STATISTICAL PROPERTIES OF PRICE SERIES

2.2.1. Stochastic volatility models
The statistical properties of market prices began to interest scientists around
the turn of the century. A pioneering work is the thesis of Louis Bachelier
[11] who developed the theory of Brownian motion while investigating the
price fluctuations on the Paris stock exchange.

1Olsen & Associates, Seefeldstraße 233, Zürich, Switzerland
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Figure 1. Pdfs for USD–DEM middle prices with ∆t ≈ 10min, 1.5h, 11.5h, 46h (from
top to bottom). Full lines: observed data. Dashed lines: results of (least squares) fits
carried out with the mixture of distributions (1). For better visibility the curves have
been shifted vertically with respect to each other.

The basic assumption of the early works was that the prices perform
a Gaussian random walk. Transferred to the logarithmic prices, this has
remained the main paradigm till recently (work of Black and Scholes [12]).
However, it is not supported by empirical observations. Observed distribu-
tions of FX and asset returns2 ∆x over a time interval ∆t typically exhibit
heavy tails, see Fig. 1. This effect is more pronounced for large ∆t than for
small ∆t.

Another important aspect is volatility clustering, i.e., the occurrence of
agitated periods with large price fluctuations and of quiet periods with low
price fluctuations. This implies correlations between the volatility at differ-
ent times. The corresponding correlation function decays very slowly [13].

There is a huge econometric literature dealing with the statistical be-
haviour of price series in financial markets. Among the major approaches
to time series modelling are the stochastic volatility models [14], which as-
sume the variance of returns to be a time dependent stochastic process and
the conditional distribution of returns (given the instantaneous volatility)
to be Gaussian. These include in particular subordinated models (e.g. [15])

2For a series of (middle) prices p(t), the returns ∆x are defined as logarithmic price
changes over a time interval ∆t, ∆x = log p(t+ ∆t)− log p(t)
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Figure 2. Log-log plot of the moments 〈(∆x)n〉 of order n as function of the time delay
∆t.

and information-counting models (e.g. [16]). ARCH models [17] and gener-
alizations [18, 19] consider the volatility as an autoregressive process.

In the framework of stochastic volatility models, the pdf p∆t(∆x) of
returns ∆x over a time interval ∆t is often described by a mixture of
Gaussians with lognormally distributed variances (cf., e.g., [15]):

p∆t (∆x) = 3D
∫ ∞
−∞

h∆t(log σ;λ2)p0

(
∆x;σ2

)
d(log σ), (1)

where h∆t(log σ;λ2) is the pdf of log σ with variance λ2. An extensive gener-
alization of mixture representations has been proposed by Barndorff-Nielsen
[20, 21].

Currently, the time variation of the volatility is a generally accepted
feature. In order to account for the slow decay of the volatility autocorre-
lation function, however, one has to take into account different time scales,
as has been done by Müller et al. [13] in the framework of a heterogenous
ARCH approach (HARCH).
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Figure 3. The n dependence of the scaling exponents ξn and ζn for the nth moments
of the distribution of FX price changes (squares), and of the distribution of velocity
differences in turbulent flows, taken from [22] (crosses) and [23] (triangles). Note the
same qualitative deviation of all curves from a straight line.

2.2.2. Scaling properties
As already pointed out in the introduction, scaling properties are quite
common in economic data sets. In financial price series, scaling behaviour
has been found for the nth moments 〈(∆x)n〉(∆t) of the returns ∆x as
function of the time delay ∆t (see Fig. 2):

〈(∆x)n〉(∆t) = (∆t)ξn (2)

The value of the exponent ξ1 reported in [5] for US dollar–Deutsch
mark FX rates is about 0.45. Other authors obtained other values, e.g.,
ξ1 = 0.59 [2]. A detailed study revealed [24] that the values of the exponents
ξ1 and ξ2 vary by about 30%, depending on the method used for their
evaluation. For the exponents of higher-order moments, the uncertainties
become even larger. Thus few conclusions can be drawn from the value of
a single exponent alone. In all cases, however, ξn as a function of n is a
concave function (cf. Fig. 3) [5], in contrast to a random walk for which
ξn = n/2. The analysis can be extended to non-integer exponents and
the tools of multifractal analysis can be used. A corresponding study [25]
confirmed the concave shape of the scaling exponents (vs. n) for FX data.
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2.2.3. Change in shape of the distribution of returns
If the scaling exponent of the nth moment depended linearly on n, the
shape of the distribution of returns would not depend on the time delay.
The concave form of the ξn vs. n graph implies that the distribution changes
its shape as a function of ∆t. Indeed, the distribution is leptocurtic for short
time delays and becomes more and more Gaussian-shaped for larger and
larger time delays (see Fig. 1).

This change in shape is not explicitly addressed in the traditional eco-
nometric approaches, which mainly deal with fixed time delays ∆t. A
GARCH(1,1) model, e.g., only partly accounts for this behaviour, as follows
from the results of Mantegna and Stanley [4]. They propose an alternative
approach, which consists in assuming a random walk with price changes fol-
lowing a truncated Lévy distribution [4, 26]. Owing to the truncation, the
variance is finite, which ensures asymptotic normality of the price changes
for large time delays. This approach is appealing because of its simplicity,
and it models quite nicely the change in shape of the return distribution
as a function of the time delay. Its main shortcoming, however, is that it
cannot account for the empirically observed clustering of volatility. This is
a step back with respect to the stochastic volatility models in econometrics.

3. Hydrodynamic turbulence: an analogy from physics

3.1. STATISTICAL PROPERTIES OF TURBULENT FLOW

Hydrodynamic turbulence [27, 28, 29, 30, 31, 32] is a widespread phe-
nomenon. Examples are the weather, which, in the form of cyclones, pro-
duces vortices of the order of hundreds of kilometers, the wake behind all
kind of objects moving in a gas or a liquid, or the flow behind an obstacle.
The main characteristic of these phenomena is a hierarchy of vortices [33],
which provides a mechanism for dissipating large amounts of energy in a
viscous fluid. The qualitative aspect of nested vortices of different sizes was
already represented in drawings by Leonardo da Vinci. The idea that en-
ergy is pumped into the system at a large scale, transferred by the vortices
to smaller and smaller scales and dissipated at the smallest scale, is due
to Richardson [34]. This qualitative picture of the flow of energy across
scales has been cast into a quantitative model by Kolmogorov [29, 30] and
Obukhov [31]. Their model is based on reasonable ad hoc assumptions;
a rigorous derivation from the Navier-Stokes equations has not yet been
possible. In the spirit of the 1962 version of Kolmogorov’s model, one can
assume that, at level3 i, the energy dissipation rate εi of a vortex is ob-
tained from the energy dissipation rate εi−1 of the vortex at level i− 1 by

3The number counting the levels can be interpreted as wave number.
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multiplication with a random factor ai with a mean value less than 1:

εi = aiεi−1

= aiai−1εi−2

= aiai−1 · · · a1ε0. (3)

This means that the logarithm of εi is related to the logarithm of ε0 by a
sum of random variables

∑
k log ak which are assumed to be independent

and of finite variance. Thus, for a sufficiently large i, the energy dissipation
rate εi is lognormally distributed.

The flow of energy across the vortices at different scales induces a scaling
behaviour of the nth moments 〈(∆v)n〉(∆r) of the velocity difference ∆v
as a function of the distance ∆r between two points at which the velocities
are measured: 〈(∆v)n〉(∆r) ∝ (∆r)ζn . In Kolmogorov’s 1962 model, the
scaling exponents are given by ζn = n/3−µ(n−3)n/18, which are concave
functions with ζ3 = 1. For experimental results, see Fig. 3.

In practice, the evaluation of higher order moments is affected by large
errors. Therefore, it is advantageous to study directly the distribution of
velocity differences. Barndorff-Nielsen [20] has shown that this distribu-
tion can be well represented as mixtures of distributions of the same type.
Chabaud et al. [35] obtained similar results by a mixture of Gaussians (1)
with lognormally distributed variances. The variance λ2 = λ2(∆r) of the
lognormal distribution is a shape parameter which vanishes for large ∆r.
A hierarchical coupled maps model proposed by Beck [36] also reproduces
well the shape of the distributions of velocity differences.

3.2. SIMILARITIES BETWEEN VELOCITY FLUCTUATIONS AND
RETURNS

Returns in financial markets such as the FX market exhibit similar statis-
tical properties as velocity fluctuations in a turbulent flow. In particular,
the distributions of both velocity fluctuations and returns deviate from a
Gaussian distribution in a similar way (both display fat tails and a pro-
nounced peak) and change their shape as a function of the scale variable
(time delay for prices and spatial distance for velocities). The moments of
both distributions display scaling behaviour. Even though the values of the
scaling exponents ξn and ζn are different, their functional dependence on n
is similar: both form a concave curve, see Fig. 3.

As pointed out above, mixtures of Gaussians with lognormally dis-
tributed variances are used both in physics and economics to represent
distributions of velocity fluctuations in a turbulent flow and of price changes
in financial markets, respectively. The difference, however, is that (as men-
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Figure 4. Variation of the shape parameter λ2 as function of ∆t.

tioned in Sec. 2) traditionally in econometrics only fixed time delays were
considered.

Adjusting the shape parameter λ2 = λ2(∆t), Ghashghaie et al. [5] have
shown that for US dollar–Deutsch mark spot rates, the change in shape
of the pdf of returns can be described by the mixture (1). For time delays
ranging from 10 minutes up to about 2 days, λ2 depends approximately lin-
early on log ∆t (Fig. 4). This is consistent with Kolmogorov’s 1962 model
of turbulence. The shape of the distributions of returns has also been re-
produced by Hilgers and Beck [37] using the same type of coupled maps
model as in the case of turbulence.

4. Hierarchical features in FX markets

The similarities between the statistical properties of velocity fluctuations in
turbulent flows and the FX returns mentioned in the previous section has
prompted us to postulate the existence of a cascade in the price dynamics
of the FX market similar to the energy cascade in turbulence. The large
volume of inter-dealer transactions (about 75% . . . 90% of the whole trading
volume) is a hint pointing in this direction. One may envisage that the
internal dynamics of the cascade is due to inventory effects together with
information arrival processes. Dealers try to avoid large open positions,
especially overnight. Thus, a dealer having received an order of large size
will try to make a compensatory deal. Since large buying or selling orders
contain information for insiders, he may break large trades into smaller
ones, thus conveying information to the market only gradually. Subsequent
dealers may do the same, dividing an initially large order into still smaller
ones and creating a kind of risk or information cascade.
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The other ingredient is provided by external information reaching the
market. Andersen and Bollerslev [38] have shown that heterogenous infor-
mation may generate persistence in volatility and that the information dis-
semination processes may exhibit certain hierarchical features. They have
also demonstrated how heterogenous information arrival processes with dif-
ferent decay times can explain scaling properties.

4.1. CORRELATION OF VOLATILITIES

In hydrodynamics, the picture of an energy cascade across spatial scales is
widely accepted [33]. In financial markets, it is not a priori clear what the
most adequate analogue of the energy flow could be. Certainly risk and in-
formation play an important role. Both are related to volatility. Therefore
the volatility is a good condidate to start with in a quantitative cascade
model. The effect of the asymmetry (from long to short ∆t) of the informa-
tion flow between market components with different time horizons was first
shown by Müller et al. [13] in the intra day dynamics of the FX market.
Later, Arneodo et al. [7] visualized the information flux across scales for
stock market data.

An important feature, which is directly related to volatility clustering,
is the slowly decreasing autocorrelation of volatilities. This feature can be
naturally accounted for by the basic feature of the Kolmogorov model,
namely the multiplicative cascade (3), where the εi’s have to be interpreted
as volatilities on the respective time scales. Arneodo et al. have shown [7]
that the assumption of a multiplicative volatility cascade yields a logarith-
mic decay for the volatility autocorrelation function, which fits the observed
decay well (even though an algebraic decay would do equally well). They
also show that the correlation function predicted by the cascade model
does not depend on the scale on which this function is calculated. This
independence of scale is confirmed by the observed data.

4.2. FLUCTUATION INTENSITY AND CONDITIONAL RETURNS

If the multiplicative cascade (3) captures the essential structural and/or
dynamic features, it should be possible to recover the Gaussian components
p0(∆x;σ2) of the mixture (1) by conditioning the returns on an adequate
variable. In turbulence, such a decomposition has been successfully carried
out by conditioning the velocity differences on the energy transfer rate [39].
The same kind of analysis has been performed for FX data [6] where a local
measure of the intensity I∆t(ti) of price fluctuations at time ti (on the scale
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Figure 5. QQ-plots (versus a standard Gaussian) of the distribution of the logarithmic
fluctuation intensity log I∆t for ∆t = (bottom) 10 min., (middle) 1 hour, (top) 8 hours.

of the time delay ∆t) has been defined as the conditioning variable [6]:

I∆t (ti) =
1

N(ti,∆t)

∑
ti<τj≤ti+∆t

(x(τj)− x(τj−1))2 −
(
x(ti)− x(ti + ∆t)

N(ti,∆t)

)2

(4)
with the normalisation constant

N(ti,∆t) =
∑

ti<τj≤ti+∆t

1. (5)

This (modified) volatility can be interpreted as an information measure.
As expected from the analogy with turbulence, I∆t is approximately log-
normally distributed (Fig. 5), and the conditional distribution of returns
given I∆t is approximately Gaussian (see Fig. 6). This corroborates the as-
sumption that the cascade in the FX market can be described, at least in
a first approximation, by means of volatilities. The conditional returns still
deviate slightly from a Gaussian distribution. Alternative definitions of I∆t

or other (volume based) quantities may yield better results.

5. Discussion

The facts reviewed in this paper show that there is clear evidence of a
cascade from long to short time scales in the price dynamics of financial
markets. Currently the most suitable variable for describing the flow across
the time scales seems to be the volatility. This view is supported by nu-
merical results obtained for large data sets. It is also consistent with the
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Figure 6. QQ-plots (versus a standard Gaussian) of the conditional distribution of
returns for ∆t = 10 minutes. (a) log I∆t ∈ [−8.4,−8.1], (b) log I∆t ∈ [−9.3,−9.0], (c)
log I∆t ∈ [−10.2,−9.9], (d) log I∆t ∈ [−11.0,−10.8].

qualitative picture that the cascade is closely related to the information-
processing activity of the market, and that inventory effects accounted for
by the risk aversion of the dealers play an important role.

The information contained in the structure of the cascade can be used
to improve risk management. To this end it is necessary to integrate the
concept of a cascade into time series models for the return process. Possi-
ble approaches are those pursued in economics to account for information
and inventory effects on the prices. Hierarchical models inspired by the
Kolmogorov cascade, such as coupled maps models [37], may serve as al-
ternative starting points.

We would like to close with a general remark. The link between models
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growing from market microstructure and time series models reproducing
the stochastic properties of the return process is of the same qualitative
nature as the link between the Navier-Stokes equations, which describe the
motion of a viscous fluid, and stochastic turbulence models describing the
statistics of velocity fluctuations in a turbulent flow. The situation in hy-
drodynamics is still unsatisfactory in so far as it has not been possible to
derive a turbulence model from the Navier-Stokes equations. Additional as-
sumptions are necessary. In economics the situation is far less satisfactory
because, in contrast to the Navier-Stokes equations, no precise “microscopic
laws” governing market dynamics are known. However, even if there were
such laws this would perhaps be of little help. The analogy with the physical
phenomenon suggests that it is questionable whether the statistical prop-
erties of the price dynamics of financial markets could be derived from such
“microscopic laws” without additional assumptions about the stochastic
nature of the return process.

Acknowledgement

The authors thank Ch. Jeeroburkhan for valuable remarks. Sh. G. acknowl-
edges the support from a Marie Heim-Vögtlin grant of the Swiss National
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