
Simulations in Statistical Physics

Course for MSc physics students

János Kertész

Lecture 9

MOLECULAR DYNAMICS

Deterministic simulation.

The task is to calculate the trajectory of an N-particle system
in phase space, i.e., to solve the Newton’s equation for it.

For simplicity we will start with point-like particles interacting
through a simple pair potential. In this case we have a set of

coupled simple differencial equations.

Njimm
j

ijiiii ...,2,1,for =+== ∑ fgfv&

The force between the interacting particles can be caculated

from the pair potenctial:

)(ijjiij ru−∇=−= ff

where the we assume that the pair potential depends only on
the distance between particles i and j. Usually g ignorable.

Here we do not ask about the origin of the potential (QM).

This method is widely used from the calculation of basic
properties of condensed matter to the formation of galaxies,

the interaction of biopolimers etc.

Conservative Newtonian dynamics:

- Total energy (Hamiltonian time-independent)

- Totla momentum (Space homogeneous)
- Total angular momentum (Space isotropic)

Characteristic quantitites
Length:
i) Potential minimum (energeticaly favorable distance btw particles)

ii) Average distance between particles (in dense systems ~ i))
iii) Range of the potential

iv) Size of the sample
Time

i) Collision time

ii) Time between collisions

Velocity

Equipartition:
m

Tk
v B3

=

from which the intercollision time can be estimated as

m

Tk

N

V

B3

3

For the estimation of the collision time we start from the energy

conservation and assume binary collisions. The two-body

problem can be transformed into that of scattering on a central
force potential.

()

()

dr

ruE
m

t

ruE
mdt

dr

rurmE

r

r

c ∫
−

≈

−=

+=

max

min)(
2

1
2

)(
2

)(
2

1 2
&

In a dense fluid the order of
magnitude of tc and tic is 10-12s

(meaning that the binary

collision picture does not work).

If the potential is smooth, the collisions take considerable time,

a finite difference method can be used.

The method has to be cheap and efficient, i.e.,

-Relatively large ∆t with relatively high accuracy
-Stability
-The iteration step should be fast

What does accuracy mean?

The initial conditions uniquely determine the trajectory in the
phase space. Accuracy, however, does not mean close to

this (ideal) trajectory, because the system is chaotic! Little
deviations (unavoidably there because of rounding) grow

exponentially fast. How can we trust MD?

The calculated trajectory does not correspond to any real
one – but it is „typical” if the calculation is accurate.

However, the calculated trajectories are non-reversible.

Stability

We would like to have a method, which – though it may become

inaccurate – does not go wild if ∆t is increased. E.g., Euler is
not good!

Iteration speed

The main loop contains the calculation of forces. This is very
time consuming. Methods, which calculate forces several times

within one iteration are slow.

E.g., the „default” solver is fourth order Runge-Kutta (RK4), a
stable and very accurate method:

http://www.math.buffalo.edu/306/Euler3a.html

4 times calculating forces!

MD solvers:

1. Verlet method

...)(
2

1
)()()(

...)(
2

1
)()()(

2

2

+∆+∆−=∆−

+∆+∆+=∆+

ttttttt

ttttttt

vvrr

vvrr

&

&

...)()()(2)(
2 +∆+∆−−=∆+ ttttttt rrrr &&

From the force

The velocity is not needed to calculate the positions. It can be

calculated:

t

tttt
t

∆

∆−−∆+
=

2

)()(
)(

rr
v

-Fast
-Third order algorithm: error O((∆∆∆∆t)4) – accurate, but in v only O((∆∆∆∆t)2)

-Not self-starting (store positions at t and t - ∆∆∆∆t) – no real problem
-Addition of O((∆∆∆∆t)0) and O((∆∆∆∆t)2) terms

2. Leap frog method

)
2

1
()()(

)()
2

1
()

2

1
(

tttttt

tttttt

∆+∆+=∆+

∆+∆−=∆+

vrr

vvv &

-Direct calculation of the velocity

-Second order both in r and v
-No addition of zeroth and second order terms

-Not self-starting

3. Predictor-corrector

The idea is to use known values for r and its derivatives for a

polynomial extrapolation to the unknown value (predictor
step). Then the derivatives at the predictor value are used to

interpolate to an improved solution (corrector step).
We use dimensionless variables (units m, rmin, tc).

In the simplest case

Euler

Higher order PC method:

...)()(

...)()()(

..)()(
2

1
)()()(

...)()(
6

1
)()(

2

1
)()()(

2

32

+=∆+

+∆+=∆+

+∆+∆+=∆+

+∆+∆+∆+=∆+

ttt

ttttt

ttttttt

ttttttttt

P

P

P

P

vv

vvv

vvvv

vvvrr

&&&&

&&&&

&&&

&&&

avv

avv

arr

vva

fv

δ

δ

δ

δ

4

2

1

/

c

c

c

m

PC

PC

PC

PC

C

+=

+=

+=

−=

=

&&&&

&&

&

Predictor: Corrector:

Ci-s are the Gear coefficients. Their values are determined

byminimizing the error: . (Trivially,
c3=0.)

Rule of tumb: Use ∆t < tc / 20.

3/1c ,6/5 ,6/1
421

=== cc

Comparison of methods: Usually Verlet/Leap frog does the job

If higher accuracy is needed (smaller ∆t) then PC overtakes.

In a closed system energy

should be conserved. Due
to inaccuracies there are

fluctuations. The quantity
is a

measure of the accuracy of

the method.

22 ><−><= EEEδ

http://physics.weber.edu/schroeder/software/mdapplet.html

Fixed
of iterations

Starting with a few hundred atoms in the 60’-s, today billions
of atoms can be simulated and hydrodynamics understood

from the molecular level. The dream to simulate
macroscopic objects is within reach: Avogadro project

(~2012). Massive parallel computing, petaflop (1015/s)

machines are needed.

Some tricks have to be used on the smaller scale too.
1. Don’t calculate the distance (square root of the sum of the

squares of the coordinate differences) but use r2 instead. If
the potential is too complicated, use pre-tabulated values.

2. The short range pair potentials (like LJ) have to be

truncated.
3. Nevertheless, if we don’t know the positions of the

particles, N2 operations have to be carried out in the core of
the program. This can be reduced by appropriate book-

keeping. Two methods: Verlet tables and linked cells.
YouTube demos

Here we discuss the linked cell method (VT-s are based on

similar ideas). Let us deal with the 2d case. The box is
divided covered by a mesh where the mesh size is such that

a particle cannot have interaction with another one if it is not

in one of the particles 8 neighboring cells (> rmax). The cells
are numbered and the particles too. There is a pointer which

shows for each cell, which is the first particle in it. Then
there is an array which runs through the particles in the cell

and indicates if the last one was taken. Update needed after

particle
leaves a cell

LAST(7)=0

LAST(3)=7

LAST(12)=3…

