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Requirements

• This course builds mostly on statistical physics 
and programing. The introduction contains a 
brief memory fresh up about statistical physics, 
but this is NOT enough to complete successfully 
the course, even less to pass the rigorosum in 
theoretical physics (research physics 
specialization). Minimum requirement for this 
course is the knowledge of statistical physics as 
it is taught in the course Theoretical Physics II 
(BSc applied physics specialization). 

• Knowledge of one of the following programming 
languages is necessary: C, C++ or FORTRAN 

• The knowledge of English is assumed.



Conditions for the exam
• Mid November all students get a home work 

task, which has to be solved individually. Using 
one of the above mentioned languages the 
student has to write a transparent, well 
commented running program. In addition, she/he 
has to prepare a pdf file where the results 
obtained by the program are shown and 
explained. The successful solution of the home 
work is the condition for completing the course 
(signature) and it is also taken into account for 
the mark. The complete solution (program + pdf
file) should be sent to the email address 
kertesz@phy.bme.hu not later than 6 working 
days before the oral exam.

• The oral exam is based on questions about the 
material of the lectures.



Suggested literature

• D.W. Heermann: Computer simulation methods

in theoretical physics, Springer, 1995

• D. Landau and K. Binder: A guide to Monte 

Carlo simulations in statistical physics

(Cambridge UP, 2000)

• D. Rapaport: The art of molecular dynamics

programming (Cambridge UP, 2004)

• J. Kertész and I. Kondor (eds): Advances in

computer simulation (Springer, 1998)



Statistical Physics (brief summary)

We will assume knowledge of the elements of TD.

The goal of statistical physics is to

• Give microscopic explanation of equilibrium and 

non-equilibrium TD

• Calculate material properties from microscopic 

principles (specific heat Cp, resistivity etc.) 

• Explain phenomena related to the large number 

of particles involved (fluctuation phenomena, 

superconductivity, phase transitions, pattern 

formation etc.)

●●●



Closed system: All interactions with the world 
outside the system are excluded 

TD equilibrium is reached after long time in a 
closed system. 

A subsystem is a part of a closed system, which 
may have different types of interactions with it. If 
the subsystem is MUCH smaller than the rest, 
the latter is a reservoir, as its intensive TD 
quantities are not affected by the subsystem. 
Nevertheless, the subsystem can be 
macroscopically large (N~1023)

Micro-state: Classically it is a cell of volume h3N in 
the 6N dimensional phase space, built from the 
coordinates and momenta of the particles. 
(Planck’s constant h comes from the 
correspondence principle.) In QM it is a quantum 
state of the macroscopic system but we deal 
here mostly with classical systems.



Macro-state is the state of the macroscopic 
system as characterized by the TD and HD 
quantities.

In TD equilibrium detailed balance:

is fulfilled as a 
consequence of microscopic reversibility. 
Here is the probability that the equilibrium 
system is in the micro state i and w(i � j) is the 
probability of transition from state i to j per unit 
time. Detailed balance expresses that in 
equilibrium the direct and inverse reactions 
balance each other. If a system obeys detailed 
balance and there is no external drive, it 
converges to equilibrium.
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Many of the quantities characterizing equilibrium are 
measured as time averages of a dynamical 
variable (here A):

where the 3N coordinates and momenta are not 
shown explicitly. This is what we observe in a 
measurement (not with T � ∞ but with a 
macroscopic T).

In statistical physics we calculate the above quantity 
by ensemble averages:

where both terms in the prefactor have QM origin.

The 3N integrals in q go as allowed by the volume.
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The equivalence between the time and ensemble 

averages can be established if the system is 

assumed to be ergodic, i.e., the trajectory in the 

phase space visits all the cells allowed by the 

conditions (e.g., energy).

The       -s can be calculated assuming the principle 

of equal probabilities for closed systems with 

energy E between E+δE, which states for this 

case (microcanonical ensemble):

if 

0    otherwise

Ω(E, δE) is the number of micro-states having 
energy in this regime:
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For quantities, which are not averages of 
dynamic variables extra definitions are
needed. The entropy S is defined as:

where kB = 1.38X10-23 J/K 
is Boltzmann’s constant. If this is applied to
the case of the microcanonical ensemble:

, which is Boltzmann’s
relationship. Having the entropy as a 
function of the energy, we can calculate the
temperature T:
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If we investigate a subsystem        depends on the 

interactions the subsystem has with the reservoir. In 

physics, the most important case is, when there is 

thermal interaction (energy exchange, canonical 

ensemble). Then 

where β = 1/kBT and 

is the partition function. It can 

be used to calculate the free energy (F):

From the formulas it follows that for the specific heat CV

where           is the mean square  

fluctuation of the energy

Formulas for this and other ensembles are summarized 

in the next table.
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The introduced statistical physics quantities and the laws of 

physics and probability theory enable to construct a profound 
microscopic basis of the laws of thermodynamics.

1st law of TD: dE=δQ + δW (conservation of energy)
2nd law of TD: In a closed system entropy increases in 

spontaneous processes. (Ω becomes larger – however this law 
holds only statistically, though for macroscopic systems the 

probability of violating the 2nd law is VERY small.)

3rd law of TD: The entropy of pure, homogeneous materials 
goes to zero as T � 0. (Quantum effect: The ground state is 

not macroscopically degenerate.) 



Ideal gases

In an ideal gas the interactions between the particles can be

ignored. Classically: , in QM: , 

where we should in addition keep in mind that the identical 

particles are indistinguishable.
The partition funtion of the classical ideal gas is:
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The Maxwell distribution for the absolute value of the velocity is 

valid also for interacting 
systems. The average 

squared velocity is , which is a manifestation of 

the equipartition theorem valid for classical systems.
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If the de Broglie wavelength is not anymore

small, quantum corrections have to be taken into account, 

being different for bosons (effective attraction) and fermions
(effective repulsion).

At low temperatures we have the „degenerate quantum

gases” characterized by the Fermi-Dirac (upper sign) or Bose-
Einstein (lower sign) distributions, i.e. for the average

occupation number of particles in the one particle quantum
state m:
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For fermions at temperature T<<TF Fermi temperature only

the particles in the kBT neighborhood of the Fermi energy
can be excited.

For Bosons with constant number of particles there is a 
phase transition at low temperatures: Bose-Einstein

condensation.



Applications 1: Ideal gases

In an ideal gas the interactions between the particles can be

ignored. Classically: , in QM: , 

where we should in addition keep in mind that the identical 

particles are indistinguishable.
The partition funtion of the classical ideal gas is:
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Applications 2: Phase transitions

Phase: State of matter characteristic for a region of TD 

space, in which the equation of state is an analytical function
of its variables.

Phase transition: The transition between phases. In the

coordinate system of intensive paramaters the phases are

separated by lines (phase diagram). Phase transitions are
characterized by lines and points of non-analyticity. (Only

possible in the Thermodynamic Limit (N,V, E…� ∞∞∞∞, densities
finite.)

Order of the transition: Which derivative of the Gibbs free 

energy (free enthalpy) becomes discontinuous.

Order paramter: Indicator of the order, it also reflects the

symmetry properties of the transition.



Para- ferromagnetic phase transition:

T/TC

M/M(T=0)

1

Above the Curie temperature TC

(H = 0) there is no spontaneous
magnetization (paramagnetic

phase. 

1

Spont. mg.

Low temperature phase: Broken symmetry.
Order parameter: Normalized magnetization

Phase diagram:

T/TC1

H
1st o. transition

2nd order transition



First order transitions are 
discontinuous: The order para-

meter changes discontinuously

at the transition:
OP

T

Second order transitions

are continuous:

OP

TTC

The continuous transition point is also called critical point (c.f. 

liquid-gas transitions) and the related phenomena are
critical phenomena:

1. Many physical quantities show power law behavior
2. Critical behavior of different systems can be ordered into

universality classes, which can be identified by the critical

exponents



E.g., he correlation function in a magnetic system is:

Where s is the local magnetic moment („spin”), and the bracket

means thermal average.

Close to the critical point it behaves like:

where is the correlation length.

The correlation length, i.e., the characteristic size of the
regions, where the fluctuations are correlated diverges at the

critical point, T = TC and h = 0 (h is the external field.)

ν and η critical exponents.



Near to the critical point G is a generalized homogeneous

function of its variables:

G G

Where t = (T – TC) / TC is the reduced temperature. The 

notation of the exponents follows the conventions. We will use
the following relationships:
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M: magnetization (OP), χ:  susceptibility C: specific heat



We have altogether 8 exponents (α,β,γ,δ,η,ν,yt, yh)

yt = 1/ ν, yh = d - β/ν,

Scaling relations:

Two independent exponents to

identify universality classes

Starting from the generalized homogeneity of G, we obtain:


