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1. Introduction

The goal of statistical physics is to predict the macroscopic behavior of
systems composed of many interacting units from microscopic interactions.
The studies of the '60s and '70s on critical phenomena [1, 2, 3] and fractal
geometry [4] provided an array of techniques and concepts that have proven
themselves relevant for studying complex systems. A key concept emerging
from the study of critical phenomena is universality which enables us, un-
der certain conditions, to predict macroscopic behavior semi-quantitatively
— in the form of scaling laws — without too much knowledge of the mi-
croscopic behavior. That is, classes of interactions, which differ in some
details, can be described by the same scaling laws. The new tools of sta-
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tistical physics have found immediate application in many fields such as
biophysics, medicine, geomorphology, geology, evolution, ecology or mete-
orology.

Problems in economics appear particularly suited for the application of
the methods of statistical physics: There, a large number of agents interact
with each other giving rise to macroscopic — macroeconomic — behavior.
Recognizing these similarities, several research groups have turned their
attention to problems in economics [5, 6] and finance [7]-[17]. Simultane-
ously, the concepts of statistical physics (e.g., self-organization, scale-free
phenomena) have started to penetrate the study of economics [18].

Here, we extend the study of Ref. [6] on the growth rate of manufactur-
ing firms. One of our motivations for the present study is the considerable
recent interest in economics in developing a richer theory of the firm [19]-
[42]. In standard microeconomic theory, a firm is viewed as a production
function for transforming inputs such as labor, capital, and materials into
output [22, 29, 35]. In contrast to this static model, recent work on firm
dynamics emphasizes the effect of how firms learn over time about their
efficiency relative to competitors [28, 43, 44]. The production dynamics
captured in these models are not, however, the only source of actual firm
dynamics. Most notably, the existing models do not account for the time
needed to assemble the organizational infrastructure needed to support the
scale of production that typifies modern corporations.

We studied all United States (US) manufacturing publicly-traded firms
from 1974 to 1993. The source of our data is Compustat which is a database
on all publicly-traded firms in the US. Compustat obtains this information
from reports that publicly traded firms must file with the US Securities and
Exchange Commission. The database contains detailed information on each
firm. Among the items included are “sales,” “cost of goods sold,” “assets,”
“number of employees,” and “property, plant, & equipment.”

Another item provided for each firm is the Standard Industrial Classi-
fication (SIC) code. In principle, two firms in the same primary SIC code
are in the same market; that is, they compete with each other. In practice,
defining markets is extremely difficult [45]. More important for our anal-
ysis, virtually all modern firms sell in more than one market. Firms that
operate in different markets do report some disaggregated data on the dif-
ferent activities. For example, while Philip Morris was originally a tobacco
producer, it is also a major seller of food products (since its acquisition
of General Foods) and of beer (since its acquisition of Miller Beer). Philip
Morris does report its sales of tobacco products, food products, and beer
separately. However, firms have considerable discretion in how to report in-
formation on their different activities, and differences in their choices make
it difficult to compare the data across firms.
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In this paper, the only use we make of the primary SIC codes in Com-
pustat is to restrict our attention to manufacturing firms. Specifically, we
include in our sample all firms with a major SIC code from 2000-3999. We
do not use the data from the individual business segments of a firm, nor
do we divide up the sample according to primary SIC codes. We should
acknowledge that this choice is at odds with the mainstream of economic
analysis. In economics, what is commonly called the “theory of the firm” is
actually a theory of a business unit. To build on the Philip Morris example,
economists would likely not use a single model to predict the behavior of
Philip Morris. At the very least, they would use one model for the tobacco
division, one for the food division, and one for the beer division. Indeed,
given the available data, they might construct a completely separate model
of, say, the sales of Maxwell House coffee. Because the standard model of
the firm applies to business units, it does not yield any prediction about
the distribution of the size of actual, multi-divisional firms or their growth
rates.

On the other hand, the approach we take in this study is part of a
distinguished tradition. First, there is a large body of work by economics
Nobel laureate H. Simon [30] and various co-authors that explored the
stochastic properties of the dynamics of firm growth. Also, in a widely cited
article (that nonetheless has not had much impact on mainstream economic
analysis), R. Lucas, also a Nobel laureate, suggests that the distribution of
firm size depends on the distribution of managerial ability in the economy
rather than on the factors that determine size in the conventional theory
of the firm [31].

n summary, the first goal of our study is to uncover empirical scaling
regularities about the growth of firms that could serve as a test of models
for the growth of firms. We find: (i) the distribution of the logarithm of
the growth rates for firms with approximately the same size displays an
exponential form, and (i7) the fluctuations in the growth rates — measured
by the standard deviation of this distribution — scale as a power law with
firm size. The second goal of our study is to develop a “microscopic model,”
based on reasonable assumptions, that explains the observed empirical re-
sults.

The paper is organized as follows: In Sect. 2, we review the economics
literature on the growth of firms. In Sects. 3 and 4, we present our empirical
results for publicly-traded US manufacturing firms. In Sect. 5, we discuss
the relevance of our empirical findings. In Sect. 6, we present a model that
can account for all empirical results. Finally, in Sect. 7, we present some
concluding remarks.
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2. Background

In 1931, the French economist Gibrat proposed a simple model to explain
the empirically observed size distribution of firms [20]. He made the follow-
ing assumptions: (i) the growth rate R of a firm is independent of its size
(this assumption is usually referred to by economists as the law of propor-
tionate effect), (i1) the successive growth rates of a firm are uncorrelated
in time, and (¢¢) the firms do not interact.

In mathematical form, Gibrat’s model is expressed by the stochastic
process:

St+At = St(l + Gt), (1)

where Siia¢ and Sy are, respectively, the size of the firm at times (¢ +
At) and t, and ¢ is an uncorrelated random number with some bounded
distribution, usually assumed to be Gaussian, and variance much smaller
than one. Hence log S; follows a simple random walk and, for sufficiently
large time intervals u > At, the growth rates

St—i—u
— 2
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are log-normally distributed. If we assume that all firms are born at ap-
proximately the same time and have approximately the same initial size,
then the distribution of firm sizes is also log-normal. This prediction from
the Gibrat model is approximately correct [46, 47].

There is, however, considerable evidence that contradicts Gibrat’s un-
derlying assumptions. The most striking deviation is that the fluctuations
of the growth rate measured by the relative standard deviation o;(S) de-
cline with an increase in firm size. This was first observed by Singh and
Whittington [48] and confirmed by others [6], [49]-[53]. The negative re-
lationship between growth fluctuations and size is not surprising because
large firms are likely to be more diversified. Singh and Whittington state
that the decline of the standard deviation with size is not as rapid as if the
firms consisted of independently operating subsidiary divisions. The latter
would imply that the relative standard deviation decays as o1(S) ~ S~1/2
[48].

The situation for the mean growth rate is less clear. Singh and Whit-
tington [48] consider the assets of firms and observe that the mean growth
rate increases slightly with size. However, the work of Evans [49] and Hall
[50], using the number of employees to define the firm'’s size, suggests that
the mean growth rate declines slightly with size. Dunne et al. [51] empha-
size the effect of the failure rate of firms and the effect of the ownership
status (single- or multi-unit firms) on the relation between size and mean
growth rate. They conclude that the mean growth rate is always negatively
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related with size for single-unit firms; but for multi-unit firms, the growth
rate increases modestly with size because the reduction in their failure rates
overwhelms a reduction in the growth of non-failing firms [51].

Another testable implication of Gibrat’s law is that the growth rate of a
firm is uncorrelated in time. However, the empirical results in the literature
are not conclusive. Singh and Whittington [48] observe positive first order
correlations in the 1l-year growth rate of a firm (persistence of growth)
whereas Hall [50] finds no such correlations. The possibility of negative
correlations (regression towards the mean) has also been suggested [54, 55].

3. Size distribution of publicly-traded firms

In the following sections, we study the distribution of firm sizes and growth
rates. To do so, one problem that must be confronted is the definition of
firm size. Measures generally used by economists to define size are “sales,”
“number of employees,” “cost of goods sold,” “property, plant & equipment,”
and “assets.” As we discuss below, we obtain similar results for all of these
measures. We begin by describing the growth rate of sales. To make the
values of sales in different years comparable, we adjust all values to 1987
dollars by the GNP price deflator.

In the limit of small annual changes in S, we can define the relative
growth rate as

S1 S1— S0
=1 = ln—~ —— —
r=lnk nSO 5 (3)

where Sy is the size of a firm in a given year and S; its size the following
year.

Stanley et al. determined the size distribution of publicly-traded man-
ufacturing firms in the US [46]. They found that for 1993, the data fit to
a good degree of approximation a log-normal distribution. These results
have been recently confirmed by Hart and Oulton [47] for a sample of ap-
proximately 80,000 United Kingdom firms. Here, we present a study of the
distribution for a period of 20 years (from 1974 to 1993).

Figure la shows the total number of publicly-traded manufacturing
firms present in the database each year. Figure 1b shows the distribution
of firm size in each year from 1974-1993. Particularly above the lower tails,
the distributions lie virtually on top of each other. Thus the distribution
is stable over this period. This is surprising because there is no existing
theoretical reason to expect that the size distribution of firms could re-
main stable. Further, this result contradicts the predictions of the Gibrat
model. Equation (1) implies that the distribution of sizes of firms should get
broader with time. In fact, the variance of the distribution should increase
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linearly in time. Thus, we must conclude that other factors, not included
in Gibrat’s assumptions, must have important roles.
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Figure 1. (a) Number of publicly-traded manufacturing firms in the US for the period
1974-1993. (b) Probability density of the logarithm of the sales for publicly-traded man-
ufacturing firms (with standard industrial classification index of 2000-3999) in the US
for each of the years in the 1974-1993 period. All the values for sales were adjusted to
1987 dollars by the GNP price deflator. Also shown (solid circles) is the average over the
20 years. Note that the distribution is approximately stable over the period.

One obvious factor not captured by the Gibrat assumption is the entry
of new firms. We find that the size distribution of new publicly-traded
firms is approximately a log-normal with an average slightly smaller than
for existing firms [56]. We would expect new firms to be much smaller on
average than existing ones. However, new firms can come about through
the merger of two existing firms, in which case the new firm is bigger than
either of the pre-existing firms. Another way that new firms come into
existence is that very large firms divest themselves of divisions that are, by
themselves, large businesses. An example is AT&T’s recent divestiture of
its manufacturing division (Lucent) and its computer division (NCR).

Another factor not included in Gibrat’s assumptions is the “dying” of
firms. We find that this distribution is quite similar to the distribution
for all firms [56]. Thus, it suggests that the probability for a firm to leave
the market, whether by merger, change of name, or bankruptcy, is nearly
independent of size [56].

4. The distribution of growth rates

The distribution p(r1|sp) of the growth rates from 1974 to 1993 is shown
in Fig. 2a for three different values of the initial sales. Remarkably, these
curves can be approximated by a simple “tent-shaped” form. Hence the
distribution is not Gaussian — as expected from the Gibrat approach [20]
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— but rather is exponential [6],

1
p(rilso) = -=——

V201 (s0)

g1 (So)

_\/§|T1_F1(50)|>' (4)

The straight lines shown in Fig. 2a are calculated from the average growth
rate 71(sp) and the standard deviation o(sg) obtained by fitting the data
to Eq. (4). The tails of the distribution in Fig. 2a are somewhat fatter than
Eq. (4) predicts. This deviation is the opposite of what one would find if the
distribution were Gaussian. We find that the data for each annual interval
from 1974-1993 also fit well to Eq. (4), with only small variations in the

parameters 71(sg) and o1 ().
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(a) Probability density p(ri|so) of the growth rate r = In(S1/So) for all

publicly-traded US manufacturing firms in the 1994 Compustat database with Standard
Industrial Classification index of 2000-3999. The distribution represents all annual growth
rates observed in the 19-year period 1974-1993. We show the data for three different bins
of initial sales (with sizes increasing by powers of 8): 87 < Sp < 8%, 8% < S5 < 87, and
8% < Sy < 8%, Within each sales bin, each firm has a different value of R, so the abscissa
value is obtained by binning these R values. The solid lines are exponential fits to the
empirical data close to the peak. We can see that the wings are somewhat “fatter” than
is predicted by an exponential dependence. (b) Standard deviation of the 1-year growth
rates for different definitions of the size of a firm as a function of the initial values.
Least squares power law fits were made for all quantities leading to the estimates of 3:
0.18 +0.03 for “assets,” 0.20 £ 0.03 for “sales,” 0.18 £ 0.03 for “number of employees,”
0.18 £ 0.03 for “cost of goods sold,” and 0.20 £ 0.03 for “plant, property & equipment.”
The straight lines are guides for the eye and have slopes 0.19.

4.1. STANDARD DEVIATION OF THE GROWTH RATE

Next, we study the dependence of 01(sp) on so. As is apparent from Fig. 2,
the width of the distribution of growth rates decreases with increasing Sy.
We find that o1(Sp) is well approximated for 8 orders of magnitude (from
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sales of 10® dollars up to sales of 10! dollars) by the law [6]
o1(Sp) ~ S()_B, (5)

where 8 = 0.20 & 0.03. Figure 2b displays o1 vs. Sy, and we can see that
Eq. (5) is indeed verified by the data.

4.2. OTHER MEASURES OF SIZE

In order to test further the robustness of our findings, we perform a parallel
analysis for the number of employees. We find that the analogs of p(r1|so)
and o1 (sp) behave similarly. For example, Fig. 2b shows the standard devi-
ation of the number of employees, and we see that the data are linear over
roughly 5 orders of magnitude, from firms with less than 10 employees to
firms with almost 10% employees. The slope 3 = 0.18 4 0.03 is the same,
within the error bars, as found for the sales.

We find that Egs. (4) and (5) approximately describe three additional
indicators of a firm’s size, (i) assets (with exponent § = 0.18 £ 0.03) (4)
cost of goods sold (5 = 0.18 + 0.03) and (iii) property, plant & equipment
(8= 0.20 £ 0.03).

5. Discussion of empirical results

What is remarkable about Eqgs. (4) and (5) is that they approximate the
growth rates of a diverse set of firms. They range not only in their size
but also in what they manufacture. The conventional economic theory of
the firm is based on production technology, which varies from product to
product. Conventional theory does not suggest that the processes governing
the growth rate of car firms should be the same as those governing, e.g.,
pharmaceutical or paper firms.

Indeed, our findings are reminiscent of the concept of universality found
in statistical physics, where different systems can be characterized by the
same fundamental laws, independent of “microscopic” details. Thus, we can
pose the question of the universality of our results: Is the measured value
of the exponent 3 due to some averaging over the different industries, or is
it due to a universal behavior valid across all industries? As a “robustness
check,” we split the entire sample into two distinct intervals of SIC codes. It
is visually apparent in Fig. 3a that the same behavior holds for the different
samples of industries.

In statistical physics, scaling phenomena of the sort that we have un-
covered in the sales and employee distribution functions are sometimes
represented graphically by plotting a suitably “scaled” dependent variable
as a function of a suitably “scaled” independent variable. If scaling holds,
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Figure 8. (a) Dependence of o1 on Sp for two subsets of the data corresponding to
different values of the SIC codes. In principle, firms in different subsets operate in different
markets. The figure suggests that our results are universal across markets. (b) Scaled

probability density pg.a = v201(50)p(ri1]s0) as a function of the scaled growth rate

Tecal = V2[r1 — 71(s0)]/o1(s0). The values were rescaled using the measured values of
71(so) and o1(so). All the data collapse upon the universal curve pg.,; = exp(—|rgeq1l) as
predicted by Egs. (4) and (5).

then the data for a wide range of parameter values are said to “collapse”
upon a single curve. To test the present data for such data collapse, we
plot in Fig. 3b the scaled probability density pscal = V20 (s0)p(r1]so) as
a function of the scaled growth rates of both sales and employees reca =
V2[r1—71(s0)]/o(s0). The data collapse relatively well upon the single curve
Dscal = €XP(—|7Tscal]). Our results for (i) cost of goods sold, (i7) assets, and
(#i7) property, plant & equipment are equally consistent with such scaling.

For “physical” phenomena, power law scaling is usually associated with
critical behavior — thus, requiring a particular set of parameter values —
or with scale-free nonequilibrium processes [57, 58]. For example, in the
Ising model there is a particular value of the strength of the interaction
between the units composing the system that generates correlations ex-
tending throughout the entire system and leads to power law distributions.
Although self-organized criticality [59] has been the preferred explanation
for these results, it is difficult to imagine that for all these diverse systems,
the parameters controlling the dynamics spontaneously self-tune to their
critical values.

In the next section, we discuss an alternative mechanism, in the spirit
of scale-free growth processes, that could explain how power law scaling in
biological or social sciences can emerge even in the absence of critical dy-
namics. The guiding principles for our approach are: (i) the units composing
the system have a complex evolving structure (e.g., the firms competing in
an economy are composed of divisions, the cities in a country competing
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for the mobile population are composed of distinct neighborhoods, the pop-
ulation of some species living in a given ecosystem might be composed of
groups living in different areas), and (ii) the size of the subunits composing
each unit evolves according to a random multiplicative process.

6. Modeling the growth of firms

In this section, we develop a model [60] that dynamically builds a diver-
sified, multi-divisional structure, reproducing the fact that a typical firm
passes through a series of changes in organization, growing from a single-
product, single-plant firm, to a multidivisional, multiproduct firm [27]. The
model reproduces a number of empirical observations for a wide range of
values of parameters and provides a possible explanation for the robust-
ness of the empirical results. Due to our encouraging results for the case of
firm growth, our model may offer a generic approach to explain power law
distributions in other complex systems [61].

The model, illustrated in Fig. 4, is defined as follows. A firm is cre-
ated with a single division, which has a size £ (¢t = 0). The size of a firm
S = ¥;&(t) at time ¢ is the sum of the sizes of the divisions &;(¢) comprising
the firm. We define a minimum size Sy, below which a firm would not be
economically viable, due to the competition between firms; S, is a charac-
teristic of the industry in which the firm operates. We assume that the size
of each division ¢ of the firm evolves according to a random multiplicative
process. We define

A&i(t) = &(t) mi(t), (6)

where 7;(t) is a Gaussian-distributed random variable with zero mean and
standard deviation V independent of &;. The divisions evolve as follows:

(1) If A& (t) < Shin, division i evolves by changing its size, and §;(t+1) =
&i(t) + A&;(t). If its size becomes smaller than Spin, — i.e. if §(t+1) <
Smin — then with probability p,, division ¢ is “absorbed” by division 1.
Thus, the parameter p, reflects the fact that when a division becomes
very small it will no longer be viable due to the competition between
firms.

(1) If A&(t) > Smin, then with probability (1 — ps), we set &(t +1) =
&(t) + A&(t). With a probability pg, division i does not change its
size — so that &(t + 1) = &(t) — and an altogether new division j is
created with size &;(t + 1) = A&;(t). Thus, the parameter p; reflects
the tendency to diversify: the larger is py, the more likely it is that
new divisions are created.

The dynamics are thus controlled by three independent parameters: V,
Pa, and py — Smin just sets the scale, so the results of the model do not
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Figure 4. Schematic representation of the time evolution of the size and structure of a
firm. We choose Smin = 2, and py = p, = 1.0. The first column of full squares represents
the size &; of each division, and the second column represents the corresponding change
in size A&;. Empty squares represent negative growth and full squares positive growth.
We assume, for this example, that the firm has initially one division of size & = 25,
represented by a 5 X 5 square. At ¢t = 1, division 1 grows by A& = 3. A new division,
numbered 2, is created because A& > Smin = 2, and the size of division 1 remains
unchanged, so for ¢ = 2, the firm has 2 divisions with sizes &1 = 25 and &2 = 3. Next,
divisions &; and & grow by 2 and —2, respectively. Division 2 is absorbed by division 1,
since otherwise its size would become £&5 = 3 — 2 = 1 which is smaller than Spin. Thus,
at time ¢ = 3, the firm has only one division with size &1 = 25 4 2 4+ 1 = 28. Note that
if division 1 were absorbed, then division 2 would absorb division 1 and would then be
renumbered 1. If division 1 is absorbed and there are no more divisions left, the firm
“dies.”

depend on its value. We assume that there is a broad distribution of values
of Spin in the system because firms in different activities will have different
constraints.

In Fig. 5, we compare the predictions of the model for the distribution of
firm sizes in the stationary state with the empirical data [6]. The stationary
state is reached after approximately ten “years”, provided that new firms
are created regularly. We define one “year” as { iterations of our rules
applied to each firm, and we find no significant dependence of the results
on the value of ¢ for £ > 10. We find similar results for a wide range of
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Figure 5. Probability density of the logarithm of firm size for the model and for US pub-
licly-traded manufacturing firms in the 1994 “Compustat” data base. These results were
obtained drawing 1og Smin from a Gaussian distribution with average value log(5 x 10°)
and width D = 5. Similar results would be obtained for other broad distributions of
Smin. The numerical simulations were performed with parameters V = 0.15, py = 0.8,
Ppa = 0.05, and £ = 50 (for these parameter values, the actual probability of a new division
being created per division and per iteration is approximately 0.01).

parameters: V' = 0.1 - 0.2, p, = 0.01 — 1, and py = 0.1 — 1.0.

We find that p(ri|S) is quite similar in form to the empirical results
[6]. Figure 6b compares 01(S) with the empirical data of Ref. [6]: for both,
Eq. (5) holds with § = 0.17 + 0.03. Equations (4)—(5) allow us to scale the
growth rate distributions for different firm sizes [Fig. 6¢].

6.1. STRUCTURE OF THE FIRM

We next address the question of the structure of a given firm. To this end,
we study the dependence of average size of the subunits & on firm size for
the model. We find [60]

& ~ 8%, (7)
with a = 0.66+0.05. Next, we study the dependence of the average number
of subunits of a firm N on firm size. We find [60]

N~ §i-e (8)

with the same value of the scaling exponent « as above.

The results described by Eqgs. (7)-(8) are in qualitative agreement with
empirical studies [32] that show larger firms to be more diversified. More-
over, since N does not change much during a year and assuming that the
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Figure 6. (a) Dependence of the standard deviation of the growth rates on firm size.
Shown are the predictions of the model and the empirical results. The values of the
parameters are the same as in Fig. 5. The straight line with slope 0.17 is a least square
fit to the predictions of the model. (b) Probability density of one-year growth rates for
different firm sizes plotted in scaled variables. The distributions are tent-shaped, as for
the empirical data [6], and consistent with an exponential distribution. (c) Probability
density of one-year growth rates for different firm sizes plotted in scaled variables.

subunits have similar sizes, we can apply the central limit theorem and
Eq. (8), from which it follows that o; ~ N~'/2, leading to the testable
scaling law

f=(0-a)2. (9)

For a = 0.66 + 0.05, Eq. (9) predicts f = 0.17 £ 0.03, in good agreement
with our independent calculation of 3.

6.2. DISCUSSION

We find that the predictions of the model are only weakly sensitive to
the parameter values, which perhaps is the reason why firms operating in
quite different industries are described by very similar empirical laws. Ac-
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cordingly, we conjecture that the scaling laws found for US manufacturing
firms [6] also hold for other countries, such as Japan, with § & 0.2; this
conjecture has recently been confirmed [16].

The present model rests on a small number of assumptions. The three
key assumptions are: (¢) Firms tend to organize themselves into multiple
divisions once they achieve a certain size. This assumption holds for many
modern corporations [27]. (i) There is a broad distribution of minimum
scales in the economy. This assumption has also been verified empirically
[26]. (i7i) Growth rates of different divisions are independent of one another.
For an economist, the latter is the stronger of the these assumptions. How-
ever, we find that correlations in the growth rates of divisions within a same
firm, even weak correlations, lead to 8 — 0. Thus, we confirm that it is the
assumption of independence among the growth rates that generates results
similar to the empirical findings of Refs. [6].

There are two features of our results that are perhaps surprising. First,
although firms in our model consist of independent divisions, we do not
find 8 = 1/2. To understand why /3 < 1/2, suppose that the distribution of
Sm = In Spin is a Dirac §-function. Although this assumption is unrealistic,
it leads to an understanding of the underlying mechanisms in the model.
In this case, it is a plausible assumption that the number of divisions will
increase linearly with firm size, because the distribution of division sizes
is narrow and confined between Sy, and Spin/V. This hypothesis is con-
firmed numerically, and we find (i) § = 1/2 and « = 0 and, (ii) that the
distribution of the logarithm of firm sizes is still close to Gaussian, with
a width W which is a function of the parameters of the model. Then, by
integration of the distribution of the logarithm of firm sizes over s,,, we can
estimate the value of 3 for the case of a broader distribution of s,,. Suppose
that s,, follows some arbitrary distribution with width D. Averaging o3 ()
over this distribution, we find § = W/2(D + W). For a wide range of the
values of the model’s parameters, D > W, and we find that (§ is remarkably
close to the empirical value g = 0.2.

Second, the distribution p(r1]S) is not Gaussian but “tent” shaped. We
find this result arises from the integration of nearly-Gaussian distributions
of the growth rates over the distribution of Sy,. For large values of |r],
the saddle point approximation gives p(r1|S) ~ exp(—log?|r1|), which de-
cays slower than exponentially, in qualitative agreement with the model’s
predictions and with empirical observations. For |ri| < 1, p(ri|S) is ap-
proximately Gaussian, while for intermediate values of |r], the distribution
decays exponentially. Our analytical predictions are in agreement with the
model and with empirical results.
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7. Concluding remarks: The growth of complex organizations

We study the growth dynamics of publicly-traded US manufacturing firms
from 1974 to 1993. We find that the distribution of the logarithms of the
growth rate decays exponentially. Furthermore, we observe that the stan-
dard deviation of the distribution of growth rates scales as a power law
with the size S of the firm.

We consider a microscopic model for the growth dynamics of firms. The
model leads to a number of conclusions. First, it suggests the deviations in
the empirical data from predictions of the random multiplicative process
may be explained (i) by the diversification of firms, i.e., firms are made up
of interacting subunits; and (ii) by the fact that different industries have
different underlying scales, i.e., there is a broad distribution of minimum
scales for the survival of a unit (for example, a car manufacturer must be
much larger than a software firm).

Second, the model suggests a possible explanation for the common oc-
currence of power law distributions in complex systems. Our results suggest
that the empirically observed power law scaling does not require the system
to be in the critical state, but rather can arise from an interplay between
random multiplicative growth and the complex structure of the units com-
posing the system. Here we addressed the case in which the interactions
between the units can be treated in a “mean field” way through the impo-
sition of a minimum size for the subunits. More general interactions may
still lead to power law scaling, so our model may offer a framework for the
the study of complex systems.

In fact, if the model proposed here is a reasonable description of the
dynamic mechanisms for firm growth, then, due to their robustness, we ex-
pect the same empirical laws to be verified by the growth dynamics of other
complex organizations. Such a possibility has been recently highlighted by
the finding that the growth rates of the gross domestic product (GDP)
of countries obey the same scaling laws as found for firms [62]. Thus, the
results reported here might be relevant to the growth dynamics of other
complex organizations.

Furthermore, our results support the possibility that the formalism and
concepts used to describe complex but inanimate systems comprised of
many interacting particles (as occurs in many physical systems) may be
usefully extended to describe complex but animate systems comprised of
many interacting subsystems (as occurs in economics).

We acknowledge many stimulating discussions with E. Alexander, S.
Alexander, J.-P. Bouchaud, D. Canning, X. Gabaix, Gopikrishnan, V. Hor-
vath, P. Ch. Ivanov, C. King, I. Janosi, J. Krug, Y. Lee, H. Leschhorn, Y.
Liu, P. Maass, R. N. Mantegna, M. Meyer, C.-K. Peng, J. Sachs, M. H. R.
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