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Strongly correlated electrons - General features

Treating the electronic correlations:

• In general by Hartree–Fock approximation (single-particle picture).

◦ Hartree term - interaction with a homogenous background.

◦ Fock term - correction to the Hartree approximation by an exchange term.

• Beyond the Hartree–Fock theory - correlation effects.

◦ Ecorr/EHF is large enough→ strong correlation.

• Large effective mass (beyond the single-particle picture)→ strong correlation.

• Qualitatively incorrect result by the HF approximation→ strong correlation.

In strongly correlated systems:

• Single-particle picture fails.

• Competing energy scales: itinerant or localised electrons?
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Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

d- and f -electron systems.

Electronic properties:

Conduction band and narrow d- or f -band.

• Mixed valence systems → Simple case: single impurity ion with partly filled

f -orbital in an s-band metal.

The energy levels: ǫ
(n)
f

Hybridization→ ǫ
(n=l)
f

is close to EFermi.

Allowed configurations: 4f l and 4f l−1 →

fluctuating or noninteger valence.



Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

d- and f -electron systems.

Electronic properties:

Conduction band and narrow d- or f -band.

• Mixed valence systems

• Heavy fermion systems →

Special mixed valence system: the dominating

allowed configuraton has magnetic moment.

Linear T -dependence of the specific heat,

T -independent Pauli-susceptibility with unusual

large coefficient→ „normal” metal, but

Hybridization leads to m∗ up to O(1000m0).
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Transition and rare earth metal compounds:

d- and f -electron systems.

Electronic properties:

Conduction band and narrow d- or f -band.

• Mixed valence systems

• Heavy fermion systems

• High Tc superconductors →

Behind the pairing mechanism stands

- e-ph interaction in conventional SCs.

- electron correlation (e-e interaction) in HTSCs.

Highly anisotrop materials.

2D models for HTSC: fluctuating valence (Cu d8-d9

or d9-d10), heavy d-electron systems (Cu d9).



Strongly correlated electrons - 3D systems

Transition and rare earth metal compounds:

d- and f -electron systems.

Electronic properties:

Conduction band and narrow d- or f -band.

• Mixed valence systems

• Heavy fermion systems

• High Tc superconductors

• (Ultracold fermions) →

To simulate condensed matter phenomenas:

- Ideal lattice (no distorsion, impurity, etc.),

- Well controllable parameters



Strongly correlated electrons - Low-dimensional systems

One-dimensional systems:

• Highly anisotropic materials, nanotubes, organic conductors, quantum wires

(confined electrons to a line), etc.

• A number of exotic phases: spin-, and charge-density waves, superconductivity,

non-Fermi liquid state, etc.



Strongly correlated electrons - Low-dimensional systems

One-dimensional systems:

• Highly anisotropic materials, nanotubes, organic conductors, quantum wires

(confined electrons to a line), etc.

• A number of exotic phases: spin-, and charge-density waves, superconductivity,

non-Fermi liquid state, etc.

Zero-dimensional systems: quantum dots - confined electrons to a point.

• Multiple quantum dots, quantum dot lattices (electrode grid, embeddig QDs into an

organic medium, etc.).

• Well controllable properties: size, shape, number of electrons, transparency of the

confining barriers, etc. → testing of fundamental quantum mechanical problems,

e.g exact 1D crystal with PBC: pearl-necklace-like quantum dot string

[Kouwenhoven, Delft Univerity].



Models - Hubbard model and its extensions

• Nearest-neighbor hopping t.

• On-site Coulomb interaction U .
t U

The Hamiltonian of the Hubbard model:

Ht-U = t
X

〈i,j〉,σ
c†i,σcj,σ +

U

2

X

σ 6=σ′

X
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ni,σni,σ′ .
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• Nearest-neighbor hopping t.

• On-site Coulomb interaction U .
t U

The Hamiltonian of the Hubbard model:

Ht-U = t
X

〈i,j〉,σ
c†i,σcj,σ +

U

2

X

σ 6=σ′

X

i

ni,σni,σ′ .

e.g. Mott-transition, para-, ferro-, and antiferromagnetic phases (2D, J. E. Hirsch, 1985),

spiral SDW, special ferrimagnetic states (3D, D. R. Penn, 1966), d-SC.

For d-electrons: U ∼ 20 eV, nearest-neighbor repulsion V ∼ 6 eV (screening: 2-3 eV).

The Hamiltonian of the extended Hubbard model:

H = t
X

〈i,j〉,σ
c†i,σcj,σ +

U

2

X

σ 6=σ′

X

i

ni,σni,σ′ +
V

2

X

σ,σ′

X

〈i,j〉
ni,σnj,σ′ .
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• Multicomponent fermions: H = Ht-U with σ = 1, 2, . . . , f .



Models - Imurity models - Anderson model

Applications: Magnetic impurities in normal metals, transport properties of QDs.

Simple example: single non-degenerate d-, or f -type impurity (ion) in an s electron

system→ The non-degenerate single impurity Anderson model:

H =
X
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X
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ǫdd†σdσ + Un
(d)
↑ n

(d)
↓ +
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Formation of a magnetic moment:

• Without hybridization:

◦ Energy levels of the ion:

ǫ(d0) = 0, ǫ(d1) = ǫd, ǫ(d2) = 2ǫd + U .

◦ Requirements for finite magnetic moment:

ǫ(d0) > ǫ(d1) and ǫ(d2) > ǫ(d1). d 2

d 0

d 1

ǫd + U/2

U/2
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Applications: Magnetic impurities in normal metals, transport properties of QDs.

Simple example: single non-degenerate d-, or f -type impurity (ion) in an s electron

system→ The non-degenerate single impurity Anderson model:

H =
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Formation of a magnetic moment:

• With hybridization (mean-field approximation):

◦ Resonance peak at ǫd + U
˙

n
(d)
−σ

¸

with FWHM ∆.

◦ π
˙

n
(d)
−σ

¸

= ctg−1
ˆ`

ǫd + U
˙

n
(d)
−σ

¸´

/∆
˜

.

◦ For U < Uc:
˙

n
(d)
σ

¸

=
˙

n
(d)
−σ

¸

= nd/2.

◦ For U > Uc:
˙

n
(d)
σ

¸

= nd/2 + σδnd. d 2

d 0

d 1

ǫd + U/2

U/2Uc



Models - Impurity models - Anderson model

Kondo regime: ǫd + U
˙

n
(d)
σ

¸

< EFermi < ǫd + U
˙

n
(d)
−σ

¸

.

Mean-field approximation:

PSfrag repla
ements

ρd(ǫ)

ǫ
U

〈

n
(d)
σ

〉

U
〈

n
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〈
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〉
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T3 T4

More sophisticated

methods (e.g. PT):

Kondo (Abrikosov-Suhl) resonance

T1 < T2 < T3 < T4
• Localized magnetic moment as scattering potential.

• Higher T: free magnetic moment - Curie susceptibility.

• Lower T: strong correlation with the conduction electrons - Kondo problem.



Models - Impurity models - Kondo model

Studying the effect of the localized magnetic moment:

• Allowed configurations: dσ - no charge fluctuation (Kondo regime).

• Canonical transformation: Anderson model→ s-d exchange model.

Hs-d =
X

k,σ

ǫkc†
k,σ

ck,σ −
1

V

X

k,k′,σ,σ′

Jk,k′S · σσ,σ′c†
k,σ

ck′,σ′

Antiferromagnetic exchange if Jk,k′ < 0.
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Studying the effect of the localized magnetic moment:

• Allowed configurations: dσ - no charge fluctuation (Kondo regime).

• Canonical transformation: Anderson model→ s-d exchange model.

Hs-d =
X

k,σ

ǫkc†
k,σ

ck,σ −
1

V

X

k,k′,σ,σ′

Jk,k′S · σσ,σ′c†
k,σ

ck′,σ′

Antiferromagnetic exchange if Jk,k′ < 0.

• |ǫk|, |ǫk′ | ≪ |ǫd + U
˙

n
(d)
σ

¸

| for σ =↑, ↓.

• In the restricted Hilbert space and Jk,k′ = const. → Kondo model (J>0):

HK
int =

J

V

X

k,k′

h

S+c†
k,↑ck′,↓ + S−c†

k,↓ck′,↑ + Sz(c†
k,↑ck′,↑ − c†

k,↓ck′,↓)
i

• IR divergency at EFermi at T = 0 in leading order - the PT fails.

• New methodes: RG treatment, scaling theory.



Models - Impurity models - Multiple impurities

Applications: mixed valence systems, heavy fermions, QD-islands, QD-lattices, QD-arrays etc.

• Interesting regime: ǫf + U
˙

n
(f)
σ

¸

≈ EFermi - charge fluctuation.

H =
X

k,σ

ǫkc†
k,σ

ck,σ +
X

i,σ

[ǫff†
i,σfi,σ + Un

(f)
i,↑ n

(f)
i,↓ ] +Hhyb

◦ Periodic Anderson model:

Hhyb = 1√
V

P

i,k,σ

“

VkeikRic†
k,σ

fi,σ + V ∗
k

e−ikRif†
i,σck,σ

”

.

◦ Multiple impurity Anderson model:

Hhyb = 1√
V

P

i,k,σ

“

Vkc†
k,σ

fi,σ + V ∗
k

f†
i,σck,σ

”

.
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• Kondo regime: ǫf + U
˙

n
(f)
σ

¸

< EFermi < ǫf + U
˙

n
(f)
−σ

¸

- Kondo lattice.

H =
X

k,σ

ǫkc†
k,σ

ck,σ +
J

V

X

i,k,k′,σ,σ′

e−i(k−k
′)Ri Si · σσ,σ′c†

k,σ
ck′,σ



Methods - Numerical methods

Dynamical mean-field theory (DMFT):

Aim: to approximate a many-particle problem by an effective single-particle problem.

E.g. Ising model:

H = −
X

(i,j)

JijSiSj − h
X

i

Si

Heff = −
P

i heff
i Si.

Effective Weiss field: heff

Mean-field approximation:
˙

SiSj

¸

≈
˙

Si

¸˙

Sj

¸

.

Self-consistency relation:
˙

Si

¸

Heff

!
=

˙

Si

¸

DMFT for the Hubbard model:

H = −
X

i,j,σ

tijc†i,σcj,σ + U
X

i

ni,↑ni,↓ + ǫ0
X

i,σ

ni,σ

Heff = HSIAM , Hbath =
P

k,σ εkb†
k,σ

bk,σ

Hatom = Un
(a)
↑ n

(a)
↓ + (ǫ0 − µ)(n

(a)
↑ + n

(a)
↓ )

Hcoupling =
P

k,σ Vk(b†
k,σ

aσ + a†
σbk,σ)

Effective Weiss function: ∆(E) =
P

k
|Vk|2
E−εk

Mean-field approximation:

The self-energies: Σii ≈ Σimp, Σi6=j ≈ 0.

Self-consistency relation:

The Green’s functions: Gii
!
= Gimp.



Methods - Numerical methods

Numerical renormalization group: Applications: impurity models.

H =
P

k,σ ǫkc†
k,σ

ck,σ +Himp[d, d†] +
P

k,σ V
“

c†
k,σ

dσ + d†σck,σ

”

.

• Logarithmic discretization of the DOS of the c electrons (interval - single state).
• This discrete model is mapped on a semi-infinite lattice-like model

H̃ =
X

σ

∞
X

n=0

ǫnc†n,σcn,σ +Himp[d, d†] +
X

σ

V
“

c†0,σdσ + d†σc0,σ

”

.

Hopping decreases exp. along the chain: • V←→• ǫ0←→• ǫ1←→• ǫ2←→• ǫ3←→• · · ·
• RG treatment: ◦ The lattice constructed site-by-site.

◦ Truncation procedure: ∼100 lowest energy eigenstates.
• N →∞: fixed point behavior.
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Hopping decreases exp. along the chain: • V←→• ǫ0←→• ǫ1←→• ǫ2←→• ǫ3←→• · · ·
• RG treatment: ◦ The lattice constructed site-by-site.

◦ Truncation procedure: ∼100 lowest energy eigenstates.
• N →∞: fixed point behavior.

Density-matrix renormalization group: Application: 1D lattice models (spin, fermion, boson).

• Construction of the full system by a series of subsystem with increasing size.
• A part of the system is handled as environment.
• Systematic truncation of the Hilbert space - keeping the most probable eigenstates

of the reduced density-matrix.



Methods - Analytical methods

Gutzwiller ansatz (for the Hubbard model):

• U = 0: fluctuation of the local polarization - deviation from the local charge
neutrality.

• U 6= 0: minimal polarization (Van Vleck, 1953).

|FS
¸

=
Y

k

c†
k,↑

Y

k′

c†
k′,↓|0

¸

=
1

LN

X

{i↑}

X

{j↓}
F ({i ↑})F ({j ↓})

Y

i

c†
i,↑

Y

j

c†
j,↓|0

¸

• In the uncorrelated metallic phase every localized configuration appear.

• F ({i ↑}), F ({j ↓}) are independent (|FS
¸

is uncorrelated) - double occupied
sites.

• The projection of these states: |ΨG

¸

= ηD |FS
¸

=
Q

i

ˆ

1− (1− η)ni↑nj↓
˜

|FS
¸

g < 1 and D =
P

i ni↑ni↓.

• Treating the determinants F ({i ↑}), F ({i ↓})→ Gutzwiller approximation.

• Minimalization of the energy functional:

E0 =

˙

ΨG|H|ΨG

¸

˙

ΨG|ΨG

¸ .



Methods - Analytical methods

Renormalization group (RG) treatment in solid state physics:

Applications: - long wavelength behavior (e.g. critical phenomena, Kondo model),

- low energy behavior (e.g. 1D electron systems)

of scale invariant systems.

Iteration: integrating out of the short distance/high energy degrees of freedom.

F [{gi}] −→ gi → g̃i −→ F̃ [{g̃i}]

Fixed point behavior: relevant, irrelevant, marginal operators.
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Renormalization group (RG) treatment in solid state physics:

Applications: - long wavelength behavior (e.g. critical phenomena, Kondo model),

- low energy behavior (e.g. 1D electron systems)

of scale invariant systems.

Iteration: integrating out of the short distance/high energy degrees of freedom.

F [{gi}] −→ gi → g̃i −→ F̃ [{g̃i}]

Fixed point behavior: relevant, irrelevant, marginal operators.

Slave-boson method:

Interacting fermion system: H[c, c†]→ Partition function: Z =
R

[dc][dc†] exp(−S[c, c†])

HS fields - generally fluctuating charge (φ) and spin (χ) densities.

Z =
R

[dφ][dχ][dc][dc†] exp(−S[c, c†; φ, χ]) =
R

[dφ][dχ] exp(−S̃eff[φ, χ])

Saddle-point approximation→ dominant HS fields - relevant bosonic configurations

Slave bosons



Methods - Analytical methods

Bosonization:

One of the most powerful nonperturbative technique for 1D fermion systems.

Aim: transform the complicated interacting model into an equivalent weakly interacting one.

- Absence of the Fermi surface (and quasiparticles)→ density fluctuations.

- Boson-like particle-hole pair excitations (ve ≈ vh)→ propagating collective modes.

- One particle operator can also be expressed by boson operators!

Ψσ ∼ F (Φσ) −→ Hf [Ψσ]→Hb[Φσ] , F (Φσ) nonlinear, nonlocal.

- Jordan and Wigner (1928): S = 1/2 Heisenberg model↔ interactng fermion model

(e.g. for Jz = 0: noninteracting fermions!).
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Bosonization:

One of the most powerful nonperturbative technique for 1D fermion systems.

Aim: transform the complicated interacting model into an equivalent weakly interacting one.

- Absence of the Fermi surface (and quasiparticles)→ density fluctuations.

- Boson-like particle-hole pair excitations (ve ≈ vh)→ propagating collective modes.

- One particle operator can also be expressed by boson operators!

Ψσ ∼ F (Φσ) −→ Hf [Ψσ]→Hb[Φσ] , F (Φσ) nonlinear, nonlocal.

- Jordan and Wigner (1928): S = 1/2 Heisenberg model↔ interactng fermion model

(e.g. for Jz = 0: noninteracting fermions!).

Bethe ansatz: Application: exactly solvable 1D systems - completely integrable:

No. of degrees of freedom = No. of conserved quantities.

Multiparticle scattering processes as the series

of two-particle scatterings and these processes

statisfy the Yang-Baxter equation:

3rd

2nd
=

1st 2nd

3rd
1st



An example: the t-U -J1-J2 model

The Hamiltonian:

H = t
X

〈i,j〉,σ
c†i,σcj,σ +

U

2

X

σ 6=σ′

X

i

ni,σni,σ′ + J
X

〈i,j〉
SiSj + J ′ X

[i,j]

SiSj

The ground state phase diagram of the 1D model was investigated

• numerically by real-space DMRG method (spin gap, charge gap, staggered bond

order parameter).

• analytically by bosonization of the g-ology Hamiltonian combined with RG

treatment and semiclassical analysis (charge gap, spin gap, dominant correlations).



An example: the t-U -J1-J2 model

Numerical results: Analytical results:

U/t = 2.0

1

BOW

SDW
0

BOW

0 SDW

BOW

LE
J  /t2 J  /t2

U/t = 0.0

J  /t = 1.0

2J

J1

2J J1

∆   = 0s

∆   = 0c

∆   = 0c

s∆   = 0/

∆   = 0s

∆   = 0c

∆   = 0c ∆   = 0s

2J

J1

2J J1

2J J1∆   = 0c

s∆   = 0/

U=0
=CDW

BCDW

/

/

U>0

U/2

BCDW

SDW

/

/

/

U

= 2U/3+

= U+
CDW



An example: the t-U -J1-J2 model

The analysis of the t-U -J1-J2 model was made by:

Xiaoxuan Huang,

Florian Gebhard,

Reinhard Noack,

Jenő Sólyom,

E. Sz.



An example: the t-U -J1-J2 model

The analysis of the t-U -J1-J2 model was made by:

Xiaoxuan Huang,

Florian Gebhard,

Reinhard Noack,

Jenő Sólyom,

E. Sz.

Thank you for your attention.
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