| Introduction | Literature overview | Results | Summary, future plans |
|--------------|---------------------|---------|-----------------------|
|              |                     |         |                       |

# Magnetic anisotropy in deposited Cr clusters

## László Balogh Krisztián Palotás László Szunyogh László Udvardi

Department of Theoretical Physics Budapest University of Technology and Economics

Turku, Finnland, 15–17 February 2012

| Introduction | Literature overview | Results | Summary, future plans |
|--------------|---------------------|---------|-----------------------|
| 00           | 00000               | 0000    |                       |
| Table of co  | ntonto              |         |                       |
|              | nienis              |         |                       |

### 1 Introduction

- Geometry
- Classical vector spin models

## 2 Literature overview

- STM experiment
- Ab-inition calculations

## 3 Results

• Band energy calculations (using MFT)



Introduction ●○ Literature overvie

Results

Summary, future plans 0

# The (111) surface of fcc Au

TOP + 1 TOP TOP - 1 TOP - 2







H. J. Gotsis *et al.*, Phys. Rev. B **73**, 014436 (2006)

Without intralayer relaxation, there are 8 different cluster positions for a compact trimer.

| Introduction | Literature overview | Results | Summary, future plans |
|--------------|---------------------|---------|-----------------------|
| ○●           | 00000               | 0000    | O                     |
| Frustration  |                     |         |                       |

Most simple classical vector spin model for 3 spins: (isotropic Heisenberg model)

$$egin{split} \mathcal{H} &= J\left( oldsymbol{\sigma}_1 oldsymbol{\sigma}_2 + oldsymbol{\sigma}_2 oldsymbol{\sigma}_3 + oldsymbol{\sigma}_3 oldsymbol{\sigma}_1 
ight) \ &= rac{1}{2} J \left( oldsymbol{\sigma}_1 + oldsymbol{\sigma}_2 + oldsymbol{\sigma}_3 
ight)^2 - rac{3}{2} J \end{split}$$

- Ferromagnetic:  $\sigma_1 \parallel \sigma_2 \parallel \sigma_3$ , collinear ground state
- Antiferromagnetic:  $\sigma_1 + \sigma_2 + \sigma_3 = \mathbf{0}$ , planar, non-collinear ground state,  $\measuredangle(\sigma_i, \sigma_j) = 120^\circ$

| Introduction    | ● ○ ○ ○ ○         | Results      | Summary, future plans |
|-----------------|-------------------|--------------|-----------------------|
| 00              |                   | 0000         | O                     |
| Fabricating and | analyzing Cr trim | ers with STM |                       |

32Å x 32Å



Conditions:  $T = 7 \,\mathrm{K}$ . ultrahigh vacuum, resolution  $\approx 5$  Å Measuring STM dI/dVspectra on the trimers. they experienced two different kinds of curves: one without any resonance at the Fermi energy, and another showing a Fano shape resonance with a Kondo temperature of  $T_{\rm K} = 50 \pm 10 \, {\rm K}.$ 

S. Uzdin *et al.*, Europhys. Lett. **47**, 556 (1999)
T. Jamneala *et al.*, Phy. Rev. Lett. **87**, 256804 (2001)



- From damped *ab-initio* spin dynamics, G. M. Stocks *et al.* found an in-plane 120° Néel strucure as ground state
- It was hard to determine the orientation with respect to the crystal, however, possible
- *J* = 146.7 meV



G. M. Stocks et al., Prog. Mat. Sci. 52, 371 (2007)

| Introduction   | Literature overview | Results | Summary, future plans |
|----------------|---------------------|---------|-----------------------|
| 00             | ○0●00               | 0000    | O                     |
| Magnetic force | theorem (MFT)       |         |                       |



- The energy difference between the different chirality states (1, 3) is +7 meV or -4 meV, depending on the self-consistent potential
- G. M. Stocks et al., Prog. Mat. Sci. 52, 371 (2007)

 Introduction
 Literature overview
 Results
 Summary, future plans

 coo
 coo
 o
 o

 Least square fit of a model Hamiltonian

 o



$$\mathcal{H} = \frac{1}{2} \sum_{i \neq j} J_{ij} \sigma_i \sigma_j + \frac{1}{2} \sum_{i \neq j} \sigma_i \mathbf{J}_{ij}^{\mathsf{S}} \sigma_j + \frac{1}{2} \sum_{i \neq j} \mathbf{D}_{ij} \cdot (\sigma_i \times \sigma_j) + \sum_i \sigma_i \mathbf{K}_i \sigma_i + Q [(12)^2 + (13)^2 + (23)^3] + 2Q' [(12)(13) + (21)(23) + (31)(32)]$$

A. Antal *et al.*, Phys. Rev. B **77**, 174429 (2008)

For the above Hamiltonian, the Landau–Lifshitz–Gilbert equation is solved to determine the ground state. Chirality. Results of A. Antal *et al.* 

For in-plane configurations:

$$E_{\text{DM}} = \frac{1}{2} \sum_{i \neq j} \mathbf{D}_{ij} \cdot (\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j) = \frac{3\sqrt{3}}{2} D_z \kappa_z,$$

where  $\kappa = \frac{2}{3\sqrt{3}} \sum_{(ij)} \sigma_i \times \sigma_j$  is the *chirality vector* of the trimer.



There is an energy difference of  $\Delta E = 5.04$  meV between the two different chirality states. Ground state: (a),  $\kappa_z = -1$ . A. Antal *et al.*, Phys. Rev. B 77, 174429 (2008)



• All magnetic moments were rotated simultaneously around the y axis



- The calculated energy differences are  $\approx 0.4 \text{ meV} (\approx 4.5 \text{ K} \cdot k_{\text{B}})$ and  $\approx 1.3 \text{ meV} (\approx 15 \text{ K} \cdot k_{\text{B}})$  for the two clusters
- These value do not coincide with the result of A. Antal *et al.*, however, the nearest neighbors were also included in our calculation



• The Fourier components of the energy function are calculated



- From the uniaxial on-site anisotropy:  $\cos(2\theta)$
- From the DM interaction:  $cos(\theta)$





• Why does the chirality "kill" the anisotropy?



•  $-3\cos(2\phi)$ •  $-\cos(2\phi) - \cos(2\phi + 120^\circ) - \cos(2\phi + 240^\circ) = 0$ 

| Introduction                 | Literature overview | Results | Summary, future plans |
|------------------------------|---------------------|---------|-----------------------|
| 00                           | 00000               | 000●    | O                     |
| 2 <sup>nd</sup> order in-pla | ne anisotropy       |         |                       |

Fixing all spins exept one, and expanding the energy function in terms of real spherical harmonics. [meV]

| In-plane anis. function                     | adatom | A+   | A–    | B+   | B-    |
|---------------------------------------------|--------|------|-------|------|-------|
| $\frac{1}{2}\sqrt{\frac{15}{\pi}} xy$       | 0      | 2.59 | -2.76 | 5.86 | -5.59 |
| $\frac{1}{4}\sqrt{\frac{15}{\pi}}(x^2-y^2)$ | 0      | 1.49 | 1.60  | 3.37 | 3.49  |

| Summary, f   | uture plans         |         |                       |
|--------------|---------------------|---------|-----------------------|
| Introduction | Literature overview | Results | Summary, future plans |
| 00           | 00000               | 0000    | ●                     |

#### Summary

- A literature overview on Cr<sub>3</sub> clusters is presented
- The presented results fit in the previous works

#### Future plans

- Investigating the rest of the 16 clusters (*fcc hollow*, hcp hollow, bridge, on top; κ<sub>z</sub> > 0, κ<sub>z</sub> < 0)</li>
- Try to find the ground state with a new idea based on the Newton-Raphson method

# Thank you for your attention