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Strongly correlated electrons - General features

Treating the electronic correlations:

In general by Hartree—Fock approximation (single-particle picture).
Hartree term - interaction with a homogenous background.

Fock term - correction to the Hartree approximation by an exchange term.

Beyond the Hartree—Fock theory - correlation effects.

Ecorr/EfF is large enough — strong correlation.
Large effective mass (beyond the single-particle picture) — strong correlation.
Qualitatively incorrect result by the HF approximation — strong correlation.
In strongly correlated systems:
Single-particle picture fails.

Competing energy scales: itinerant or localised electrons?



Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

d- and f-electron systems.
Electronic properties:

Conduction band and narrow d- or f-band.
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¢ Mixed valence systems

Transition and rare earth metal compounds:
d- and f-electron systems.
Electronic properties:

Conduction band and narrow d- or f-band.

Simple case: single impurity ion with partly filled
f-orbital in an s-band metal.

The energy levels: egf”)

Hybridization — egc"’:l) is close t0 Ererm;.

Allowed configurations: 4f' and 4f'=1 —

fluctuating or noninteger valence.
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Mixed valence systems

Heavy fermion systems

Transition and rare earth metal compounds:
d- and f-electron systems.
Electronic properties:

Conduction band and narrow d- or f-band.

Special mixed valence system: the dominating

allowed configuraton has magnetic moment.

Linear T-dependence of the specific heat,
T-independent Pauli-susceptibility with unusual

large coefficient — ,normal” metal, but

Hybridization leads to m* up to O(1000m,).




Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

g d- and f-electron systems.
Electronic properties:

Conduction band and narrow d- or f-band.

Mixed valence systems Behind the pairing mechanism stands

_ - e-ph interaction in conventional SCs.
Heavy fermion systems

- electron correlation (e-e interaction) in HTSCs.
High T. superconductors —

Highly anisotrop materials.
2D models for HTSC: fluctuating valence (Cu d®-d”

or d”-d19), heavy d-electron systems (Cu d°).




Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

d- and f-electron systems.

Electronic properties:

Conduction band and narrow d- or f-band.

Mixed valence systems To simulate condensed matter phenomenas:
Heavy fermion systems - Ideal lattice (no distorsion, impurity, etc.),

_ - Well controllable parameters
High T. superconductors

(Ultracold fermions) —




Strongly correlated electrons - Low-dimensional systems

One-dimensional systems:

® Highly anisotropic materials, nanotubes, organic conductors, quantum wires

(confined electrons to a line), etc.

¢ A number of exotic phases: spin-, and charge-density waves, superconductivity,

non-Fermi liquid state, etc.




Strongly correlated electrons - Low-dimensional systems

One-dimensional systems:

Highly anisotropic materials, nanotubes, organic conductors, quantum wires

(confined electrons to a line), etc.

A number of exotic phases: spin-, and charge-density waves, superconductivity,

non-Fermi liquid state, etc.
Zero-dimensional systems: quantum dots - confined electrons to a point.

Multiple quantum dots, qguantum dot lattices (electrode grid, embeddig QDs into an

organic medium, etc.).

Well controllable properties: size, shape, number of electrons, transparency of the
confining barriers, etc. — testing of fundamental quantum mechanical problems,
e.g exact 1D crystal with PBC: pearl-necklace-like guantum dot string

[Kouwenhoven, Delft Univerity].



Models - Hubbard model and its extensions

¢ Nearest-neighbor hopping ¢.

® On-site Coulomb interaction U.

AR X
QLA U

The Hamiltonian of the Hubbard model:

Ht-U =1 Z C:;r,JCj,U + % Z Zni,oni,a/.

(i,3),0 ool i
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® On-site Coulomb interaction U.
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The Hamiltonian of the Hubbard model:
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e.g. Mott-transition, para-, ferro-, and antiferromagnetic phases (2D, J. E. Hirsch, 1985),

spiral SDW, special ferrimagnetic states (3D, D. R. Penn, 1966), d-SC.




Models - Hubbard model and its extensions

AR X
QLA U

Nearest-neighbor hopping t¢.

On-site Coulomb interaction U'.

The Hamiltonian of the Hubbard model:

Hiuv =1t Z Cl'L,aCj,J + % Z Zni,ani,a"

<iaj>a0- J#OJ @

e.g. Mott-transition, para-, ferro-, and antiferromagnetic phases (2D, J. E. Hirsch, 1985),

spiral SDW, special ferrimagnetic states (3D, D. R. Penn, 1966), d-SC.

For d-electrons: U ~ 20 eV, nearest-neighbor repulsion V' ~ 6 eV (screening: 2-3 eV).

The Hamiltonian of the extended Hubbard model:

H=1 Z c;.rpcj,a + % Z Zni,ani,(,/ -+ % Z Z Ni,oMNj o



Models - Hubbard model and its extensions

Numerous extensions for different limits and depending on the studied phenomena.

® Role of exchange interaction: H = M.y + JZ(i,j} SiS;.
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® Role of exchange interaction: H = M.y + JZ(i,j} SiS;.

® Role of the magnetic frustration: H =H.py + J 32 (; ;1 SiS; +J' 32y, ;1SS!
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Numerous extensions for different limits and depending on the studied phenomena.
Role of exchange interaction: H = H:yy + JZ<M> S:S;.
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Models - Hubbard model and its extensions

Numerous extensions for different limits and depending on the studied phenomena.
Role of exchange interaction: H = H:yy + JZ<M> S:S;.
Role of the magnetic frustration: H =Heu + J 32, 5y SiS; +J' X2 ;1 S:iS;.
Strong repulsion (n # 1): H = tZ(i,j),cf cj)acj,g + J2<i,j> S:S;.
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Models - Hubbard model and its extensions

Numerous extensions for different limits and depending on the studied phenomena.
Role of exchange interaction: H = H:yy + JZ<M> S:S;.
Role of the magnetic frustration: H =Heu + J 32, 5y SiS; +J' X2 ;1 S:iS;.
Strong repulsion (n # 1): H = tZ(i,j),cf c,];acj,g + J2<i,j> S:S;.
Long(er)-range-hopping: H = Zi,j,a ti,jcjﬂcj,g + % ZWAU, D iMoo

Long(er)-range-interaction: H = Hey + >, % D o0 Z@-,j) Ni,oMj o’ -

Orbital degenaration/multiband systems:

_ t , U .
H R t Z<i7j>7u’71/70— ci,u,o-cj,V,O' _|_ ? Z/,L,I/,o’,o-/ Z'L nz7u7o—ni7’/a0/'

Multicomponent fermions: H = H:;y witho =1,2,..., f.



Models - Imurity models - Anderson model

Applications: Magnetic impurities in normal metals, transport properties of QDs.
Simple example: single non-degenerate d-, or f-type impurity (ion) in an s electron

system — The non-degenerate single impurity Anderson model:

1
H = z GkCL,aCk,a + Z eadlds + Un%d)nid) + T Z (deCLJda S ded:rjck,a) :
k,o

k,o o




Models - Imurity models - Anderson model

Applications: Magnetic impurities in normal metals, transport properties of QDs.
Simple example: single non-degenerate d-, or f-type impurity (ion) in an s electron

system — The non-degenerate single impurity Anderson model:

1
H = Z ekCLaCk,a + Z eadlds + Un%d)nid) + T Z (deCLJda S dedlck,a) :
k,o

k,o o

Formation of a magnetic moment:

¢ Without hybridization:
Yeq +U/2
“  Energy levels of the ion: ¢ /

e(d?) = 0, e(d') = eg, €(d?) = 2¢4 + U.

©  Requirements for finite magnetic moment:

e(d®) > e(d') and e(d?) > e(dl).




Models - Imurity models - Anderson model

Applications: Magnetic impurities in normal metals, transport properties of QDs.
Simple example: single non-degenerate d-, or f-type impurity (ion) in an s electron

system — The non-degenerate single impurity Anderson model:

1
H = Z ekCLaCk,a + Z eadlds + Un%d)nid) + T Z (deCLJda S dedlck,a) :
k,o

k,o o

Formation of a magnetic moment:
¢ With hybridization (mean-field approximation):
° Resonance peak at g 4+ U(n'® ) with FWHM A.
° m(n®) = cig=[(ea + U(n2))/A].
© ForU < U,: <n<(,d)> = <n(_dg = ng/2.

© ForU > Ue: <n<(,d)> =ng/2+ odng.




Models - Impurity models - Anderson model

Kondo regime: ¢4 + U(nf,d)> < Erermi < €4 + U<n(_dg .

Mean-field approximation:

A Pale)

U<n((;d)> U<n(_d) >

2




Models - Impurity models - Anderson model

Kondo regime: ¢4 + U(nf,d)> < Erermi < €4 + U<n(_dg .

Mean-field approximation: More sophisticated pa(e)

A rale) methods (e.g. PT): i

> L

U(n@) U(n'@) U(ni) U(nl9)

Kondo (Abrikosov-Suhl) resonance

Th < T < T3 < Ty




Models - Impurity models - Anderson model

Kondo regime: ¢4 + U<nf,d)> < Erermi < €4 + U(n(_dg .

Mean-field approximation: More sophisticated pa(e)

A pale) methods (e.g. PT): T

- !

U(n®) U(n'@) U(ni) U(n'¥)

Kondo (Abrikosov-Suhl) resonance

Ty <12 <13 < Ty
Localized magnetic moment as scattering potential.

Higher T: free magnetic moment - Curie susceptibility.

Lower T: strong correlation with the conduction electrons - Kondo problem.



Models - Impurity models - Kondo model

Studying the effect of the localized magnetic moment:

Allowed configurations: d° - no charge fluctuation (Kondo regime).
Canonical transformation: Anderson model — s-d exchange model.

1

_ T T
Hsq = § kCi,oCkio ~ T E Jk k'S 055/C ,CK! o
k,o k. k/, 0,0’

Antiferromagnetic exchange if Jy . < 0.



Models - Impurity models - Kondo model

Studying the effect of the localized magnetic moment:

Allowed configurations: d° - no charge fluctuation (Kondo regime).

Canonical transformation: Anderson model — s-d exchange model.

_ t 1 t
Hsq = § kCi,oCkio ~ T E Jk k'S 055/C ,CK! o
k,o k. k/, 0,0’

Antiferromagnetic exchange if Jy . < 0.
excl, lewr| < leq + U(nSDY| for o =1, |.
In the restricted Hilbert space and Jy s = const. — Kondo model (J>0):

J _
Hint = 3 > [5+CL,TCk',¢ + 87 el g + 57 (el t — CL,wk',i)]
k,k/

IR divergency at Erc,m; at T = 0 in leading order - the PT falls.

New methodes: RG treatment, scaling theory.



Models - Impurity models - Multiple impurities

Applications: mixed valence systems, heavy fermions, QD-islands, QD-lattices, QD-arrays etc.

¢ Interesting regime: ef + U(ngf)> ~ Erermi - Charge fluctuation.

H=3 ach oo + I Ierf] o fio +Un)ngd)]+ Hiy

k,o 1,0

©  Periodic Anderson model:
thb - \/LV Zi,k,a (VkeikRiclJr{,UfiaU + Vl:e_ikRi fiT,Uck’a) '
© Multiple impurity Anderson model:

el = P (VU s i VAot




Models - Impurity models - Multiple impurities
Applications: mixed valence systems, heavy fermions, QD-islands, QD-lattices, QD-arrays etc.
Interesting regime: e + U<n((;f)> ~ Erermi - charge fluctuation.

H = 261{6;[{,061{,0 + Z[foigfz‘,a + Unz(',fT)nz(-,fl)] + Hhyb

k,o 1,0

Periodic Anderson model:
thb - \/LV Z'L’,k,ff (VkeikRiclT{,afivU + Vlje_ikRi fzfr,ack’a) '
Multiple impurity Anderson model:

Hhygs = 7= X ko (VkCL,afi,a + Vljf';r,ack70> :

Kondo regime: e + U(n((,f)> < EFerm: < €f + U(n(_f(b - Kondo lattice.

J (kKR
H:ZGkCL,aCk,a+V Z o—i(k—K )R, Si'%,a/CLJCk/,a

k,o i,k,k’,0,0’



Methods - Numerical methods

Dynamical mean-field theory (DMFT):

Aim: to approximate a many-particle problem by an effective single-particle problem.

E.g. Ising model: DMFT for the Hubbard model:

H = _ZJijSiSj — hZSi H = thcz 5Cj,o T UZnZ T |+ GOZm &
(4,9) i 0,5,0

Herr=—>; hfffSi. Hefr =Hsram, Hoath = D o €k L,ka,a

Hatom = Uni™ni™ + (e0 — p)(ny™ +n (")

Hcoupling — Zk,a Vi (b;i Ao + a:rfbk 0’)
Vil

Effective Weiss field: h. ¢ ¢ Effective Weiss function: A(E) = >, &= -
Mean-field approximation: Mean-field approximation:

(5455 ) = (9:(S;)- The self-energies: ;; & Zpmp, Biz; ~ 0.
Self-consistency relation: Self-consistency relation:

<Si>Heff L (S:) The Green'’s functions: G;; = szp



Methods - Numerical methods

Numerical renormalization group: Applications: impurity models.

H = Zk,a EkCL,UCk,o— + Himpld, dT] + Zkﬂ |%4 (cLadg + d];ck,o_) .

Logarithmic discretization of the DOS of the c electrons (interval - single state).
This discrete model is mapped on a semi-infinite lattice-like model

Z Zencn »Cn,o + Himpld, dT] + ZV (co sdo + dico,g> :

o n=0

Hopping decreases exp. along the chain: oo gl gu2 g g

RG treatment: o The lattice constructed site-by-site.

Truncation procedure: ~100 lowest energy eigenstates.
N — oo: fixed point behavior.



Methods - Numerical methods

Numerical renormalization group: Applications: impurity models.

H = Zk,a EkCL,UCk,o— + Himpld, dT] + Zkﬂ |%4 (cLadg + d];ck,o_) .

Logarithmic discretization of the DOS of the c electrons (interval - single state).
This discrete model is mapped on a semi-infinite lattice-like model

Z Zencn »Cn,o + Himpld, dT] + ZV (co sdo + dico,g> :

o n=0

Hopping decreases exp. along the chain: oo gl gu2 g g

RG treatment: o The lattice constructed site-by-site.

Truncation procedure: ~100 lowest energy eigenstates.
N — oo: fixed point behavior.

Density-matrix renormalization group: Application: 1D lattice models (spin, fermion, boson).

Construction of the full system by a series of subsystem with increasing size.

A part of the system is handled as environment.

Systematic truncation of the Hilbert space - keeping the most probable eigenstates
of the reduced density-matrix.



Methods - Analytical methods

Gutzwiller ansatz (for the Hubbard model):

U = 0: fluctuation of the local polarization - deviation from the local charge
neutrality.

U # 0: minimal polarization (Van Vleck, 1953).

|FS) = Hck,TH , ,10) = LNZZF({M} F({j 1}) H TH el |10)

{irr{sl}

In the uncorrelated metallic phase every localized configuration appeatr.

F({i1}), F({j 1}) are independent (| F'S) is uncorrelated) - double occupied
sites.

The projection of these states: |V ) = nP|FS) =T, [1 — (1 — n)ninj | |FS)
g<l1 and D = Zz AR
Treating the determinants F'({: T}), F'({¢ |}) — Gutzwiller approximation.

Minimalization of the energy functional:
_ (¥glH|¥g)

<‘I’G|‘I’G> '




Methods - Analytical methods

Renormalization group (RG) treatment in solid state physics:

Applications: - long wavelength behavior (e.g. critical phenomena, Kondo model),
- low energy behavior (e.g. 1D electron systems)
of scale invariant systems.

lteration: integrating out of the short distance/high energy degrees of freedom.
F[{g:}] — gi — Gi — F[{g:}]

Fixed point behavior: relevant, irrelevant, marginal operators.



Methods - Analytical methods

Renormalization group (RG) treatment in solid state physics:

Applications: - long wavelength behavior (e.g. critical phenomena, Kondo model),
- low energy behavior (e.g. 1D electron systems)
of scale invariant systems.

lteration: integrating out of the short distance/high energy degrees of freedom.
F{g:}] — gi — Gi — F[{g:}]

Fixed point behavior: relevant, irrelevant, marginal operators.
Slave-boson method:
Interacting fermion system: H|c, c'] — Partition function: Z = [[dc|[dcT] exp(—S]c, c'])
HS fields - generally fluctuating charge (¢) and spin (x) densities.
Z = [[dg][dx][de][dcT] exp(—Sle, ¢t; ¢, x]) = [[do][dx] exp(—Ser[¢, x])
Saddle-point approximation — dominant HS fields - relevant bosonic configurations

Slave bosons



Methods - Analytical methods

Bosonization:
One of the most powerful nonperturbative technique for 1D fermion systems.
Aim: transform the complicated interacting model into an equivalent weakly interacting one.
- Absence of the Fermi surface (and quasiparticles) — density fluctuations.
- Boson-like particle-hole pair excitations (ve =~ v;) — propagating collective modes.
- One particle operator can also be expressed by boson operators!
Vo ~ F(P5) — HelVs] — Hp[Po] | F(®,) nonlinear, nonlocal.
- Jordan and Wigner (1928): S = 1/2 Heisenberg model < interactng fermion model

(e.g. for J# = 0: noninteracting fermions!).



Methods - Analytical methods

Bosonization:
One of the most powerful nonperturbative technique for 1D fermion systems.
Aim: transform the complicated interacting model into an equivalent weakly interacting one.
- Absence of the Fermi surface (and quasiparticles) — density fluctuations.
- Boson-like particle-hole pair excitations (ve =~ v;) — propagating collective modes.
- One particle operator can also be expressed by boson operators!
Vo ~ F(P5) — HelVs] — Hp[Po] | F(®,) nonlinear, nonlocal.
- Jordan and Wigner (1928): S = 1/2 Heisenberg model < interactng fermion model
(e.g. for J# = 0: noninteracting fermions!).
Bethe ansatz: Application: exactly solvable 1D systems - completely integrable:

No. of degrees of freedom = No. of conserved quantities.

Multiparticle scattering processes as the series /

1st 2nd

3rd

3rd

of two-particle scatterings and these processes

2nd
: : 1
statisfy the Yang-Baxter equation: . \



An example: the t-U-.J;-J5 model

The Hamiltonian:
H=t »_ MCJGJF—ZannM,jLJZSS +J’ZSS
(3,5),0 oFfo’ i (,5)

The ground state phase diagram of the 1D model was investigated

numerically by real-space DMRG method (spin gap, charge gap, staggered bond

order parameter).

analytically by bosonization of the g-ology Hamiltonian combined with RG

treatment and semiclassical analysis (charge gap, spin gap, dominant correlations).



An example: the t-U-.J;-J5 model

U/t=0.0

It

Numerical results:

Uit=2.0

J]_/t =10

BOW

LE

BOW

0¢ spw

It

BOW

SDW

U>0

Analytical results:

J24
CDW 3= 3,
Ac=0
As#0 BCDW
Ac%0
As?0
-
J1
CDW

A Jo= Uty
-.]2 = 2U/3+J1

Ac#0 BCDW
Ag#0

u/2

Acio AS:O DW
o

Ji



An example: the t-U-.J;-J5 model

The analysis of the ¢t-U-J;-J2 model was made by:
Xiaoxuan Huang,

Florian Gebhard,

Reinhard Noack,

Jen6 Solyom,

E. Sz.




An example: the t-U-.J;-J5 model

The analysis of the t-U-J;-J2 model was made by:
Xiaoxuan Huang,

Florian Gebhard,

Reinhard Noack,

Jend Solyom,

E. Sz.

Thank you for your attention.
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