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List of abbrev.

L composite index: L ≡ (`,m)

Q composite index: Q ≡ (κ, µ)

σx, σy , σz Pauli matrices

σ vector, composed of the Pauli matrices; S = ~
2σ is the spin operator

σi unit vector parallel to the magnetization of site i

v̂ unit vector: v̂ = v/v

z∗ conjugate of the complex number, z

ZT transpose of the matrix, Z

Z† conjugate transpose (adjoint) of the complex matrix, Z

* * *

AFM antiferromagnet, antiferromagnetic, see p. 3

ASA atomic sphere approximation, see eq. (4.26)

CW cycloidal (domain) wall, see p. 35

DFT density functional theory

DM Dzyaloshinsky–Moriya

EC embedded cluster

FM ferromagnet, ferromagnetic, see p. 3

HW helical (domain) wall, see p. 35

KKR Korringa–Kohn–Rostoker (method)

MC Monte Carlo (algorithm, simulation, simulated annealing)

MR magneto-resistance, see p. 34

MST multiple scattering theory, see p. 19

SBZ surface Brillouin zone , see p. 22

SKKR screened KKR

SOC spin-orbit coupling



ii

SP-STM spin-polarized scanning tunneling microscopy

SP-STS spin-polarized scanning tunneling spectroscopy

SPO scattering path operator, see eq. (4.30)
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Chapter 1

Introduction

Magnetic data storage technology used in hard disk drives has already undergone several

milestones from inductive read heads through magnetoresistive, giant magnetoresistive, and

tunneling magnetoresistive read heads. Bit cell dimension is around 100 nm (width)× 18 nm

(length) meaning an areal density of about 400 Gbit/in2 in 2009. [1] Using longitudinal mag-

netic recording the superparamagnetic limit has been reached in 2006 at about 200 Gbit/in2

areal density and could be overcome by the introduction of the perpendicular magnetic record-

ing extending the superparamagnetic limit up to about 1 Tbit/in2 areal density. A promising

candidate of new technologies is the heat-assisted magnetic recording (HAMR) which 1 ter-

abit per square inch has been already achieved with. [2]

In 2012 the first spin-torque magnetoresistive RAM (ST-MRAM) has been commercial-

ized. [3] It is able to provide enhancement and to complement flash memory technology to-

gether with protection of data in the event of power loss. In magnetoresistive RAMs data is

stored as a magnetic state versus an electronic charge. “ The ST-MRAM employs a one tran-

sistor, one magnetic tunnel junction (MTJ) memory cell for the storage element. ” [4] Writing

is accomplished by driving a spin-polarized current through the MTJ to change the direction

of polarization and the data is read by sensing the MTJ resistance.

These technological importances have been motivating the stressed attention to mag-

netism in reduced symmetry systems. In low-dimensional magnetic systems the nearest

neighbor distance, the symmetry and the hybridization with the substrate play a crucial role

for the magnetic properties. This may lead to a variety of magnetic structures, from the fer-

romagnetic and antiferromagnetic states through spin-spirals to more complex non-collinear

spin textures. Nanomagnets possess a rich variety of magnetic properties and are expected as

constituents of spintronics technologies. Development in sample preparation and experimen-

tal technology made it possible to validate the theoretical results, to make new discoveries and

to raise further questions.

Among other experimetal methods spin-polarized scanning tunneling microscopy (SP-

STM) and spin-polarized scanning tunneling spectroscopy (SP-STS) became now the leading

techniques in exploring the fundamentals of magnetic interactions and complex magnetic

ordering. [5] SP-STM is able to tailor nanomagnets ranging from linear chains to complex
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two-dimensional arrays and to perform magnetometry in an atom-by-atom fashion. [6] A

recent review on the effect of the quantum confinement on nanostructures can be found in

Ref. 7.

Three basic classes of magnetic modeling are “ full electronic description of the magnetic

material ”, ‘spin models’ and ‘micromagnetism’. A brief summary of the classical spin mod-

els is given here based on the review of Nowak. [8] Nowadays, large systems cannot be treated

on first principles footing without any approximation. The large number of degrees of freedom

of the electron system of a solid matter have to be reduced in order to handle the calculation.

Rigid spin models can be considered as an extreme reduction of the degrees of freedom and

also some neglection of quantum effects. In the framework of a rigid spin model every atom

of the system is represented by a classical unit vector, σi = µi/µi, which corresponds to

the direction of the spin magnetisation of the atom i, and µi is the atomic spin magnetisation

vector. The energy of the system depends only on the spin directions: H = H ({σi}). The

realistic lattice structure can be taken into account and para-, ferri-, ferro- or antiferromag-

nets or even heterostructures can be modeled. The parameters of the model are often derived

from or fitted to first principles calculations. In a micromagnetic description the magnetisa-

tion density of a solid medium is represented by a continuous function, m(r). One can think

rigid spin models as a discretization of a continuous model, i.e., µi =
∫
Vi

m(r) d3r where Vi
means the domain of the i-th atom. Magnetic particles in the nanometer regime can only be

described by first principles or spin model methods since they are too small for a continuous

model. Spin models and micromagnetic models can be straightforwardly generalized to the

finite temperature equilibrium case. [8]

Often, the energy of the system, H, is given in terms of a spin model, nevertheless, in

this thesis (sections 4.5 and 5.1) an attempt is made at circumventing the application of a

spin model and applying a Monte Carlo (MC) method to the full electronic description of the

magnetic medium.

A widely used model for describing the magnetism of transition metals is the Heisenberg

model which takes the following form if relativistic effects (spin-orbit coupling, SOC) are

included:

H =
∑
〈i,j〉

σT
i Jijσj +

∑
i

σT
i Kiσi, (1.1)

where H is the energy of the spin system, the first summation runs over the interacting pairs

of spins, σi is a unit vector parallel to the magnetization at site i, Jij are generalized exchange

interaction matrices and Ki represents the second-order on-site anisotropy matrix. Without

loss of generality, the Ki matrices are chosen to be symmetric and traceless. The Jij exchange

matrices are usually decomposed into an isotropic part of Jij = 1
3Tr Jij , a traceless symmetric

anisotropic part defined as JS
ij = 1

2

(
Jij + JT

ij

)
− JijI and an antisymmetric part given by

JA
ij = 1

2

(
Jij − JT

ij

)
. The latter term is usually formulated with the Dzyaloshinsky–Moriya

(DM) vector, Dij , as σT
i JA

ijσj = Dij · (σi × σj). The decomposed model reads:

H =
∑
〈i,j〉

Jij (σi · σj) +
∑
〈i,j〉

σT
i JS

ijσj +
∑
〈i,j〉

Dij · (σi × σj) +
∑
i

σT
i Kiσi. (1.2)
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INTRODUCTION 3

This energy function includes magneto-crystalline anisotropy and spin-spin interactions up to

second order. Dipole-dipole interaction is neglected in this thesis since in small clusters or

in antiferromagnetic systems having zero net magnetisation the dipole-dipole interaction is

negligible compared to the other interactions.

The first term in eq. (1.2) is of non-relativistic origin so usually it is the most stressed

among the contributions. The Dzyaloshinsky–Moriya term appears in linear order in the spin-

orbit parameter, ξ, when a second order perturbation theory is applied for the spin-orbit cou-

pling. Therefore, it can be much larger than the symmetric anisotropic exchange (also called

the pseudo-dipolar coupling) or the on-site anisotropy which appears in second order in ξ

within the perturbation theory. However inversion symmetry eliminates the anti-symmetric

part of the exchange tensor, i.e., the Dzyaloshinsky-Moriya interaction. [9–12] Spin-orbit

coupling (SOC) has an important role in the formation of different magnetic states via mag-

netocrystalline anisotropy and Dzyaloshinsky-Moriya interactions. [13]

For layered systems the coupling constants exhibit translational symmetry and the sym-

metry of the lattice structure determines the form of the on-site anisotropy. For (001) and

(111) surfaces of cubic materials, e.g., the leading on-site term is an uniaxial anisotropy.

However, in the case of magnetic clusters the translational symmetry is removed and the pa-

rameterization of the on-site anisotropy gets complicated due to the reduced symmetry of the

system.

Considering only the isotropic exchange coupling, i.e., discarding the relativistic effects,

the following very simple model is derived:

H =
∑
〈i,j〉

Jij (σi · σj). (1.3)

Jij < 0 for ferromagnetic (FM) and Jij > 0 for antiferromagnetic (AFM) coupling. In

both cases the isotropic coupling prefers collinear (parallel or antiparallel) spin alignment

without preference of any direction. In the ground state of a ferromagnet all spins points to

the same direction and since every bond is in its minimal energy state this is the solution of

the model. Here, within this isotropic model the direction of the ferromagnetic alignment is

not determined, however.

If the graph of the interacting spins is a bipartite graph (e.g., a square lattice, a simple

cubic lattice) an antiferromagnetic system can also be in a state in which every bond is in

the minimal energy state, namely, spins in one partition of the system point to the, e.g., +ẑ

direction and the spins in the other partition point to the −ẑ direction. In the case of a non-

bipartite lattice, e.g., a triangle, a triangular lattice, the energy minimum of each bond cannot

be fulfilled simultaneously, and the ground state may become a non-collinear state. This

phenomenon is called geometric frustration.
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4 CHAPTER 1

The most simple example of frustated systems is the antiferromagnetic equilateral trian-

gle. Writing the energy expression of the AFM triangle (J > 0) in the following way,

H = J (σ1 · σ2 + σ2 · σ3 + σ3 · σ1)

= J

2
[
(σ1 + σ2 + σ3)2 − (σ1)2 − (σ2)2 − (σ3)2

]
= J

2 (σ1 + σ2 + σ3)2 − 3J
2 ,

(1.4)

it can be read off that the ground state is: σ1 + σ2 + σ3 = 0. The spins lie in one plane and

enclose 120° with each other. This configuration is called the 120° Néel state.

Frustration also accours in the AFM triangular lattice, in the FM square lattice with AFM

next nearest neighbor coupling or in the FM classical Heisenberg model on Möbius strip [14].

The two type of 120° Néel structures can be distinguished by investigating the chirality of

the configurations. According to Antal et al. [15] the chirality vector for a trimer is defined as

κ = 2
3
√

3
(σ1 × σ2 + σ2 × σ3 + σ3 × σ1) , (1.5)

with the spin numbering in clockwise order around the triangle. Examples of the κz = +1
and the κz = −1 configurations are shown in fig. 1.1.

κ
z
 = −1 κ

z
 = +1κ

z
 = −1 κ

z
 = +1κ

z
 = −1 κ

z
 = +1κ

z
 = −1 κ

z
 = +1κ

z
 = −1 κ

z
 = +1

1 3

2

1 3

2

Figure 1.1 Two opposite chirality spin configurations of an equilateral
trimer. σ1 + σ2 + σ3 = 0 holds and any pair of spins enclose 120°
angle. κ = (0; 0;−1) for the left and κ = (0; 0; +1) for the right example.
A 180° simultaneous rotation of the spin vectors around an axis parallel
to the σ2 direction transforms one configuration into the other, but, e.g., a
simultaneous rotation around the z axis does not change the chirality.

The Néel structure on an entire monolayer is a special case of the general spin spiral

magnetic configuration. However, spin structures like row-wise or double-row-wise antifer-

romagnetic alignments [16], or even a three-dimensional spin structure [17] have been pre-

dicted for 2D triangular lattice. Also SP-STM measurements revealed that in the case of some

thin films the spin-spiral magnetic configuration has lower energy than the ferromagnetic or

anti-ferromagnetic configuration [13] due to the Dzyaloshinsky–Moriya interaction.
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INTRODUCTION 5

After this introductory chapter, an overview of previous experiments and theoretical de-

velopments are summarized based on the literature. (Chapter 2) Then, the objective of the

work is given in more detail than in this paragraph. (Chapter 3) Ab initio calculations on mag-

netic nanostructures are useful and necessary for the interpretation of experimental results and

to attain better understanding of the underlying physical phenomena. In this thesis, the em-

bedded cluster Korringa–Kohn–Rostoker (EC-KKR) electronic structure calculation method

is used. The method is outlined in Chapter 4. In Chapter 5, three applications are presented

based on the published results. The first example is a 4 atom × 4 atom size Co cluster de-

posited on the (001) surface of Cu. A Monte Carlo simulation based on the ab initio results

is applied to determine the temperature dependent magnetization of the cluster. (Section 5.1)

In the second example, the magnetic ground state of an atomic size Co contact between Co

leads is determinded. Opposite magnetic boundary conditions are fixed in the leads and no

a priori spin model for the nano-contact is exploited. (Section 5.2) The third system is a frus-

trated triangular Cr cluster on the (111) surface of Au and it is investigated in four different

positions. A spin model is established and the spin model parameters are determined based

on the ab initio calculations. (Section 5.3) A short conclusion (Chapter 6) closes the thesis.
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Chapter 2

Literature overview

Among the wide variety of nanostructure geometries the contact-like and the island-like ge-

ometries are chosen to be investigated in this thesis. The contact-like geometry consists of two

metallic leads and the (usually) atomic size contact between them. Typical realisation of this

geometry is the scanning tunneling microscopy (STM) arrangement or the break junction ar-

rangement. These equipments serve for performing the measurements at the same time. In the

scope of this thesis, the contact is made of magnetic material and the leads can be magnetic or

non-magnetic. In the case of the island-like geometry, some magnetic atoms are placed onto

a macroscopic magnetic or non-magnetic metallic substrate. The sample preparation and the

experiment are usually carried out separately. Recent developments in nanotechnology permit

the construction of these structures in a well controlled way down to the atomic scale and en-

able the measurement of various properties. In this chapter, an overview of the experimental

and theoretical techniques and the results is given.

Jamneala et al. [18] found two states of the compact Cr trimer deposited on the Au(111)

surface, either of them exhibits a narrow Kondo resonance at the Fermi energy. Probing

the Kondo resonance in terms of low-temperature scanning tunneling spectroscopy Heinrich

et al. [19] determined the spin-flip energy of single Mn atoms. Wahl et al. [20] were able

to estimate the exchange coupling between deposited Co adatoms. Néel et al. [21] studied

the transition from the tunneling to the contact regime by moving the STM tip closer to the

surface adatom, and an enhanced Kondo temperature was found. Calvo et al. [22] found a

Fano resonance for ferromagnetic point contacts indicating that the reduced coordination can

dramatically effect the magnetic behavior of nanoclusters.

Magnetoresistance has a stressed importance in both applied and basic research. Experi-

ments on atomic-sized contacts of ferromagnetic metals generated by a mechanically control-

lable break junction revealed magnetoresistance (MR) effects of unprecedented size. [23–25]

In particular, based on ab initio calculations, the anisotropic MR has been shown to emerge

in wire like transition metal nanocontacts and has been related to the giant orbital moment

formed at the central atom. [26] Pasupathy et al. [27] showed a nice example of controlling

the orientation of the magnetic moments in the two electrodes.

The measurements of Calvo et al. [22] and Autès et al. [26] on ferromagnetic 3d metal

nanocontacts motivated the investigations of the magnetic ground state and the magnetic an-
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isotropy of a Co point contact between oppositely magnetised ferromagnetic Co leads, see

Section 5.2.

In bulk ferromagnets the formation of a magnetic domain wall is governed by a compe-

tition between the exchange and anisotropy energies [28] and the typical interface between

the magnetic domains is the Bloch wall where the magnetization remains perpendicular to the

axis of the wall. In thin films with easy plane anisotropy, a Néel wall is formed with atomic

magnetic moments lying in the plane of the film; however, DM interactions can give rise to

domain walls with out-of-plane magnetization and well-defined rotational sense. [29, 30] In

a geometrically constrained system, e.g., in a nanocontact, the structure of a domain wall is

mainly determined by the geometry irrespective of the exchange and anisotropy energies. [31]

Thermal effects play an additional role and can lead to new types of domain walls beyond the

usual restriction of constant magnetization magnitude. [32]

Development in spin-polarized scanning tunnelling microscopy (SP-STM) made it possi-

ble to explore non-collinear magnetic structures in atomic resolution. [13] SP-STS investiga-

tions on sub-monolayer Co on Cu(111) surface [33] pointed out that the magnetic adatoms

form triangular islands with ferromagnetic ground state where the easy axis was perpendic-

ular to the plane of the substrate. Frustrated non-collinear magnetic structures were reported

by Gao et al. [34] for Mn islands deposited on Ag(111) surface. Based on topographic mea-

surements which only collect information from the Mn layer and the topmost Ag layer, they

concluded that fcc up and hcp down type islands and fcc stacked stripes were present. They

demonstrated that the islands exhibit the 120° Néel magnetic structure and the orientation

of the Mn moments differs by 30° between fcc and hcp stacked islands most likely due to

spin-orbit coupling which is different for the two stackings. The latter phenomenon made it

possible to distinguish the islands with different stackings.

The 120° Néel state of Cr mono-layer on Pd(111) substrate was observed by Waśniowska

et al. [35] by SP-STM measurements. From first-principles calculations on flat spin spirals,

they predicted the ground state to be the 120° Néel state which is in agreement with the

measurements. Palotás et al. [36] demonstrated by first principles calculations that the two

possible Néel states with opposite chiralities of a Cr mono-layer on Ag(111) are energetically

in-equivalent. They also showed that the magnetic contrast of the simulated SP-STM image

was sensitive to the electronic structure of the tip and to the bias voltage.

Accurately describing frustrated magnetic systems both experimentally and theoretically

is still a challenge. The most simple system exhibiting geometric frustration is an antiferro-

magnetically coupled symmetric trimer. An equilateral compact chromium trimer deposited

on the (111) surface of gold is an archetype of such systems. The first non-collinear magnetic

calculations of supported metallic 3d triangular trimers were presented fifteen years ago by

Uzdin et al. [37] Within the vector Anderson model they showed that a supported equilat-

eral Cr trimer exhibited zero net magnetic moment with the atomic moments enclosing 120°

angles. Later, ab initio calculations [38, 39] agreed that the magnetization at all the sites

were laying in the plane enclosing 120° with each other. Gotsits et al. [38] performed spin-

polarized electronic structure calculation using the projector augmented-wave method with
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the spin-orbit coupling (SOC) included. Bergman et al. [39] used an extension of the real

space linear muffin tin orbital method (RS-LMTO) within the atomic sphere approximation

(ASA) with relativistic effects included within the scalar relativistic approximation. Using

fully relativistic constrained self-consistent multiple scattering Green’s function electronic

structure calculations [40] and adiabatic spin dynamics [41] to search for the ground state,

Stocks et al. [42] also concluded that the ground state of the compact Cr trimer on Au(111)

is the 120° Néel state. The energy of the two magnetic configurations with opposite chirality

turned out to be different as it has also been confirmed by Antal et al. [15] They pointed out

that the Dzyaloshinskii–Moriya (DM) interaction is responsible for the lifting of the degen-

eracy of the states with opposite chirality. Earlier works usually define the chirality at the

triangular lattice “ as the sign of rotation of the spins along the three sides of each elemen-

tary triangle ”. [43] Nowadays, the chirality of triangular antiferromagnetic clusters is even

suggested as a realisation of a qubit. [44]

The measurements of Gao et al. [34] and the calculations of Stocks et al. [42] and Antal

et al. [15] motivated the investigations of chirality and anisotropy of Cr trimers of different

stacking on the Au(111) surface, see Section 5.3.

Next to the emphasized STM and break junction experimental techniques, a short note

is given to present some other important experimental techniques. X-ray magnetic circu-

lar dichroism (XMCD) measurements revealed [45] that the magnetic anisotropy energies

(MAE) of small Co clusters on Pt(111) surface are an order of magnitude larger than the an-

isotropy of the ordered CoPt alloy. The magnetic anisotropy is further enhanced in core–shell

structures with Pt- and Co cores surrounded by Fe-, Co-, Pt- or Pd shells deposited on Pt(111)

surface [46] according to the results of magneto optical Kerr effect (MOKE) experiments.

Even magnetic anisotropy of a single Co adatom on MgO surface could be determined by

XMCD measurements [6] where the orbital moment retains its free atom value resulting in a

huge MAE of 60 meV.

In the following paragraphs, the numerical techniques of the simulation of magnetic sys-

tems is overviewed. The density functional theory (DFT) era in numerical calculation of

ground state electronic structure started with the work of Hohenberg, Kohn and Sham. [47, 48]

Kohn won the Nobel Prize in Chemistry “ for his development of the density-functional the-

ory ” in 1998. The theory was extended to the relativistic case by Vignale and Rasolt as the

current density-functional theory. [49–52]

Several methods to determine complex magnetic ground states of nanoparticles from first

principles are based on a fully unconstrained local spin-density approximation (LSDA) im-

plemented within the full-potential linearized augmented plane-wave (FLAPW) method [17]

or the projector augmented-wave (PAW) method. [53] Unconstrained non-collinear magnetic

calculations are also performed within a tight-binding approach, [54] using the tight-binding

linearized muffin-tin orbital (TB-LMTO) method [39, 55] or the Korringa-Kohn-Rostoker

(KKR) method. [56, 57] SOC is usually treated as a perturbation or by directly solving the

Dirac equation. The latter concept is applied in studies relying on ab initio spin dynamics in

terms of a constrained LSDA by means of a fully relativistic KKR method. [42, 58, 59]
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In this thesis, the Korringa–Kohn–Rostoker (KKR) electronic structure calculation method [60,

61] is used. The KKR method uses Green’s function instead of the wave function therefore

it is well suitable for investigation of transport properties in metals. [62] One important ad-

vantage of the KKR method is that it uses the same formalism both in non-relativistic and

in relativistic treatment. In this work, the investigation of anisotropic Heisenberg coupling

and magnetocrystalline anisotropy requires the fully relativistic (non-perturbative) descrip-

tion. The KKR method is able to describe disorder (alloys [63] or paramagnetic phase [64])

in metals. Szunyogh et al. [65, 66] and Zeller et al. [67] applied the KKR method to sur-

faces (an interface calculation would be the same in formalism) by introducing the screening

transformation, i.e., deriving the screened KKR (SKKR) method. Lazarovits et al. [68, 69]

extended the KKR method with the embedding technique and applied it to finite clusters de-

posited onto a surface. The KKR Green’s function method with the above developments is

still a modern electronic structure calculation method, see the recent review of Ebert, Ködder-

itzsch and Minár. [70]

When describing magnetic structures, i.e., the energy of a spin-configuration, E ({σi}),

relying on the electronic structure calculation we assume that the fast electronic degrees of

freedom together with the longitudinal spin fluctuations and the slow transversal spin fluctu-

ations are adiabatically decoupled. [71] Jansen showed [72] that the energy of the different

magnetic configurations can be determined by using the band energy within the magnetic

force theorem (MFT). To map the energy of the ab initio calculation onto a classical Heisen-

berg spin model the torque method or the method of infinitesimal rotations [73, 74], the rota-

tional energy method [75, 76] and the spin cluster expansion [76–79] can be used.

In Section 4.1 a compact summary of the formalism of the fully relativistic KKR method

is given. The extensions which are employed in this thesis are presented in more details in

Sections 4.2–4.5.
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Chapter 3

Objective of the work

In this work, magnetic nanostructures deposited onto magnetic or non-magnetic substrate are

investigated by numerical calculations based on first principles. An effort is made to compare

the first principles description to an appropriate spin-model description. In the studied systems

SOC plays an important role. Fully relativistic electronic structure calculations are used,

therefore, the SOC is taken into account in a non-perturbative way. It is presented how the

relativistic effects lift the degeneracy of the non-relativistic ground state.

In nanoclusters compared to higher dimensionality structures the symmetry of the sys-

tem is lower. Therefore, there are many independent coupling parameters and higher order

spin-interactions also play an important role. [15] In the case of a magnetic overlayer the in-

version symmetry is also broken which results in a non-vanishing DM coupling. Therefore,

ab initio calculations on magnetic nano-structures are necessary for a clear interpretation of

experimental results.

Among several theoretical tools available for determining electronic structure of mag-

netic systems, in my thesis the Korringa–Kohn–Rostoker [60, 61] method is applied. The

magnetic properties of nanoclusters (cobalt, chromium) deposited onto a magnetic or onto a

non-magnetic substrate (cobalt, copper, gold) have been calculated by using embedded cluster

Green’s function technique [68, 69] as combined with the KKR method. The KKR method

extended with the screening technique [65–67] is suitable for the proper description of the

semi-infinite magnetic or non-magnetic substrates.

In Sections 5.2 and 5.3, a spin model is constructed corresponding to the symmetry. From

the ab initio band energy, the spin model parameters are determined by the torque [73, 74]

and the rotational energy [75, 76] methods. In Section 5.1, a demonstration is provided that a

fully ab initio based Monte Calrlo simulation of the magnetic structure of the nanocluster can

be performed.

The common origin of the magnetic anisotropy energy (MAE) and the anisotropy of the

orbital moment is the SOC. [12] The strong correlation between them is highly confirmed by

the numerical investigation of the MAE and the orbital moment of the central atom of a cobalt

point contact. (See Section 5.2.)

The classic example of frustration is the antiferromagnetically coupled symmetric trimer

where it is impossible to set all the three spin-pairs in their lowest energy state simultaneously.
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Compact Cr trimer on the Au(111) surface is a well-studied system, [15, 38, 39, 42] however,

in this thesis something new is added to the understanding. There is consensus in the theoret-

ical literature that the ground state is an in-plane 120° Néel state. The Dzyaloshinsky–Moriya

interaction and the pseudo-dipolar coupling together determine the chirality of the trimer and

the in-plane spin orientation. These two interactions both disappear in a non-relativistic treat-

ment, therefore in a non-relativistic treatment the sense of the chirality is not lifted and the

in-plane orientation remain degenerate. The results of this topic are presented in Section 5.3.

Ferromagnetic nanocontact can also show frustrated behaviour with opposing boundary

conditions. A Co point contact between oppositely magnetized Co leads is investigated in

Section 5.2. It is presented that the MAE of the central atom lifts the classical degeneracy of

the domain wall.

3.1 Thesis points

1. I implemented a fully ab initio Monte Carlo simulation by extending the KKR code and

calculated the temperature dependent magnetization of a 4× 4 Co cluster deposited on

the Cu(001) surface. The isotropic exchange parameters and an estimation of the uni-

axial on-site anisotropy of the Heisenberg model of this system were determined. The

spin model MC simulation was compared to the fully ab initio MC simulation. I found

that the magnetization curves from the two simulations practically agree. The validity

of the application of the spin model is confirmed. The unquestionable advantage of the

ab initio MC approach is the non-requisiteness of an a priori spin model and the cost

for that is the extreme computational demand.

Publication II belongs to this thesis point.

2. The magnetic structure of a model of a Co point contact between two oppositely mag-

netized Co leads has been investigated by means of ab initio calculations. The strong

ferromagnetic coupling and the symmetry enable two distinct domain walls: helical

(HW) and cycloidal wall (CW) and the CW was 30 meV lower in energy. The width

of the domain walls followed the length of the point contact under a deformation of

−15% . . .+15%. Strong uniaxial anisotropy of the central atom was experienced with

an easy axis perpendicular to the leads which was the main reason of the lower energy

of the CW. Anisotropy of the orbital moment of the central atom was also revealed in

strong correlation with the magnetic anisotropy energy.

Publication III belongs to this thesis point.

3. Equilateral compact Cr trimers deposited onto fcc hollow or hcp hollow positions of the

Au(111) surface were investigated. Antiferromagnetic coupling between the Cr atoms

results in a ground state of an in-plane 120° Néel state with two possible chirality.

The ground state out of the two Néel states was the result of an interplay between the

Dzyaloshinsky–Moriya (DM) interaction and the symmetric part of the two-site anisot-

ropy. The DM interaction depended intriguingly on the geometry. In the case of a Cr
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monolayer on the Au(111) surface the non-vanishing z component of the DM coupling

results in an energy difference between the Néel structures with opposite chirality.

Publications I and IV belong to this thesis point.

3.2 Publications linked to the thesis points

The publications are listed in chronological order. In the Bibliography, see them as Refer-

ences 80, 81, 82 and 83, respectively.

[I] Antal, A., Lazarovits, B., Balogh, L., Udvardi, L. & Szunyogh, L. Multiscale studies

of complex magnetism of nanostructures based on first principles. Philosophical Mag-

azine 88, 2715–2724 (2008).

DOI: 10.1080/14786430802389213.

[II] Balogh, L., Lebecki, K. M., Lazarovits, B., Udvardi, L., Szunyogh, L., & Nowak, U.

Monte Carlo study on magnetic nanoparticles from first principle. Journal of Physics:

Conference Series 200, 072103 (2010). DOI: 10.1088/1742-6596/200/7/072103.

[III] Balogh, L., Palotás, K., Udvardi, L., Szunyogh, L. & Nowak, U. Theoretical study of

magnetic domain walls through a cobalt nanocontact. Phys. Rev. B 86,024406 (2012).

DOI: 10.1103/PhysRevB.86.024406.

[IV] Balogh, L., Udvardi, L. & Szunyogh, L. Magnetic anisotropy and chirality of frustrated

Cr nanostructures on Au(111). Journal of Physics: Condensed Matter 26, 436001

(2014). DOI: 10.1088/0953-8984/26/43/436001.
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Chapter 4

Methods

4.1 Review of the Korringa–Kohn–Rostoker (KKR)

electronic structure calculation method

Physical properties of quantum systems are strongly determined by symmetries. In crystals,

the two symmetries are the symmetry of the lattice and the spherical symmetry of the potential

in the close vicinity of the nuclei. The KKR method manages both by dividing the space into

atomic spheres and the intersticial region. In this section, I try to give a review of the KKR

method compactly but containing everything that we need in the further parts of this thesis.

Among many variants of the KKR method, see Chapter 16 of Ref. 84, here the relativistic

spin-polarized version will be outlined in terms of the atomic sphere approximation.

This section is based on two books: Refs. 85 and 84 and three theses: Refs. 69, 62 and

64. Subsequent citations to these references are omitted in this section.

The density functional theory (DFT) provides the procedure to describe a many electron

system with a one-electron effective Hamiltonian self-consistently in terms of the charge and

the magnetisation density. The DFT is not disscussed here; this section starts with the Kohn–

Sham–Dirac-equation and presents the procedure how to solve it for the muffin tin potential

construction. The treatment arrives at the fundamental equation of the multiple scattering

theory (MST). In the subsequent sections of this chapter, formulas will be derived in order to

calculate the energy of different magnetic configurations and the exchange coupling parame-

ters between the magnetic moments.

4.1.1 Kohn–Sham–Dirac equation

The Kohn–Sham–Dirac Hamiltonian is:

(
W − cα · p− βmc2

)
ψ(r) = U(r)ψ(r), (4.1)

where c is the speed of light, m is the electron rest mass, α and β are the Dirac matrices (for

the definitions see Appendix A), p = −i~∇ is the momentum operator, W is the relativistic
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energy eigenvalue, U(r) is the effective potential and field as follows:

U(r) = Vext(r) + e2

4πε0

∫
n(r′)
|r− r′|

d3r′ + Vxc(r) + eµ0
2mΣ ·

(
Bext(r) + Bxc(r)

)
, (4.2)

and ψ(r) is the four component wave function. Eq. (4.1) should be solved self-consistently in

terms of the charge and the magnetisation densities. The exchange–correlation potential and

field are given as

Vxc(r) = δExc

δn(r) and µ0Bxc(r) = δExc

δS(r) (4.3)

with n(r) = ψ(r)†ψ(r) the electron density and S(r) = 1
2ψ(r)†βΣψ(r) the spin density.

The exchange–correlation potential and field were treated within the local spin-density ap-

proximation (LSDA), [86, 87] of the density functional theory as parametrized by Perdew

and Zunger [88].

In some further formulas in the energy argument, p or ε is used instead of W :

p = 1
c

√
W 2 −m2c4 with Im p > 0 and ε = W −mc2. (4.4)

4.1.2 Free particle Green’s function

The solution of the Dirac Hamiltonian is sought in the following combination of bi-spinors:

ψ(r) =
∑
κµ

 gκµ(r)χκµ(r̂)
ifκµ(r)χ−κµ(r̂)

 =
∑
Q

 gQ(r)χQ(r̂)
ifQ(r)χQ̄(r̂)

 (4.5)

where gκµ(r) and fκµ(r) are the radial functions and χκµ(r̂) are the spin spherical harmonics.

The χκµ-s are common eigenfunctions of the total angular momentum operator, J = L + S,

its projection, Jz , and the K = L ·σ+~ operator. A short summary of the κµ-representation

is given in Appendix A.

Let us rewrite the ∇ = r̂ (r̂ ·∇) − r̂ × (r̂×∇) = r̂ ∂
∂r −

r̂
r × (r×∇) vector calculus

identity into the terms of the momentum, p = −i~∇, and the angular momentum, L = r×p,

operators:

p = −i~r̂ ∂
∂r
− r̂
r
× L. (4.6)

Using the definition of σr, see eq. (A.5), the identity (A.7) and the definition of theK operator,

see eq. (A.19), one gets the kinetic energy operator in polar form:

cα · p =

 0 −ic~σr
(
∂
∂r −

1
~rK + 1

r

)
−ic~σr

(
∂
∂r −

1
~rK + 1

r

)
0

 . (4.7)

First, we will solve the homogeneous part of eq. (4.1) in order to gain the free parti-

cle solution of the Kohn–Sham–Dirac-equation. It has to be exploited that the χQ(r̂) spin

spherical harmonics are eigenfunctions of the K operator with eigenvalue of −~κ and that

σrχQ(r̂) = −χQ̄(r̂), see eq. (A.25). Considering, that U(r) = 0 in the free space case,
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writing back the kinetic energy in polar form, eq. (4.7), into eq. (4.1) and exploiting the bi-

spinor form of the wave funtion, eq. (4.5), one can derive the following coupled first order

differential equations for the radial functions:

 W −mc2 ic~
(
∂
∂r −

κ
r + 1

r

)
ic~
(
∂
∂r + κ

r + 1
r

)
W +mc2

 gκµ(r)
ifκµ(r)

 = 0 for every (κ, µ). (4.8)

The following second order differential equation can be derived for, e.g., gκµ(r) if one makes

use of the relation W 2 = p2c2 +m2c4 and of κ2 + κ = `(`+ 1):

(
p2

~2 + ∂2

∂r2 + 2
r

∂

∂r
− `(`+ 1)

r2

)
gκµ(r) = 0 (4.9)

The linearly independent solutions of this equation are the

j`
(pr
~
)
, y`

(pr
~
)

; or the h±`
(pr
~
)

= j`
(pr
~
)
± iy`

(pr
~
)

(4.10)

spherical Bessel functions.

In summary, the solution of the free space Kohn–Sham–Dirac equation is:

ψfree space(r) =
∑
Q

ψ
free space
Q (r) =

∑
Q

 h`
(pr
~
)
χQ(r̂)

κ
|κ|

ipc~
W+mc2h¯̀

(pr
~
)
χQ̄(r̂)

 (4.11)

with ¯̀= `− κ
|κ| and the function h` can be either j`, y` or h±` spherical Bessel-, Neumann- or

Hankel-functions. Note, that in the numerical calculations the above and all the subsequent

summations over Q are truncated at `max = 2 in this thesis, see table A.1 in Appendix A.

Here, the functions

JQ(r) and H+
Q (r) (4.12)

are introduced, which are ψfree space
Q (r) but the j`

(pr
~
)

and the h+
`

(pr
~
)

spherical Bessel func-

tions appear in place of h`, respectively. Note the JQ(r) and the H+
Q (r) functions are four

component wave functions and they are solutions of the free space Dirac Hamiltonian.

The Green’s function of the free particle case is defined as:

(
W − cα · p− βmc2

)
G0(W ; r, r′) = δ(r− r′)14×4, (4.13)

where we explicitly wrote the 4 by 4 unit matrix, 14×4, on the right hand side emphasizing

that the Green’s function, G0(W ; r, r′), is a 4 by 4 matrix. In the following we omit the

energy dependence of the Green’s function and of the derived quantities. The free particle

Green’s function can be easily given as

G0(r, r′) = 1
2mc2

(
W + βmc2 + cα · p

) −eip|r−r′|

4π |r− r′|︸ ︷︷ ︸
Gnon-rel.

0 (r,r′)

14×4. (4.14)
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Note that the non-relativistic Green’s function, Gnon-rel.
0 (r, r′), appears in the expression of

the relativistic Green’s function. This result follows since

(
∇2 + p2

) −eip|r−r′|

|r− r′|
= 4πδ(r− r′) (4.15)

and one can start the evaluation of the Green’s function with the expansion

−eip|r−r′|

4π |r− r′|
= −ip

∑
L

h+
` (pr>)j`(pr<)Y`m(r̂)Y`m(r̂′)∗ (4.16)

with r< ≡ min(r, r′) and r> ≡ max(r, r′). Evaluating eq. (4.14) one arrives at the Green’s

function of the free Dirac Hamiltonian:

G0(r, r′) = −ipW +mc2

2mc2

∑
Q

H+
Q (r>)JQ(r<)† (4.17)

where r> and r< mean the longer and the shorter vector out of r and r′. The H+
Q and the JQ

functions are two linearly independent solutions of the free Dirac equation as introduced in

eqs. (4.11) and (4.12). Note that the product of the four component column and row vectors,

H+
Q and JQ†, produces a four by four matrix.

4.1.3 The Lippmann–Schwinger equation

In this section the solution of the inhomogeneous Dirac equation will be solved and the tran-

sition operator will be introduced in the meanwhile.

Consider ψ0(r) as the soulution of the free particle part of the (4.1) Dirac equation with

eigenvalue W :

(W −H0)ψ0(r) = 0. (4.18)

The inhomogeneous equation is

(W −H0)ψ(r) = U(r)ψ(r) (4.19)

and we look for the solution in the ψ(r) = ψ0(r) + δψ(r) form. Putting this form into

eq. (4.19) and exploiting eq. (4.18) one gets:

(W −H0) δψ(r) = U(r)ψ(r). (4.20)

Using the definition of the Green’s function, eq. (4.13), of the homogeneous equation the

solution ψ(r) = ψ0(r) + δψ(r) can be given as the following implicit equation:

δψ(r) =
∫
G0(r, r′)U(r′)ψ(r′) d3r′. (4.21)
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From this, the solution of the inhomogeneous equation can be found by successive approxi-

mation:

δψ(r) =
∫
G0(r, r′)U(r′)

(
ψ0(r′) +

∫
G0(r′, r′′)U(r′′)

(
ψ0(r′′) + . . .

)
d3r′′

)
d3r′.

(4.22)

Introducing the transition operator:

T (r′, r′′) = U(r′)δ(r′ − r′′) + U(r′)G0(r′, r′′)U(r′′)

+
∫
U(r′)G0(r′, r′′′)U(r′′′)G0(r′′′, r′′)U(r′′) d3r′′′ + . . . (4.23)

the solution of eq. (4.19) is:

ψ(r) = ψ0(r) +
∫∫

G0(r, r′)T (r′, r′′)ψ0(r′′) d3r′′ d3r′ (4.24)

which is the Lippmann–Schwinger equation in coordinate representation.

Note that the above thought does not require the Hamiltonian to be partitioned into the

free particle part plus the potential but arbitrary partitioning, H = H0 + U , can be used.

4.1.4 The muffin-tin potential construction

In order to exploit the crystal structure including discrete translational symmetry and the point

group symmetry, the multiple scattering theory (MST) considers the following potential:

V (r) =
N∑
n=1

Vn(r−Rn) (4.25)

where {Rn}Nn=1 is the set of the lattice vectors and Vn is the atomic potential centered at

site n. In the atomic sphere approximation (ASA) the atomic potential is considered spheri-

cally symmetric and confined in the atomic sphere:

Vn(rn) =

Vn(rn) if rn ≤ Sn,

0 otherwise,
(4.26)

where rn = r−Rn and Sn is the radius of the atomic sphere around the site n.

The transition operator corresponding to site n is the single site t-operator:

tn = Vn + VnG0Vn + VnG0VnG0Vn + . . . . (4.27)

The matrix elements of the single site transition operator are introduced:

tnQQ′ =
∫∫

JQ(r)†tn(r, r′)JQ′(r′) d3r d3r′ (4.28)
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and note that the integrals are performed inside the n-th atomic sphere because of the muffin-

tin potential construction, eq. (4.26).

The T -operator of the whole system can be expressed with the sum of the single site

t-operators as follows:

T =
∑
n

tn +
∑
nm

(1− δnm)tnG0t
m +

∑
n,m,k

(1− δnm)(1− δmk)tnG0t
mG0t

k + . . . (4.29)

The scattering path operator (SPO) is defined as:

τnm = tnδnm + (1− δnm)tnG0t
m +

∑
k

(1− δnm)(1− δmk)tnG0t
mG0t

k + . . . . (4.30)

For the further derivation of the fundamental equation of the MST, eq. (4.42), the following

Dyson-equation should be noted:

τnm = tnδnm +
∑
k

tnG0(1− δkm)τkm (4.31)

and the matrix elements of the SPO are:

τnmQQ′ =
∫

rn≤Sn

∫
rm≤Sm

JQ(rn)†τnm(rn, rm)JQ′(rm) d3rn d3rm. (4.32)

4.1.5 Two-center expansion of the Green’s function

In order to form the matrix elements of the Green’s function with site and angular momentum

indices the so-called two-center expansion is introduced. Let the two coordinate arguments of

the free Green’s function, eq. (4.17), be r = rn + Rn and r′ = rm + Rm such that rn ≤ Sn
and rm ≤ Sm. The free particle Green’s function only depends on the difference between its

coordinate arguments:

G0(rn + Rn, rm + Rm) = G0(rn − rm,Rnm) (4.33)

where Rnm = Rm − Rn compact notation is introduced. If the muffin tin spheres do not

overlap then |rn − rm| ≤ Rnm holds. Therefore

G0(rn + Rn, rm + Rm) = −ipW +mc2

2mc2

∑
Q

H+
Q (Rnm)JQ(rn − rm)†. (4.34)

Two identities: expansion of plane waves into spherical Bessel functions (Bauer’s iden-

tity) and the integral representation of the spherical Bessel functions:

eik(rn−rm) = (4π)2 ∑
L′L′′

(
i`′−`′′j`′(krn)YL′

(
r̂n
)
j`′′(krm)YL′′

(
r̂m
)∗
YL′
(
k̂
)∗
YL′′

(
k̂
))
(4.35)
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and

j`(kr)YL
(
r̂
)∗ = i−`

4π

∫
eikrYL

(
k̂
)∗ d2k̂. (4.36)

Combining eqs. (4.35) and (4.36):

j`(krmn)YL
(
r̂mn

)∗
= 4π

∑
L′L′′

(
i`′−`′′−`j`′(krn)YL′

(
r̂n
)
j`′′(krm)YL′′

(
r̂m
)∗ ∫

YL′
(
k̂
)∗
YL′′

(
k̂
)
YL
(
k̂
)∗ d2k̂︸ ︷︷ ︸

CL
′′

LL′ Gaunt coefficients

)

(4.37)

where the rmn = rn − rm compact notation is used.

With these formulas the two-center expansion of the relativistic free Green’s function for

n 6= m can be derived:

G0(rn + Rn, rm + Rm) =
∑
QQ′

JQ(rn)
[
G0
]nm
QQ′JQ′(rm)†. (4.38)

The relativistic and the non-relativistic structure constants,
[
G0
]nm
QQ′ and

[
Gnon-rel.

0
]nm
LL′ , are

related to each other as:

[
G0
]nm
QQ′ = W +mc2

2mc2

∑
s=± 1

2

C(`, 1
2 , j;µ−s, s, µ)

[
Gnon-rel.

0
]nm
`,µ−s;`′,µ′−sC(`′, 1

2 , j
′;µ′−s, s, µ′)

(4.39)

and the non-relativistic structure contants are:

[
Gnon-rel.

0
]nm
LL′ = −4πpi

∑
L′′

CLL′L′′ i`−`
′−`′′h+

`′′

(
pRnm

~

)
YL′′

(
R̂nm

)
. (4.40)

Using the matrix elements of the transition operator and the SPO, eqs. (4.28), (4.32), and

the two-center expansion of the free Green’s function, eq. (4.38), the Dyson equation for the

SPO, eq. (4.31), is compactly written in matrix form as

τ = t + tG0τ (4.41)

or equivalently

τ =
(
t−1 −G0

)−1
. (4.42)

This is the fundamental equation of the MST or the KKR-equation. The τ , t and the G0

supermatrices have site (n,m) and angular momentum (Q,Q′) indices:

t ≡ tnQQ′δnm, τ ≡ τnmQQ′ , G0 ≡
[
G0
]nm
QQ′(1− δnm). (4.43)
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Note that the structure constants, eq. (4.39), only depend on the geometric structure of the

lattice via Rnm, and the transition matrix, eq. (4.28), only depends on the scatterer potentials.

This separation is the basis of the embedding cluster technique.

4.1.6 Two-dimensional translational symmetry

We now consider a layered system in which the layers and the sites inside one particular layer

are indexed separately. Therefore a position vector inside the i-th atomic sphere of the p-th

layer can be given as

r = rn + Rn = rpi + R⊥p + R‖i (4.44)

where rn + Rn is our partitioning until now, R⊥p is the origin of the p-th layer, R‖i is the

position of the i-th site inside this layer and rpi is a position vector inside the (p, i) site of the

lattice. Every layers are composed of identical atoms or, in other words, discrete translational

symmetry is preserved inside the layers and is broken in the out-of-plane direction. Different

atoms in the unit cell are considered as different layers in this context. Unit cell may refer to

chemical unit cell or magnetic unit cell as well. Site-indexed quantites now have layer and

in-plane site indices:

τnm = τ pi,qj , tn = tp, Gnm
0 = Gpi,qj

0 . (4.45)

The above quantities are still matrices in angular-momentum indices, (Q,Q′), and the single

site t-matrix only depends on the layer index.

The in-plane translational invariance is exploited by using the in-plane lattice Fourier

transformation:

Gpq
0 (k‖) =

∑
R‖
j

Gp0,qj
0 eik‖R‖

j and τ pq(k‖) =
∑
R‖
j

τ p0,qjeik‖R‖
j (4.46)

The fundametal equation of the MST holds in the in-plane Fourier space as:

τ (k‖) =
(
t−1 −G0(k‖)

)−1
. (4.47)

where the quantites are matrices in layer, (p, q), and in angular momentum indices, (Q,Q′),

and the in-plane wave vector, k‖, lies in the first Brillouin zone of the in-plane lattice, i.e., in

the first surface Brillouin zone (SBZ).

The backwards transformation from the reciprocal space into the real space is given for

the SPO:

τ pi,qj = 1
ΩSBZ

∫
SBZ

τ pq(k‖)e
−ik‖

(
R‖
i−R‖

j

)
d2k‖ (4.48)

where the integration is performed in the first SBZ and ΩSBZ is the area of the SBZ. In this

step, the symmetry of the 2D lattice is usually utilized, namely, the k‖-dependent SPO is only

computed in one irreducible wedge of the SBZ (IBZ). In other parts of the SBZ, the transfor-

MANUSCRIPT Version: January 15, 2015 MANUSCRIPT



METHODS 23

mation of the SPO from the IBZ is used instead of the time-consuming matrix inversion in

eq. (4.47).

4.1.7 Screening transformation

The model of a real layered system is composed of a semi-infinite left region plus a finite

interface region plus a semi-infinite right region. The layers in one semi-infinite component

are identical. In a surface calculation, the right region is vacuum; and also bulk calculation

can be performed within this design by choosing all these three regions to be composed of the

same material. Note the the 2D lattice in each layer must be the same, however, varying the

layer–layer distance and/or in-plane shifting are allowed in the interface region.

In practice, principal layers are introduced in which treatment multiple physical layers

are held together into one logical layer. This is performed with two motivations:

(i) by applying the screening transformation, the structure constants become short-ranged

and by choosing the principal layer suitably, and by neglecting interactions beyond

adjacent principal layers, the SPO become block-tridiagonal which is a computational

gain contrary to a full matrix [65]; and

(ii) in an interface calculation, the surface SPO can be calculated by the removal invariance

of the semi-infinite surface.

4.1.8 Embedded cluster (EC) Green’s function technique

Consider a host system composed of the muffin-tin potentials, V n
host(rn), for which the single

site t-matrices, tnhost, are known and the SPO is calculated as

τ host =
(
t−1

host −G0
)−1

, (4.49)

where G0 is the stucture constant of the host lattice.

Let C be a set of site indices (a cluster) for which the scatterers are changed from the host

potential to some impurity potential. The potential of this system is given by:

Vn(rn) =

V
n

imp(rn) if n ∈ C

V n
host(rn) if n /∈ C.

(4.50)

Ad-atoms on a surface are comprised in this model: the host system should be composed of

a semi-infinite substrate and a semi-infinite vacuum region with some substrate and vacuum

buffer layers held into an interface region and then the appropriate vacuum spheres in the first

vacuum layer should be replaced by the ad-atom potentials. Note, that no further geometrical

relaxation is considered here, namely, the substituting impurities must be placed in the host

lattice sites. The SPO of this impured system is τ = (t−1 −G0)−1, where t corresponds to

the impured potential, eq. (4.50), and note that the structure constant is the same for the host
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Figure 4.1 Side view of the embedded cluster in the cobalt nanocontact
calculation. (Section 5.2.) The physical cluster is the 29 Co atoms (orange
circles) between the bulk Co leads. In addition, 16 Co atoms from the
bottom lead, 16 Co atoms from the top lead (blue circles) and 80 vacuum
spheres (empty circles) around the nanocontact were taken into account
in the self-consistent embedded cluster calculation. Blue arrows mark the
magnetization of the leads.

and the impured system. Relating this SPO to the host SPO, eq. (4.49), one obtains

τ =
(
t−1 − t−1

host + τ−1
host

)−1
= τ host

[
1−

(
t−1

host − t−1
)
τ host

]−1
. (4.51)

From the rightmost expression, using that the t and the thost are site-diagonal matrices, follows

that the above equation holds for the cluster block of the τ matrix:

τ CC =
[(

tCimp

)−1
−
(
tChost

)−1
+
(
τ CChost

)−1
]−1

, (4.52)

where the C and the CC upper indices mark that the site indices are confined to the cluster

sites. Note, that for the CC block of the τ -matrix there is no approximation in the above

formula.

Note also, that eq. (4.52) should be solved self-consistently, i.e., the charge and magneti-

zation densities are calculated from the latest iteration of τ CC , then the effective potential and

field, V n
imp(rn), and from that the single site impurity transition operators, tCimp, are updated

and eq. (4.52) solved again as next iteration. Around a cluster, charge re-organization and

induced magnetization arise which should be also treated self-consistently. For this reason,

some environment of the physical cluster is also included in the embedded cluster, C. In this

thesis, the first neighbor shell is icluded in addition. As an example, the environment of the

cobalt nanocontact (see Section 5.2) is presented in Fig. 4.1. Note, that for the environment

atoms, their positions are also restricted to the host lattice.

The magnetic configuration is given by the unit vectors at each site: {σn}n∈C . In terms

of the atomic sphere approximation (ASA), the magnitude of the exchange-correlation field,
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Bxc, is a radial function and the direction, B̂xc, is homogeneous inside one atomic sphere. The

impurity t-matrix can be solved easily in a frame of reference where the exchange-correlation

field is parallel to the ẑ direction. The t-matrix corresponding to arbitrary direction of B̂xc

can be given as the following similarity transformation: [74, 84]

tnimp = R†(ϑn, ϕn)tnimp, ẑR(ϑn, ϕn) (4.53)

where R(ϑn, ϕn) is a rotation matrix in the angular momentum representation which rotates

the z axis into the σn direction given by the ϑn and ϕn polar angles.

4.2 Lloyd formula. Rotational energy

The Lloyd formula [89] can be given in matrix representation based on Eq. (3.134) in Ref. 84:

N
(
ε, {σi}

)
= 1
π

Im ln det τ
(
ε, {σi}

)
(4.54)

whereN is the integrated density of states, ε denotes the energy dependence (which is omitted

for brevity through Section 4.1), {σi} denotes the dependence on the magnetic configuration,

and τ is the SPO of the system, see Eq. (4.51).

The band energy is defined by: [74]

Eb
(
{σi}

)
=

εF∫
−∞

(ε− εF)n
(
ε, {σi}

)
dε = −

εF∫
−∞

N
(
ε, {σi}

)
dε (4.55)

where εF is the Fermi energy provided by the substrate, n is the density of states and an

integration by parts is applied to derive the second equality.

Substituting Eqs. (4.51) and (4.54) into Eq. (4.55) one arrives at

Eb
(
{σi}

)
= 1
π

Im
εF∫
−∞

ln det
{
1 + τ CChost(ε)

[
tCimp

(
ε, {σi}

)−1 − tChost
(
ε
)−1]}dε. (4.56)

Note that only the (finite) CC block of the SPO and the t-matrices appear in the Lloyd formula

because of the determinant. Note also that a constant shift of the energy not affected by the

magnetic configuration is omitted.

Following the method proposed by Szunyogh et al. [75, 76] to analyze the magnetic an-

isotropy of IrMn and IrMn3 ordered alloys and an IrMn3/Co interface the energies of the

system are calculated during the simultaneous rotation of the magnetic configuration around

an appropriate axis. In the following, this energy will be referred to as rotational energy.

The rotational energies were calculated in the spirit of the magnetic force theorem [72].

The effective potentials and exchange fields determined in ground state configurations were

kept fixed and the change in energy of the system with respect to the rotational angle is

approximated by the change in band energy, Eq. (4.56).

MANUSCRIPT Version: January 15, 2015 MANUSCRIPT



26 CHAPTER 4

Note that using formula (4.56), the change in the band energy due to the change of the

magnetic configuration in cluster C is accounted for the whole system, while the direct inte-

gration of the local DOS in equation (4.55) is always restricted to a given environment of C
only. In other words, the Lloyd formula is accounting for the Friedel oscillations up to infinity.

4.3 Torque method. Relativistic torque method

In the multiple scattering formalism the exchange field enters the electronic structure via

the single-site scattering matrix, ti. The first and higher order changes of the ti matrices as

well as the derivatives of the band energy can straightforwardly be calculated in the local

frame of reference introduced at all sites of the cluster, where the direction vector σi of

the magnetization at site i, and the two transverse vectors, ei1 and ei2, form a right-handed

coordinate system as shown in Fig. 4.2. The first and second order change of the single site

scattering matrix at site i with respect to rotations by ∆φiα around the transverse axes eiα can

be given by the following commutator formulas: [82]

∆t(1)
i = i[eiαJ, ti]∆φiα, (4.57)

∆t(2)
i = −[eiαJ, [eiβJ, ti]]∆φiα∆φiβ, (4.58)

where J is the matrix representation of the total angular momentum operator and α, β ∈
{1, 2}. Following Ref. 74, the first and second derivatives of the band energy can then be

expressed as: [82]

∂Eb

∂φiα
= 1
π

Re
εF∫
−∞

Tr {τii [eiαJ,mi]} dε, (4.59)

∂2Eb

∂φiα∂φjβ
= − 1

π
Im

εF∫
−∞

Tr {τij [ejβJ,mj ]τji[eiαJ,mi]} dε

+ δij
1
π

Im
εF∫
−∞

Tr {τii[eiαJ, [eiβJ,mi]]} dε, (4.60)

where mi = t−1
i and τij is the block of the SPO matrix between sites i and j. Note that for

brevity we dropped the energy arguments of the corresponding matrices in Eqs. (4.57)–(4.60).

4.4 Extension to the KKR method: Newton–Raphson method

In general context, the Newton–Raphson method is an iterative method to find a minimum of

a function, f(x). The starting guess, x0, should be close enough to the solution. Then, the

iteration process is defind by the following rule:

xn+1 = xn −
f ′(xn)
f ′′(xn) . (4.61)

MANUSCRIPT Version: January 15, 2015 MANUSCRIPT



METHODS 27

φi2
e i2

φi1

e i1

iσ

Figure 4.2 Sketch of the local frame of reference. The unit vector σi
is parallel to the magnetization at site i, while the unit vectors ei1 and ei2
point into the transverse directions. Rotations around these axes by φi1 and
φi2 are also indicated.

Applying this to our situation, the magnetic structure dependent band energy, Eb
(
{σi}

)
, is

minimized in terms of its degrees of freedom, the σi vectors. In every iteration step, the

changes of the σi vectors are parametrized by the angles φi1 and φi2 as presented in Fig. 4.2.

The first guess should be set by an other method close to the expected solution, as it is ex-

plained in detail in Subsection 5.2.2.

In the spirit of a gradient minimization, rotating the exchange field by a small amount

around the torque vector at each sites,

Ti = ei1
∂Eb

∂φi1
+ ei2

∂Eb

∂φi2
, (4.62)

the magnetic configuration gets closer to the local minimum of the energy; however, the

convergence is very slow. In order to speed up this procedure, a Newton-Raphson iteration

scheme has been applied, where the inverse of the second derivative tensor, also referred

to as the Hessian, Eq. (4.60), is used to estimate the angle of rotations around the torque

vector given by Eq. (4.62). The eigenvalues of the Hessian also provide information about the

stability of a configuration with zero torque: If the Hessian is a positive or negative definite

matrix then the given configuration is stable or unstable state of equilibrium, respectively.

Once the Newton-Raphson iteration has converged, new effective potentials and exchange

fields are generated and the procedure is repeated until the effective potential converges and

the torque in Eq. (4.62) is decreased below a predefined value of, typically, 10−4 meV.

4.5 Extension to the KKR method: Monte Carlo method

A widely used method to describe magnetic systems coupled to a heat bath is the Monte

Carlo (MC) method. MC methods generate an appropriate random series of states according

to the Boltzmann distribution. Using this series of states the expectation value, 〈Q〉, of some

quantity, Q, is simply

〈Q〉 = 1
M

M∑
i=1

Qsi (4.63)

where the s1, s2, . . . , sM states have been generated and Qs is the value of the quantity of

interest in the state s.
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The probability of generating a new state, s′, out of the previous state, s, is P (s →

s′). Almost all MC scheemes rely on a Markov process which means that the transition

probabilities, P (s → s′), depend only on s and s′ but do dot depend on time or any former

state. [90] In such a MC method “ only the irreversible part of the dynamics of the system is

considered including the relaxation and the fluctuation, but not the energy conserving part of

the equation of motion – the precession. ” [8]

In many MC algorithms the generation of the state s′ out of the state s is divided into

two steps. First, a new target state is selected with g(s → s′) selection probability, then we

change our system into the new state, s′, with an acceptance ratio of A(s → s′) and stay in

state s with a ratio of 1 − A(s → s′). Obviously, the transition probability is the product of

the selection probability and the acceptance ratio:

P (s→ s′) = g(s→ s′)A(s→ s′). (4.64)

The algorithm must be ergodic which means that the algorithm should be able to “ reach

any state of the system from any other state, if we run it for long enough. ” [90]

The detailed balance requires

P (s→ s′)
P (s′ → s) = e−β(H(s′)−H(s)) (4.65)

where β = 1/(kBT ) is the inverse temperature and H(s) is the energy of the system in

state s. Satisfying the detailed balance ensures that the distribution of the states generated

by the above Markov process tend to an equilibrium distribution and this is the Boltzmann

distribution. [90] In the present thesis a symmetric algorithm is used, i.e., g(s → s′) =

g(s′ → s) for any states s and s′. The Metropolis algorithm [91] is used for the acceptance

ratios:

A(s→ s′) =

e−β(H(s′)−H(s)) ifH(s′)−H(s) > 0

1 otherwise.
(4.66)

In this thesis a Monte Carlo simulation is applied with the Metropolis algorithm for the

band energy of the system, Eb
(
{σi}

)
. Single spin flip dynamics is applied to ensure detailed

balance and the trial directions were chosen uniformly on the surface of the unit sphere.

4.6 Summary of the approximations used in this thesis

There are many approximations used in the calculations. The general approximations are

listed here:

• The effective potentials and fields were treated within the atomic sphere approximation

(ASA).
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Table 4.1 The clusters of this thesis with their basic characteristics: in
which section they are discussed, the atoms forming the physical cluster,
the environment atoms and the total number of atoms in the embedded
cluster (EC).

Cluster name Section Physical cluster Environment Total EC

Square Co cluster 5.1 16 Co — 16
Co nanocontact 5.2 29 Co 32 Co, 80 vacuum 141
Fcc up Cr trimer 5.3.2 3 Cr 6 Au, 16 vacuum 25
Fcc down Cr trimer 5.3.2 3 Cr 7 Au, 15 vacuum 25
Hcp up Cr trimer 5.3.2 3 Cr 7 Au, 16 vacuum 26
Hcp down Cr trimer 5.3.2 3 Cr 6 Au, 15 vacuum 24

• The local spin-density approximation (LSDA), [86, 87] of the density functional theory

as parametrized by Perdew and Zunger [88] was applied for both the layered hosts and

the clusters.

• A cutoff of `max = 2 for the angular momentum expansion was used. See, e.g.,

Eq. (4.43) and Table A.1.

• 3 physical layers are held together into one principal layer. (See Subsection 4.1.7.)

• 3300 k-points were used in the irreducible wedge of the surface Brillouin zone (SBZ).

We have checked the accuracy of the SBZ-integrals by performing the same calcula-

tions using 1900 k-points in the irreducible wedge of the SBZ and a deviation of up to

4 % was found in the resulting model parameters, see Table 5.4.

• The energy integration in Eq. (4.56) was performed by sampling 16 points on a semi-

circular path in the upper complex semi-plane.

• The size of the self-consistently calculated finite cluster also has stressed effect on

the results. The clusters in this thesis together with their considered environments are

summarized in Table 4.1.

• The energy of the different magnetic configurations is determined by using the band

energy within the magnetic force theorem [72].

In the following, some further computational details are given correspondig various parts

of the thesis.

Layered host for the Co/Co(001) calculations (Section 5.2)

The host system assembled of two oppositely magnetized semi-infinite Co leads and separated

by 7 layers of empty spheres (vacuum) is considered.
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Layered host for the Cr/Au(111) calculations (Subsection 5.3.2)

For the chromium cluster calculations the interface region was composed of 4 Au layers and

5 vacuum layers.

Cr/Au(111) monolayer calculations (Subsection 5.3.3)

For the chromium monolayer studies the self-consistently calculated region was composed of

4 Au layers, one Cr layer and 4 layers of empty spheres (vacuum) between the semi-infinite

bulk Au and the semi-infinite vacuum with no attempt at geometric relaxation.

“ To ensure that both the ” Cr layer (in planar Néel magnetic configuration) and the Au

supporter “ share the same two-dimensional translational periodicity, which is necessary within

the layered SKKR method for an interface, the calculations ” [76] for the monolayer studies

were carried out with three atoms per unit cell, i.e., the magnetic unit cell of the Néel config-

uration. Note, that in the case of the non-magnetic layered system serving as the host system

for the cluster calculations one atom per unit cell 2D lattice was used.
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Results

5.1 Monte Carlo study on magnetic nanoparticles

from first principle

In this chapter the result of the ab initio MC method is presented through a square-shaped

Co cluster deposited onto a Cu(100) surface. Using this approach an attempt is made at

mixing the advantages of a spin model based MC method and the ab initio calculation. In low

symmetry clusters the coupling parameters between the spins is not a trivial task to determine.

Moreover, theoretical studies on small Cr clusters on Au (111) surface pointed out [15] that

higher order spin-spin interactions must not be neglected when fitting a spin model to the

ab initio results. In order to overcome these complications, an ab initio MC simulation is

presented where the change of the energy for every MC step is calculated directly from the

electronic structure of the cluster. An unambiguous drawback of the ab initio simulation is

the extreme computational demand compared to a spin model simulation.

For a test of this new type of finite temperature ab initio simulation, the temperature

dependence of the magnetization of a square-shaped cobalt cluster deposited on a Cu(100)

surface has been calculated and compared with the results of a MC simulation based on a

classical Heisenberg model. In this Heisenberg model isotropic exchange coupling between

all pair of spins and a uniform uniaxial easy-plane anisotropy (K > 0) were taken into ac-

count:

Hmodel =
∑
〈i,j〉

Jij (σi · σj) +K
∑
i

(σzi )
2. (5.1)

The exchange couplings were determined for the 4 × 4 cluster using the method described in

ref. 74. In order to speed up the simulation, only the 16 cobalt atoms formed the embedded

cluster in the EC-KKR calculation. The nearest neighbor couplings are visualised in fig. 5.1.

The spin magnetic moments of the non-equivalent sites were found as m1 = 1.74µB, m5 =
1.82µB and m6 = 1.87µB. An enhancement of the nearest neighbor exchange couplings has

been found at the corners and the edges of the cluster. Interestingly, an opposite tendency has

been seen for the magnetic moments. The anisotropy constant was chosen to be the same as

that of a Co monolayer on the Cu(001), K = 0.310 meV.
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Figure 5.1 The positions of the cobalt atoms and the nearest neighbor
isotropic exchange couplings between them in the 4× 4 size cluster.

Since the cluster is small the simultaneous flipping of the magnetization cannot be ruled

out. When it happens multiple times during a simulation the simple average of the z compo-

nent of the magnetization would tend to zero. In order to see the magnetic arrangement of the

cluster the square of the magnetization is averaged as:

〈m〉 =

√√√√〈 16∑
i=1
µ2
i

〉
(5.2)

where µi is the magnetization vector of atom i and 〈. . . 〉 means the thermal average.

For comparison, the thermal average of the square of the magnetization of the cluster was

calculated by the two methods. At a given temperature 105 MC steps were performed in

the Heisenberg MC simulations, and 5 independent samples, with 104 MC steps each, were

performed in the ab initio MC simulation in order to see the spreading of the data. (See

fig. 5.2.) Since the magnetic anisotropy is small for the present system, the simulation based

on the Heisenberg model was expected to give similar dependence of the magnetization on

the temperature as our ab-initio simulation. The two result are in good agreement as shown

in fig. 5.2.
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Figure 5.2 Square root of the thermal average of the square of the mag-
netization [see eq. (5.2)] for a 4× 4 Co cluster on a Cu(001) surface. The
solid line represents the magnetization of the Heisenberg model, points re-
fer to the 5 independent samples of the ab initio MC calculation. The tem-
perature scale is given in kelvins (bottom scale) and in milli-electronvolts
(top scale).
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5.2 Domain wall through a cobalt nanocontact

In this section, a domain wall through a Co point contact between (001) surfaces of fcc Co is

studied, where the magnetizations are aligned in the (110) and the (110) directions in the leads.

An Fe break junction between bcc Fe surfaces was studied both experimentally and theoreti-

cally by Autès et al. [26] Using a “ head-to-head square pyramids ” geometry the anisotropic

magneto-resistance (anisotropic MR) is explained by “ the existence of two metastable elec-

tronic states which differ mainly by the direction of the spin and orbital moment on the central

atom ”. [26] The geometrical model of the present Co point contact is decribed in Subsec-

tion 5.2.1. Note that this geometrical model is almost the same (shorter) as the one labeled

by C2 in Ref. 26, except that there a break junction between bcc Fe surfaces was studied.

It should be noted that Co exhibits a hcp structure in bulk; however, as a thin film it often

displays a fcc-related geometry.

The contradicting boundary condition enforces a magnetic domain wall to be formed

through the contact. Bruno [31] investigated a continuum model of magnetic material in-

corporating exchange interaction and uniaxial anisotropy applied to a constriction separating

two wider regions. “ A new kind of magnetic wall, besides the well known Bloch and Néel

walls, ” the geometrically constrained magnetic wall is described with a wall width highly

related to the geometry of the constriction rather then the material parameters. [31] In the

case of Fe20Ni80 thin films it has been experimentally found that the constrained geometry

can reduce the width of the Néel wall. [92] The effect is more pronounced in ultrathin films of

a few atomic layers where the width of the domain wall can be as small as a few nanometers

in the vicinity of a step edge. [93] The domain wall structure of the Co contact is discussed in

Subsection 5.2.2.

The electronic structure of the nanocontact is calculated with the fully relativistic EC-

KKR method, see Subsection 4.1.8. The ground state configuration is found by the Newton–

Raphson method which is described in Section 4.4. An enhancement of the magnetic anisot-

ropy energy has been established theoretically by Thiess et al. [94] in atomic scale junctions

even for elements that are nonmagnetic in bulk. In agreement with this finding, the presented

results reveal that the central atom with the lowest coordination number has the main contri-

bution to the magnetic anisotropy of the contact. To highlight the relationship between the

obtained cycloidal domain wall configuration and the magnetic anisotropy, the orientational

dependence of the band energy of the point contact is analyzed in detail, see Subsections 5.2.3

– 5.2.5.

5.2.1 Geometry

The model of the atomic-sized point contact has been built from Co atoms forming two identi-

cal pyramids facing each other between (001) interfaces of fcc Co as it is shown in fig. 5.3 (a)

and (b). The distance between the central atom and its neighbors was chosen identical to

the fcc nearest neighbor distance, a, of 2.506 Å. Inspired by the STM layout it was a natural
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(a) (b)

Figure 5.3 (a) The geometry of the contact viewed from the (110) direction. The semi-
infinite cobalt leads are depicted as blue rectangles, the directions of magnetization in the
leads are marked by white arrows, the cobalt atoms forming the contact are represented by
orange circles, and a denotes the nearest neighbor distance in the fcc structure. The length of
the contact is tuned via x = 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. Note that only the
marked distances were scaled. (b) The perspective view of the contact. The arrows show the
ground state spin configuration obtained for the unstretched contact (x = 1). This configura-
tion is called the cycloidal wall (CW) configuration. The lengths of the arrows, indicated also
with color coding, are proportional to the size of the spin magnetic moments.

idea to mimic the contraction and expansion of the contact: The normal-to-plane distances

in the vicinity of the central atom have been scaled by a factor, hereinafter denoted by x,

between 0.85 and 1.15, see fig. 5.3 (a). Through this section many results will be presented

as a function of the stretching factor, x. By doing this, trends and robust phenomena can be

presented.

Due to the symmetry of the system the central atom is the middle of the domain wall. In

the (constrained) magnetic ground state the magnetisation of the central atom points to one of

the (110) or the (001) high symmetry directions. In the first case, the magnetic moments at all

sites (layers) remain within the (001) plane, i.e., normal to the axis of the point contact; there-

fore, in the following this spin configuration will be termed as a helical domain wall (HW).

In the second case, all the spin moments are confined to the (110) plane; thus, we shall call

this case the cycloidal domain wall (CW), see fig. 5.3 (b), Note that the helical and cycloidal

spin configurations closely resemble the Bloch and Néel types of domain walls well known

in bulk and thin-film magnets, respectively. Since, however, these types of domain walls are

distinct through the magnetostatic energy, to avoid confusion we skipped using the traditional

terminology.
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5.2.2 Domain wall configurations

A first guess of the domain wall configuration has been given by Monte Carlo (MC) simulated

annealing based on a simple isotropic Heisenberg model, H = 1
2
∑
i 6=j Jijσiσj , where Jij

is the isotropic exchange coupling between sites i and j. The coupling coefficients between

the atomic moments were calculated by using the torque method proposed by Liechtenstein

et al. [73] The exchange field directions were set in a ferromagnetic configuration parallel to

the (110) direction in the case of the self-consistently calculated potentials used for the above

exchange coupling calculation. The magnetization of the central atom was fixed in the (110)

and the (001) directions during the MC simulated annealing providing the first guess for the

helical and the cycloidal domain walls, respectively. Note, that in an isotropic model there is

no energy difference between these two domain walls.

Self-consistent potentials and exchange fields have been first determined for both the cy-

cloidal and the helical domain walls using the configurations from the above MC simulated

annealing. Then, the Newton-Raphson iterations (see sec. 4.4) were started from both initial

configurations. Interestingly, when starting from a helical spin configuration, the gradients,

eq. (4.59), were initially zero, but the Hessian, eq. (4.60), had a negative eigenvalue indicating

that the helical spin configuration belonged to a saddle point of the energy surface. Throwing

the system off this saddle point, the Newton–Raphson iterations converged to the cycloidal

spin-configuration. Thus, independent of the starting configuration, the magnetic state of the

nanojunction converged to the cycloidal wall structure for the stretching range considered. In

fig. 5.3(b) the ground-state cycloidal wall configuration is displayed for x = 1.

At sites within the same geometrical layer, fairly similar orientations for the magnetic

moments were obtained; therefore, the shape of the domain wall can well be characterized

by orientations determined as an average within layers. In fig. 5.4 such a profile is shown

for x = 1 in terms of polar angles, ϑ(z). Remarkably, the well-known analytical form,

ϑ(z) = −π
2 tanh(2z/dw), could be well fitted defining, thus, the width of the domain wall,

dw. This fit is also shown in fig. 5.4.

The change of the width of the domain walls against the length of the point contact is

shown in fig. 5.5. For a clear interpretation, the width of the walls is normalized to the width

of the domain wall for x = 1. As is obvious from this figure, dw(x) ≈ x dw(1.00) demon-

strating that the width of the domain walls follows the length of the point contact. Since the

exchange energy gain for the few atoms of the contact is small compared to the increase of

the exchange energy of the leads, the domain wall cannot penetrate into the substrates and the

wall is confined to the contact.

5.2.3 Magnetic moments

The low coordination number in thin films and in nanostructures is often accompanied by the

enhancement of the atomic spin and orbital moments. In fig. 5.6 the calculated values of the

local spin and orbital moments are given in a point contact with cycloidal wall configuration

and stretching factor, x = 1. Since the orbital moment is found almost parallel to the spin
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Figure 5.6 Calculated atomic magnetic moments (µB) in half of the
nanocontact for the stretching factor, x = 1. In the upper and lower panels
shown are the spin and orbital moments, µspin and µorb, respectively. For
comparison, the spin moments at the Co surface and in the bulk are 1.82µB
and 1.67µB/atom, while the corresponding values of the orbital moments
are 0.14µB and 0.08µB.

moment at each site, we presented the projection of the orbital moment to the local spin

quantization axis. Since the contact has a mirror symmetry with respect to the horizontal plane

including the central atom, the moments in only one half of the contact are displayed. Our

data fit nicely the observation reported in refs. 95 and 96 that the spin and orbital moments at

sites with lower coordination number are larger then at sites with larger coordination number.

This is, in particular, true for the central atom with coordination number of only two where the

values of the spin and orbital moments are even larger than those obtained for small clusters

on Pt(111) and Au(111) surfaces. [95–97]

Figure 5.7 shows the spin and orbital moments of the central atom as a function of the

stretching ratio x, for both the cycloidal and the helical spin configurations in the point con-

tact. Clearly, the spin moments are fairly insensitive to the domain wall configuration: This

can easily be understood as the relative spin directions are nearly the same in the two types

of domain walls. Also, there is only a moderate change of the spin moment in the range of

2.35µB ≤ µspin ≤ 2.49µB for the stretching ratios under consideration. These values com-

pare well to µspin = 2.15µB and µspin = 2.26µB calculated for a single Co adatom on Pt and

Au(111) surfaces in refs. 95 and 96, respectively.

The dependence of the orbital moment of the central atom on the stretching is more pro-

nounced than that of the spin moment: In the case of a cycloidal and a helical wall it increases

from about 1µB to 2µB and from 0.3µB to 1.5µB , respectively. Similar high values of µorb

for the central atom of a wire like Fe point contact were reported in ref. 26 and attributed to

localized atomic-like electronic states treated within a full Hartree-Fock scheme. It should be
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Figure 5.7 The spin and orbital moments of the central atom as a func-
tion of the stretching. Spin moments are displayed by open symbols; or-
bital moments are displayed by filled symbols as calculated in the cycloidal
wall (CW, squares) and in the helical wall (HW, triangles) configurations.

mentioned that for a more reliable description of highly localized states, the plain LSDA we

used in our calculations should be extended with, e.g., the local self-interaction correction,

LSDA+SIC, [98] or the dynamical mean field theory, LSDA+DMFT. [99]

Apparently, the orbital moment of the central atom is systematically larger in a cycloidal

wall than in a helical wall. This can be understood since these orbital moments correspond to

different directions: In the case of a cycloidal wall it points along the (001) directions, while

for a helical wall, along the (110) direction. Such a huge anisotropy of the orbital moment at

the central atom has also been observed in ref. 26. The anisotropy of the orbital momentum

is compared with the magnetic anisotropy energy in Subsection 5.2.5.

5.2.4 Rotational energy of the domain wall

The cycloidal and helical spin configurations of the point contact can be transformed into

each other in term of a simultaneous rotation of the spin directions around the axis parallel

to the magnetization of the leads. The energy along the path of this global rotation, termed
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the rotational energy of the domain wall, was calculated using the magnetic force theorem,

namely, from the band energy of the system by rotating the orientation of the exchange field

at each atomic site around the (110) axis and keeping frozen the effective potentials and fields

as obtained for the ground-state cycloidal wall configuration. For the case of the unstretched

configuration the results are plotted in fig. 5.8. The two minima and maxima of the band

energy belong to the twofold degenerate cycloidal and helical domain wall configurations.

The height of the energy barrier between the two ground-state cycloidal spin configurations is

32.0 meV. Similar behavior has been found for the whole stretching range of the point contact.

The energy differences between the two types of domain walls as a function of the stretching

ratio are displayed by diamonds in fig. 5.9.

Due to time reversal symmetry, the magnetic anisotropy energy has a periodicity of π, but

it does not comply with a usual cos2(θ) dependence. To explore this deviation we performed

the Fourier expansion,

Eb(θ) = K0 +
∞∑

k=2,4,...
Kk cos(kθ) , (5.3)

for the contacts with different stretching. Note that because of the inversion symmetry of the

contact Eb(θ) = Eb(π − θ) applies, and the sin(kθ) (k = 2, 4, . . . ) terms do not appear in

the expansion, eq. (5.3). The Fourier coefficients, Kk, are summarized in tab. 5.1. It is found

that in each case the term K2 cos(2θ) adds the largest weight to the rotational energy of the

domain wall. The k ≥ 8 terms of the Fourier expansion have practically vanishing weight.

5.2.5 Magnetic anisotropy of the central atom

As it has been seen in Subsection 5.2.3, the central atom of the contact exhibits a huge orbital

moment anisotropy that should be accompanied by a large magnetic anisotropy energy. [12]

For that reason, the band energy of the point contact, Eb(σ), with σ denoting the spin orien-

tation at the central atom, has been analized whereas the spin orientations of all the other sites

in the contact are kept fixed as obtained in the ground-state cycloidal wall configuration.

The analysis is based on an expansion of Eb(σ) in terms of (real) spherical harmonics,

Rm` (σ),

Eb(σ) =
∑

`=0,1,2,...
−`≤m≤`

Km
` R

m
` (σ). (5.4)

The definition of the Rm` functions is given in tab. 5.2. Similar to the rotational energy of the

domain wall, we used the magnetic force theorem to evaluate Eb(σ), but here we employed

Lloyd formula, [89] since it accurately accounts for the change of the band energy of the

whole point contact with respect to the change of the spin orientation at the central site. For

the expansion, the integration over σ was performed using a 51-point Gaussian quadrature

along the z direction and a uniform mesh of 100 points in the azimuth angle, resulting in a

spherical grid of 5100 points. The obtained coefficients are summarized in tab. 5.2 up to ` = 4
and for all the stretching ratios under consideration.
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Figure 5.8 The band energy of the nanocontact with x = 1.00 while
rotating the exchange field at each atomic site simultaneously around the
(110) axis. By rotating all the spins by 90◦ the system goes over from the
cycloidal wall (CW) into the helical wall (HW). The dashed line denotes
the leading Fourier component of the band energy, −15.2 [meV] cos(2θ);
see Eq. (5.3). Note that the zero level of the energy is shifted to the constant
term, K0.

Table 5.1 The k = 2, 4, and 6 Fourier coefficients (in units of meV)
of the rotational energy of the point contact, eq. (5.3), as a function of the
stretching parameter, x.

x K2 K4 K6

0.85 −6.3 0.15 0.397
0.90 −10.0 0.36 0.499
0.95 −13.6 1.40 0.298
1.00 −15.2 2.17 −0.040
1.05 −15.1 2.35 −0.122
1.10 −14.4 2.24 −0.083
1.15 −13.2 1.92 0.025
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Table 5.2 Expansion coefficients, Km
` , (in units of meV) of the band energy of the contact, see eq. (5.4), according to real spherical harmonics, Rm` , up to ` = 4.

Only the nonvanishing coefficients are presented.

` m Rm`
Km
` (x); x = . . .

0.85 0.90 0.95 1.00 1.05 1.10 1.15

1 0 1
2

√
3
πz −240 −247 −235 −212 −192 −176 −159

2 0 1
4

√
5
π

(
3z2 − 1

)
−25.3 −30.0 −33.2 −32.4 −30.9 −28.4 −25.6

2 2 1
4

√
15
π

(
x2 − y2) 4.30 2.54 1.39 0.51 −0.29 −0.92 −1.36

3 0 1
4

√
7
π

(
5z3 − 3z

)
4.12 3.06 1.63 0.71 −0.28 −1.43 −2.67

3 2 1
4

√
105
π

(
x2 − y2) z −0.199 −0.093 0.004 0.108 0.196 0.267 0.293

4 0 3
16

√
1
π

(
35z4 − 30z2 + 3

)
−0.63 1.72 4.60 4.94 5.05 4.85 4.32

4 2 3
8

√
5
π

(
x2 − y2) (7z2 − 1

)
0.033 0.125 0.184 0.108 0.051 0.001 −0.052

4 4 3
16

√
35
π

(
x4 − 6x2y2 + y4) −0.007 −0.005 −0.018 −0.041 −0.088 −0.187 −0.345
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The absence of certain spherical harmonics in expansion eq. (5.4) can be discussed based

on group-theoretical arguments. The function Eb(σ) should be invariant under symmetry

transformations, g, of the point contact, Eb(σ) = Eb(gσ), including the symmetry of both

the lattice and the given (cycloidal) spin configuration. Regarding that the spin vectors trans-

form as axial vectors, the only allowed transformation is the reflection onto the (001) plane:

(x, y, z) → (−x,−y, z). Thus it is concluded that only those functions can enter the expan-

sion of Eb(σ) that contain even powers of the variables x and y. As seen from tab. 5.2, this is

fully confirmed by the calculations. Apparently, the expansion eq. (5.4) shows a satisfactory

decay as the coefficients rapidly decrease with increasing `. Noticeably, among the terms

with a given `, the one associated with the z component of the magnetization (m = 0), i.e.,

excluding in-plane anisotropy, has the largest weight.

In order to connect the above results to the rotational energy of the domain wall discussed

in Subsection 5.2.5, eq. (5.4) is related to the Heisenberg model of the form eq. (1.1). The

energy in eq. (5.4) can be expressed as

E(σ) = Eanis(σ) + σ
∑
j

Jcjσj , (5.5)

where Jcj denote the exchange coupling tensor between the central site and the other sites

of the contact with classical spin vectors, σj , and Eanis(σ) stands for the on-site anisotropy

energy that, due to the tetragonal (D4h) point-group symmetry of the point contact, can be

expanded up to ` = 4 as

Eanis(σ) = K0
2R

0
2(σ) +K0

4R
0
4(σ) +K4

4R
4
4(σ) . (5.6)

The (`,m) = (1, 0) term in eq. (5.4) is related to the exchange coupling and, due to the

presence of a cycloidal wall, it represents a strong Weiss field along the z direction. Because

of the increasing distances between the central site and the other sites of the contact, it is also

easy to understand why this term significantly decreases with increasing stretching ratio. Note

that the contribution of the Weiss field is canceled in eq. (5.3) since in that case the relative

orientation of the spins is unchanged.

In relation to eq. (5.6), the terms proportional to R0
2, R0

4, and R4
4 in eq. (5.4) can mainly

be attributed to on-site anisotropy contributions to the spin Hamiltonian; however, the effect

of higher order spin interactions cannot be ruled out. The second-order uniaxial anisotropy

coefficients, K0
2 , are negative in the whole range of stretching, favoring thus a normal-to-

plane direction. Remarkably, the magnitude of K0
2 is around 30 meV, with a maximum of∣∣K0

2
∣∣ = 33.2 meV at x = 0.95. This value should be compared to some results communicated

in the literature: Etz et al. [100] and Bornemann et al. [101] calculated 5.3 meV and 4.76 meV,

respectively, for the MAE of a Co adatom on the Pt(111) surface, while, including orbital

polarization, Gambardella et al. [45] obtained 18.45 meV for the same system. In a similar

geometrical confinement of an atomic scale junction, W and Ir turned out to be magnetic with

a magnetic anisotropy energy comparable to the above values. [94]
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A brief comment is made on the terms corresponding to (`,m) = (2, 2), (3, 0), (3, 2), and

(4, 2) in tab. 5.2. Since these terms are not invariant under transformations of the D4h point

group, they cannot be accounted for the on-site anisotropy terms. In terms of a spin model,

these terms should, therefore, be related to higher order spin interactions. The (`,m) = (2, 2)
term can, e.g., be identified as the consequence of biquadratic interactions, [79]

∑
iBci(σσi)2,

while the ` = 3 terms of triquadratic interactions, [102]
∑
i Tci(σσi)3. Four-spin interactions

have been explicitly calculated and proved to give significant contributions to a spin Hamil-

tonian of Cr trimers deposited on the Au(111) surface by Antal et al., [15] but recently their

presence was highlighted even in bulk magnets. [103]

From fig. 5.8 and tab. 5.1 it can be inferred that the rotational energy of the domain wall

is dominated by the uniaxial magnetic anisotropy term proportional to cos2 θ = z2. In fig. 5.9

the energy differences obtained between the helical wall configuration and the ground-state

cycloidal wall configuration are plotted as a function of the stretching factor (diamonds). The

uniaxial anisotropy of the central atom, −3
4

√
5
πK

0
2 , is also plotted (circles). The values of

∆E from the two calculations agree well for x ≥ 0.95, while for more squeezed contacts

the uniaxial anisotropy of the central atom overestimates the energy difference between the

different types of domain walls. The anisotropy of the orbital moment of the central atom,

i.e., the difference in the orbital moment between the cycloidal and the helical wall is also

plotted in fig. 5.9 (× signs). The orbital moment anisotropy shows strong correlation with

the anisotropy energies. The ratio of the uniaxial anisotropy constant and the orbital moment

anisotropy is presented in tab. 5.3. The correlation is not surprising since the magnetic anisot-

ropy energy and the anisotropy of the orbital moment show the same angular dependence in

the perturbative theory of the SOC. [12] In monolayers this ratio is in the order of 1
4ξ, with ξ

being the spin-orbit constant in the order of 0.05 eV. [12]

Table 5.3 The ratio of the uniaxial anisotropy energy term of the central
atom, K0

2 , and the anisotropy of the orbital moment of the central atom as
a function of the stretching. (In meV/µB units.)

x 0.85 0.90 0.95 1.00 1.05 1.10 1.15

−3
4

√
5
πK

0
2

µorb
CW − µorb

HW
27.08 25.64 27.37 28.82 31.74 35.43 38.90

5.2.6 Summary

It can be concluded that the main driving force of the formation of a cycloidal domain wall

is a giant uniaxial on-site magnetic anisotropy at the central atom: In the cycloidal wall the

magnetic moment of the central atom is parallel to the easy axis, while in the helical wall

configuration it lies within the hard plane. The obtained ground state, the cycloidal domain

wall, remains stable against squeezing or stretching the contact along the normal-to-plane

direction. A huge enhancement, as well as anisotropy of the orbital moment, is found at the

central site of the contact.

MANUSCRIPT Version: January 15, 2015 MANUSCRIPT



 0

 5

 10

 15

 20

 25

 30

 35

0.85 0.90 0.95 1.00 1.05 1.10 1.15
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

∆
E

 (
m

e
V

)

∆
µ

o
rb

 (
µ

B
)

x, stretching factor

EHW  − ECW

∝K2
0

µorb
CW

 − µorb
HW
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5.3 Frustrated Cr nanostructures on Au(111)

After presenting the ferromagnetic clusters in the last two sections, in this section antiferro-

magnetic Cr structures on the (111) surface of Au are presented which show frustration due

to the triangular arrangement. There are four different positions for a compact trimer on the

fcc (111) surface as is explained in Subsection 5.3.1. In Subsection 5.3.2 the Dzyaloshinsky–

Moriya interaction and other anisotropy terms are discussed in the framework of a second

order Heisenberg spin model with special attention to the chirality of the trimers. The model

parameters are determined by the fully relativistic EC-KKR method. (Subsection 4.1.8) In

the last subsection (Subsection 5.3.3) the same questions are discussed for the fcc and hcp

stacked Cr monolayers on the Au (111) surface.

5.3.1 The geometry of the fcc(111) surface

The high symmetry adsorption sites of a fcc(111) surface are the fcc hollow, the hcp hol-

low, the bridge and the on-top sites, see fig. 5.10. By labelling the in-equivalent layers of

the fcc lattice along the [111] direction with capital letters, the order of the fcc stacking is

A B C (top)

fcc hollow

hcp hollow

on-top

bridge

Figure 5.10 The (111) surface of a fcc lattice and the high symmetry ad-
sorption sites viewed from above. The layers of the lattice are depicted
as black (C), dark gray (B) and light gray (A) circles, from the top layer
towards the deeper layers, respectively. The bridge sites are between two
sites of the top layer. The on-top, hcp hollow and fcc hollow sites can be
labelled as ABCABCC, ABCABCB and ABCABCA stackings, respec-
tively.
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Figure 5.11 Top view of the fcc(111) supporter and the deposited trimers. The atomic
positions in the first (second) layer are marked with the lattice of empty circles (× signs).
The positions of the ad-atoms are displayed as filled red circles. The blue double arrows
mark the two different lateral displacements between the trimers and the atomic rows of the
supporter measuring towards the base of the trimers. For the symmetry analysis of the
interaction matrices we use local coordinate systems as displayed in red colour. The ground
state magnetic configurations are drawn by the thick red arrows. The indicated chiralities in
the sub-captions refer to the (1.5) definition.

ABCABCA, while the order for the hcp stacking is ABCABCB, where the last (boldface)

symbol corresponds to the deposited layer.

We note that in the experiments by examining the topography of the supporter surface

and the ad-atoms it is not easy to distinguish between the fcc or hcp stacking. This is because

the measured images show the top layer (C) and the ad-atom positions which differ from the

C sites but whether they are above the A or above the B layer is not clear. A possible solution

is to find a step edge of the supporter close to the ad-island and there the second layer (B)

become visible and the stacking of the ad-island is decidable. For an example see the work of

Gao et al. [34] Later on, we consider fcc hollow and hcp hollow sites of Au(111) surface for

the equilateral Cr trimer or full Cr monolayers.

5.3.2 Trimers

There are two different hollow adsorption site of the fcc(111) surface, however, equilateral

triangles of adjacent adsorption sites can be placed in four different configurations as it is

shown in fig. 5.11. Fcc and hcp stacked compact trimers both can be either up or down
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triangles. (See fig. 5.11.) One attribute to characterize the triangles (by using only the position

of them with respect to the top layer of the supporter) is the lateral displacement between the

supporter atomic rows and the base of the triangle as it is indicated by the blue double arrows

in fig. 5.11. It can be
√

3
6 a2D (for fcc up and for hcp down trimers) or

√
3

3 a2D (for hcp up

and for fcc down trimers) where a2D is the two-dimensional lattice constant, i.e., the nearest

atom-atom distance in the crystal. Note, that one cannot distinguish between an fcc up and

an hcp down island (fcc down and hcp up) if one only sees the island itself and the topmost

supporter layer which is the situation in a constant current non-magnetic STM experiment.

The four clusters are, however, different: the Cr atoms in an fcc up or an hcp down cluster

surround an interstice in the first supporter layer (breezy triangle) while in an fcc down or an

hcp up cluster they surround a substrate atom (crammed triangle). STM images of triangular

fcc up and hcp down islands (much larger than a trimer, of course) and schematic illustration

of all the four possible islands are presented in fig. 2. of ref. 34.

Previous studies on Cr clusters forming equilateral triangle considered the fcc up trimer

[15, 38, 39, 42] and, according to my knowledge, magnetic properties of the other compact

Cr trimers have not been investigated yet.

In this work, I neglected possible relaxations of the geometry, i.e., Cr atoms occupied

hollow positions above the topmost Au layer with the 2D lattice constant of gold (a2D =
2.874 Å). The layer-layer distances of bulk gold was applied as the distance between the top

gold layer and the plane of the chromium ad-atoms.

In the case of the trimers the spin moments of the Cr atoms scattered between 4.18 µB

and 4.22 µB while the orbital moments between 0.021 µB and 0.038 µB depending on the

geometry and the magnetic structure. These values are in good agreement with the results of

previous studies: 3.15 µB/atom if geometrical relaxation is included [38]; 4.25 µB/atom [39]

and 4.4 µB/atom [15] if it is neglected. For the orbital moment also small values have been re-

ported: ≤0.036 µB/atom with geometrical relaxation included [38] and ≈0.03 µB/atom [15]

without relaxation.

The trimers with fcc and hcp stacking together with the substrate exhibit aC3v point group

symmetry where the C3 axis intersects the centre of the triangle normal to the substrate and

the reflection planes contain the C3 axis and one of the cluster atom. The C3vpoint group

symmetry prescribes relations between the parameters of the spin-Hamiltonian (1.1). The

derivation is given in Appendix B and the complete list of the exchange coupling matrices

and the anisotropy matrices with an unrelated parameter set is given as eqs. (B.9)–(B.14).

The derivation of the rotational energies in the framework of the Heisenberg model is also

given in Appendix B and the complete formulas are found in eqs. (B.20)–(B.22). For the

rotations around the three fold axis the energy has the form of

E+
z (ϕ) = E0z, (5.7)

E−z (ϕ) = E0z − 3
√

3Dz + 3
(
Sϕϕ +Kϕϕ) cos(2ϕ), (5.8)
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where E0z is an energy independent on the angle of rotation and the ± superscripts indicate

whether a configuration with positive or negative chirality is rotated rigidly around the axis.

Similarly, when the configuration is rotated around the axis parallel to the magnetization at

the 2nd Cr atom (see fig. 5.11) the energy can be given as:

E±y (ϑ) = E0y ±
[

3
√

3
2 Dz − 3

2
(
Sϕϕ +Kϕϕ)] cos(ϑ)

+
[3

8
(
Sϕϕ +Kϕϕ)+ 9

16
(
Szz − 2Kzz)] cos(2ϑ). (5.9)

The ± superscript indicates here the chirality at ϑ = 0. Note, that the rotation around the y

axis reverses the chirality but the rotation around the z axis does not alter the chirality.

By comparing these rotational energy functions to the results of the first principles cal-

culations the values of the coefficients of the trigonometric functions can be extracted. From

equation (5.9) the energy difference between the positive and the negative chirality configu-

ration can be read off:

∆E = E+
y (0)− E−y (0) = 3

√
3Dz − 3(Sϕϕ +Kϕϕ). (5.10)

Since the relative angle between the spins does not change during the global spin rotations,

the contribution of the isotropic exchange cancel out and the J parameter of the model is not

accessible through the E±z (ϕ) and E±y (ϑ) functions. Regarding the focus of the recent work,

the factual value of the isotropic exchange is, therefore, irrelevant. Furthermore, we note that

the rotational invariant fourth order terms introduced by Antal et al. [15] neither contribute to

the rotational energy.

The rotational energies are calculated with a resolution of 3° for all four trimers and the

results are shown in figure 5.12. The parameters in equations (5.8) and (5.9) are obtained

as the Fourier components of the rotational energies and listed in table 5.4. Using these

parameters the functions given by equations (5.8) and (5.9) fit with a high accuracy to the

results provided by the ab-initio calculations.

From fig. 5.12 and tab. 5.4 it can be inferred that the energy minimum corresponds to

κz = +1 for the fcc up and hcp down trimers while to κz = −1 for the fcc down and hcp up

trimers. The minimal energy configurations are visualized in fig. 5.11. Note, however, that

in case of the fcc up trimer the energy difference between the two chiral states is found to be

−18 µeV which is near the computational accuracy of our method.

In the case of the κz = −1, the relative orientation of the magnetization vector and the

easy direction set by the on-site anisotropy term (Ki) is the same for the three Cr atoms

and this situation is preserved during the global in-plane rotation, therefore, the anisotropy

energies of the single atoms are simply summed up. The same argument holds for the two-

site anisotropies (JS
ij), thus, as indicated by equation (5.8), we expect a cos(2ϕ) angular

dependence for the in-plane rotational energy. This is clearly confirmed by the first principles

calculations, see the lower graph of figure 5.12.
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Figure 5.12 Rotational energy of the trimers, E+
y (ϑ) (upper graph) and

E−z (ϕ) (lower graph). The symbols refer to the trimer geometries shown in
figure 5.11. The points forming the lines were calculated with a resolution
of 3°. The κz component of the chirality vector is indicated above the upper
graph and we note that a global rotation about the z axis (lower graph) does
not alter the chirality. The energy curves are shifted to zero at the initial
configuration, ϑ = 0 or ϕ = 0.
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Table 5.4 Fitted spin-model parameters entering eqs. (5.8) and (5.9) to-
gether with the energy difference between the two chiral states, ∆E =
E+
y (0) − E−y (0), for the four different trimers and the two mono-

layers (ML). The values are given in units of meV. With gray background
I also indicate the results originated from the less fine resolution BZ-
integral.

Trimer/ML Sϕϕ +Kϕϕ Dz Szz − 2Kzz ∆E

fcc up −0.128 −0.077 −0.629 −0.018
−0.131 −0.078 −0.632 −0.009

fcc down 0.050 0.242 −0.714 +1.110
0.048 0.237 −0.719 +1.086

hcp up 0.048 0.276 −0.711 +1.288
0.046 0.270 −0.715 +1.263

hcp down −0.118 −0.401 −0.625 −1.730
−0.121 −0.401 −0.628 −1.722

fcc ML < 1. µeV −1.086 −0.469 −5.643

hcp ML < 1. µeV 2.972 −0.482 +15.444

For the in-plane rotational energy of the κz = +1 trimers we expect the anisotropy terms

to cancel since the second order in-plane anisotropy energies are sampled at angles ϕ1 = ϕ,

ϕ2 = 120◦ + ϕ, and ϕ3 = 240◦ + ϕ, for which
∑3
i=1 cos2 ϕi = 3

2 , i.e., independent of the

angle of rotation. The magnitude of the rotational energies of the positive chirality trimers was

indeed found below 7 µeV, indicating a very small deviation between the spin model (1.1) and

the ab initio calculation. Similarly, Szunyogh et al. [75] found a cos(2ϕ) angular dependence

of the rotational energy of IrMn3 with an amplitude of 10.42 meV in the so-called T1 state

with negative chirality, while for the states with positive chirality the rotational energy had no

angular dependence up to an absolute error of 2 µeV.

It can be read off from tab. 5.4 that the trimers with similar environment, i.e., the breezy

and the crammed triangles, exhibit similar parameter values. This is, in particular, valid for the

out-of-plane and in-plane anisotropy parameters, Szz − 2Kzz and Sϕϕ +Kϕϕ, respectively.

The z component of the DM vector turned out to be similar for the fcc down and the hcp

up (crammed) trimers, but Dz for the fcc up and the hcp down (breezy) trimers are rather

different. I notice that for an fcc up trimer Antal et al. [15] reported a value ofDz = 0.97 meV
which is a remarkable difference compared to my present value ofDz = −0.077 meV. There

are, however, distinct differences between the two calculations. Here I included one shell

of environment around the atoms forming the trimer, whereas in ref. 15 only the Cr atoms

were taken into account in the self-consistent calculations. On the the other hand, I calculated

the rotational energies in terms of the Lloyd formula, eq. (4.56), while Antal et al. [15] used

eq. (4.55) to evaluate the band-energy.

I repeated the magnetic force theorem calculations of the rotational energies by using

the self-consistent effective potentials and fields from the higher energy chirality configura-

tions and found that the lowest energy configurations do not change. Remarkably, how-
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A B C (top)

(a) Fcc stackig, κz = +1.

A B C (top)

(b) Fcc stacking, κz = −1.

Figure 5.13 Illustration of the (a) positive and the (b) negative chirality Néel state of the
triangular lattice. The fcc stacking (ABCABCA) is presented as an example. The first and the
second layer of the lattice is depicted as black (C) and dark gray (B) circles, and the deposited
magnetic layer as red circles (A) with arrows representing their magnetization direction. The
up elementary triangle of the monolayer is highlighted by the red triangle. (a) An up island
and (b) a down islad are also illustrated as shaded triangles.

ever, Stocks et al. [42] found a change of sign in ∆E = E+
y (0) − E−y (0) if they used

the negative chirality Néel state (∆E = +7 meV) or the out-of-plane ferromagnetic state

(∆E = −4 meV) for the self-consistent reference potential and field calculation.

Regarding the in-plane anisotropy (see the lower graph of figure 5.12), for the fcc up and

hcp down trimers I found a value of Sϕϕ +Kϕϕ which is about 50 % larger in magnitude as

compared to the fcc up trimer calculations of Stocks et al. [42]. The reason for this difference

is the same as mentioned above in context to Dz . In the case of fcc down and hcp up trimers,

the reversed (positive) value of Sϕϕ + Kϕϕ means that the ground state of these trimers is

rotated by 90° with respect to the conventional, high symmetry directions of the Néel state,

see figs. 5.11(b) and 5.11(c). Similarly, Gao et al. [34] found that triangular Mn islands of

different stackings exhibit different easy directions inside the 120° Néel structure.

5.3.3 Mono-layers

In the case of the deposited monolayers the distance between the host and the deposited layer

was also kept equal to the layer–layer distance of the bulk supporter crystal.

For both fcc and hcp stacked mono-layers I obtained a spin magnetic moment of 3.70µB

and an orbital magnetic moment of 0.02µB for the Cr atoms.

For the mono-layers with fcc and hcp stacking the C3v point group symmetry also holds

with C3 axes intersecting the centre of an elementary triangle or a Cr atom. Note that the

mono-layers contain alternating up and down elementary triangles. The two types of triangles

are in-equivalent, i.e., one type of triangle can not be transformed into the other type by any

of the symmetry operations of the system.

In the case of an in-plane Néel spin structure of a mono-layer, the chirality for the up

and down triangles alternates between the values of +1 or −1. In this case, the chirality of
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the mono-layer is associated with the chirality of the up triangles. The energy of the Néel

structures with opposite chiralities may be different due to the non-vanishing z component

of the DM vector. The two different chirality Néel states with the defining up triangles (red

triangles in the figure) are illustrated in fig. 5.13.

Conversely, the above definition might not fit to the experiments because it is the breezi-

ness of the trimers or islands which is identifiable in a topographic STM experiment not the

up/down property. It might be better to connect the chirality definition of the monolayer to

the breeziness of the elementary triangles. Despite that idea, I use the first definition of the

chirality of a monolayer spin structure through this dissertation.

For mono-layers, the coupling between the sub-lattices p and q, Jpq, is defined as the sum

of the corresponding exchange tensors, see eq. (B.25). If all the sites are located in the same

sub-lattice, Jpp will contribute to the K anisotropy matrix, which will be the same for all sub-

lattices. Due to the symmetry of the mono-layer, it turns out that the terms Kyz , Kϕϕ, Syz ,

Sϕϕ and Dy disappear from the spin model. For the details see Appendix B. The rotational

energy of the monolayer is given in eqs. (B.33) and (B.34).

The band energies while rotating the magnetic configuration around the axis lying in the

plane of the mono-layer are shown in fig. 5.14. Using the parameters in tab. 5.4 the results

of the first principles calculations can be fitted with a high accuracy by the function given in

eq. (B.34).

Corresponding to eq. (B.33) the band energy turned out to be practically independent on

the angle of rotation around the C3 axis, Sϕϕ + Kϕϕ < 1 µeV. Note that Szunyogh et al.

found non-vanishing in-plane anisotropy parameters for the (111) layers in bulk IrMn3 [75]

or at the IrMn3/Co interface [76] since for these systems the above symmetry does not apply.

Fitting the out-of-plane rotational energy in fig. 5.14 to eq. (B.34), I obtain nearly the

same Szz − 2Kzz parameters for the fcc and hcp mono-layers, see tab. 5.4. These parameters

are somewhat reduced in magnitude as compared to those for the trimers. As obvious from

the nearly cosϑ-like dependence of the band-energy curves in figure 5.14, the out-of-plane

rotational energies are dominated by the normal-to-plane components of the DM interactions

and Dz is opposite in sign for the fcc and the hcp mono-layers. Note that for the mono-layer

case Dz is the only interaction which distinguishes between the two Néel states with opposite

chiralities.

The Dz parameters are almost an order larger in magnitude for the mono-layers than for

the trimers, see table 5.4. This can be understood due to the following reasoning. The main

contribution to the DM interactions is due to the nearest Cr neighbours. Since in the case of

mono-layers the number of nearest neighbours is three times larger then those in the trimers, a

corresponding enhancement of Dz is expected. More quantitatively, the magnetic unit cell of

the mono-layers is composed of 3 up and 3 down elementary trimers. Hence, a first estimation

of the energy difference between the two chirality states of the mono-layer could be 3 times

the sum of the energy differences of the trimers. (It should be recalled that the chirality index

of the up and down trimers are opposite in a mono-layer, therefore, the chiral energy of the

down trimer should be subtracted from that of the up trimer.) From the data of table 5.4 we
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Figure 5.14 Rotational energy of the mono-layers about the y axis,
E+
y (ϑ). The lines were calculated with a resolution of 10°. The κz compo-

nent of the chirality vector is indicated above the graph. The energy curves
are shifted to zero at the initial configuration, ϑ = 0.

calculate ∆EML/
(
∆Eup −∆Edown

)
= 5.003 for the fcc mono-layer and 5.118 for the hcp

mono-layer. The large deviation of these values from 3 indicates that the spin-interactions in

a mono-layer are rather different from those in the trimers and/or interactions between more

distant pairs have important contributions.
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Chapter 6

Concluding remarks

In this thesis 3d transition metal clusters deposited onto magnetic or non-magnetic substrate

were investigated by first principles numerical calculations.

It is emphasized that the geomety of the clusters influences the magnetic behaviour. The

disclosure of the regularities of these influences is an open topic. The magnetic anisotropy

energy of a Co nanocontact show a strong dependence on the stretching of the contact. The

Dzyaloshinsky–Moriya (DM) interaction in Cr trimers turn out to depend intriguingly on the

stacking of the cluster on the substrate. Through the DM interaction and the pseudo-dipolar

coupling the ground state chirality is also a consequence on the geometry. A novel study of

Błoński et al. [104], however, reveals the reverse effect: for Ni clusters “ the change in the

magnetic symmetry leads to small geometric distortions of the cluster ”.

The other subject of this thesis is to relate the results of the ab initio calculation to a

classical Heisenberg model. A 4 × 4 Co cluster is used as an example to demonstrate, that

the spin model based Monte Carlo simulation can reach the accuracy of the ab initio based

Monte Carlo simulation. Two different methods, the torque method and the rotational energy

method, are demonstrated in the case of the Co nanocontact and the Cr clusters to determine

the spin model parameters. In general, however, it is not clear which higher order terms

are to be included into the spin model to reproduce an accurate description of a magnetic

nanostructure. [15]





Appendix A

Elements of the relativistic quantum
theory

Dirac matrices

The well-known Pauli matrices:

σx =

0 1
1 0

 , σy =

0 −i
i 0

 , σz =

1 0
0 −1

 . (A.1)

A vector is usually composed of them:

σ =
(
σx, σy, σz

)
. (A.2)

The 4 by 4 Dirac matrices in a 2 by 2 supermatrix notation:

αi =

0 σi

σi 0

 , β =

1 0
0 −1

 , Σi =

σi 0
0 σi

 for i ∈ {x, y, z} (A.3)

and vectors:

α =
(
αx, αy, αz

)
, Σ =

(
Σx, Σy, Σz

)
. (A.4)

Let us introduce

σr = r̂ · σ = r
r
· σ and αr = r̂ ·α =

 0 σr

σr 0

 (A.5)

with the position operator, r.

A useful identity of the Pauli matrices with arbitrary vectors A and B:

(σ ·A) (σ ·B) = A ·B + iσ · (A×B) . (A.6)
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Appying this to A = r̂ and B = L = r× p one gets:

σ · (r̂× L) = −iσr (σ · L) . (A.7)

Addition of two angular momentum operators: J = J1 + J2

J1 and J2 are two vector angular momentum operators acting on a (2`1+1) and on a (2`2+1)-

dimensional Hilbert spaces, respectively. The total angular momentum operator, J, acts on

the tensor product space as:

J i = J i1 ⊗ 1 + 1⊗ J i2 for i ∈ {x, y, z}. (A.8)

The uncoupled basis of the tensor product space is:

|`1,m1〉 ⊗ |`2,m2〉 (A.9)

withm1 = −`1, . . . , `1 andm2 = −`2, . . . , `2. In the coupled representation the basis, |j, µ〉,
is the common eigenfunctions of J2 and Jz:

J2 |j, µ〉 = ~2j(j + 1) |j, µ〉 and Jz |j, µ〉 = ~µ |j, µ〉 . (A.10)

The coupled representation can be produced by the Clebsch–Gordan coefficients from the

decoupled representation as

|j, µ〉 =
`1∑

m1=−`1

`2∑
m2=−`2

C(`1, `2, j;m1,m2, µ) |`1,m1〉 ⊗ |`2,m2〉 . (A.11)

For the length of the total angular momentum vector, j, the triangular relation holds:

|`1 − `2| ≤ j ≤ `1 + `2. (A.12)

Since |`1,m1〉 ⊗ |`2,m2〉 is an eigenfunction of Jz = Jz1 ⊗ 1 + 1 ⊗ Jz2 with the eigen-

value of m1 + m2 and the basis functions in eq. (A.11) are linearly independent therefore

C(`1, `2, j;m1,m2, µ) is nonzero only if µ = m1 +m2. Exploiting this restriction one single

sum in eq. (A.11) is sufficient:

|j, µ〉 =
`2∑

m2=−`2
C(`1, `2, j;µ−m2,m2, µ) |`1,m1〉 ⊗ |`2,m2〉 . (A.13)

Addition of the orbital and the spin-angular momentum:

J = L + S

The eigenfunctions of L are:

Y`,m(r̂) (A.14)
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and the eigenfunctions of S are Φs as:

Φ 1
2

=

1
0

 and Φ− 1
2

=

0
1

 . (A.15)

The triangular relation, eq. (A.12), in this case reads:

∣∣∣`− 1
2

∣∣∣ ≤ j ≤ `+ 1
2 . (A.16)

Which means:

j =

`±
1
2 if ` > 0,

`+ 1
2 if ` = 0.

(A.17)

Taking into account the µ = m + s restriction in the C(`, 1
2 , j;m, s, µ) Clebsch–Gordan

coefficients the uncoupled basis of the total angular momentum can be produced as:

ψj,µ(r̂) =
∑
s=± 1

2

C(`, 1
2 , j;µ− s, s, µ)Y`,µ−s(r̂)Φs. (A.18)

Let us define the K operator as

K = L · σ + ~ (A.19)

with σ being the vector composed of the Pauli matrices (see eq. (A.2)) and note that the spin

operator is: S = ~
2σ.

It can be derived that ψj,µ(r̂) is an eigenfunction of K with eigenvalue

~
((
j + 1

2

)2
− `(`+ 1)

)
(A.20)

which is defined as −~κ. Using this definition and eq. (A.17) κ can be given:

κ =

` for j = `− 1
2 ,

−`− 1 for j = `+ 1
2 .

(A.21)

Note that κ can be any integer except zero. It is important that both j and ` is a function of κ:

j = |κ| − 1
2 and ` =

κ for κ > 0,

−κ− 1 for κ < 0.
(A.22)
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The κµ-representation

Taking advantage of the fact that the value of κ gives both j and l, the spin spherical harmon-

ics, χκ,µ(r̂), are defined as:

χκ,µ(r̂) =
∑
s=± 1

2

C(`, 1
2 , j;µ− s, s, µ)Y`,µ−s(r̂)Φs, (A.23)

where ` and j on the right hand side are given by κ through eq. (A.22).

Let us summarize here that the χκ,µ(r̂) are common eigenfunctions of the total angular

momentum, J2, its z component, Jz , and the K-operator:

J2χκ,µ(r̂) = ~2j(j + 1)χκ,µ(r̂),

Jzχκ,µ(r̂) = ~µχκ,µ(r̂),

Kχκ,µ(r̂) = −~κχκ,µ(r̂).

(A.24)

Note the following useful property of the spin spherical harmonics:

σrχκ,µ(r̂) = −χ−κ,µ(r̂) (A.25)

The composite indices, Q and Q̄, are introduced:

Q ≡ (κ, µ) and Q̄ ≡ (−κ, µ) (A.26)

and the summation over Q means:

∑
Q
≡
∑

κ=...,−3,−2,−1,1,2,3,...

∑|κ|− 1
2

µ=−|κ|+ 1
2
. (A.27)

Often, the ` quantum number appears after a
∑
Q operation. In this case, application of

eq. (A.22) is implied, implicitly.

Through this thesis, an angular momentum cutoff of `max = 2 is used. The remaining

(κ, µ) indices in this approximation are summarized in tab. A.1.
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Table A.1 List of the (κ, µ) indices up to `max = 2. As a result, the
dimension of the matrices in theQQ′ angular momentum indices is 18×18.

κ µ

` = 0 j = `+ 1
2 = 1

2 −1 −1/2
1/2

` = 1 j = `+ 1
2 = 3

2 −2 −3/2
−1/2

1/2
3/2

j = `− 1
2 = 1

2 1 −1/2
1/2

` = 2 j = `+ 1
2 = 5

2 −3 −5/2
−3/2
−1/2

1/2
3/2
5/2

j = `− 1
2 = 3

2 2 −3/2
−1/2

1/2
3/2
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Appendix B

Spin models of the C3v symmetric
systems

Trimer

In this chapter the manifestation of the C3v symmetry in terms of the second order coupling

constants, Jij , and the anisotropy constants, Ki, in a symmetrical trimer will be derived.

The general second order Heisenberg Hamiltonian of the trimer is the following, see

eq. (1.1) in the Introduction:

H =
∑

ij=12,23,31
σT
i Jijσj +

∑
i=1,2,3

σT
i Kiσi. (B.1)

The parametrization for the exchange interaction matrices and the on-site anisotropy matrices

is the following:

J31 = 1
3


J

J

J

+


−1

2S
zz + 1

2S
ϕϕ Sxy Szx

Sxy −1
2S

zz − 1
2S

ϕϕ Syz

Szx Syz Szz

+


0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0

 ,
(B.2)

K2 =


−1

2K
zz + 1

2K
ϕϕ Kxy Kzx

Kxy −1
2K

zz − 1
2K

ϕϕ Kyz

Kzx Kyz Kzz

 . (B.3)

(
Dx Dy Dz

)
form the D31 Dzyaloshinsky–Moriya (DM) vector which corresponds to

the antisymmetric interaction term: σT
3 JA

31σ1 = D31 (σ3 × σ1) as introduced in the Intro-

duction.

The trimer together with the substrate is symmetric in terms of the C3v point group, see

fig. B.1. The parameters in eq. (B.1) will be given in such a way thatH
(
G {σi}

)
= H

(
{σi}

)
where G can be any symmetry operation of the C3v group. The generators of the C3v group

are the reflection to the yz plane and the rotation about the z axis by 2π
3 . For the sake of
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x

y

1 3

2

Figure B.1 Example of a C3v symmetric trimer. The σv reflection planes
are shown as blue dash-dotted lines and the C3 rotation axis is at the com-
mon intersection of the blue lines and it is perpendicular to the plane of the
figure. The lattice of empty circles and × signs denote the positions of the
first and second layer of the fcc(111) supporter as in fig. 5.11.

completeness I give the matrices of these transformations:

Ryz =


−1

1
1

 and Cz2π
3

=


−1

2 −
√

3
2 0

√
3

2 −1
2 0

0 0 1

 . (B.4)

The 3—1 bond and the atom number 2 are the mirror images of themselves according to

the reflection to the yz plane, see fig. B.1, thus

J31 = (Ryz)T J31
TRyz and K2 = (Ryz)T K2R

yz (B.5)

hold which yield the following requirements for the matrix elements:

Sxy = 0, Szx = 0, Dx = 0, Kxy = 0, Kzx = 0. (B.6)

The other exchange interaction matrices and the on-site anisotropy matrices are constructed

by similarity transformations out of the J31 and the K2 matrices:

J23 = Cz2π
3

J31
(
Cz2π

3

)T J12 =
(
Cz2π

3

)TJ31C
z
2π
3

(B.7)

K1 = Cz2π
3

K2
(
Cz2π

3

)T K3 =
(
Cz2π

3

)TK2C
z
2π
3

(B.8)

The complete list of the coupling and anisotropy matrices:

J31 =


J − 1

2S
zz − Sϕϕ Dz −Dy

−Dz J − 1
2S

zz + Sϕϕ Syz

Dy Syz J + Szz

 , (B.9)
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J23 =


J − 1

2S
zz + 1

2S
ϕϕ Dz +

√
3

2 S
ϕϕ 1

2D
y −

√
3

2 S
yz

−Dz +
√

3
2 S

ϕϕ J − 1
2S

zz − 1
2S

ϕϕ −
√

3
2 D

y − 1
2S

yz

−1
2D

y −
√

3
2 S

yz
√

3
2 D

y − 1
2S

yz J + Szz

 , (B.10)

J12 =


J − 1

2S
zz + 1

2S
ϕϕ Dz −

√
3

2 S
ϕϕ 1

2D
y +

√
3

2 S
yz

−Dz −
√

3
2 S

ϕϕ J − 1
2S

zz − 1
2S

ϕϕ
√

3
2 D

y − 1
2S

yz

−1
2D

y +
√

3
2 S

yz −
√

3
2 D

y − 1
2S

yz J + Szz

 , (B.11)

K2 =


−1

2K
zz −Kϕϕ 0 0

0 −1
2K

zz +Kϕϕ Kyz

0 Kyz Kzz

 , (B.12)

K1 =


−1

2K
zz + 1

2K
ϕϕ

√
3

2 K
ϕϕ −

√
3

2 K
yz

√
3

2 K
ϕϕ −1

2K
zz − 1

2K
ϕϕ −1

2K
yz

−
√

3
2 K

yz −1
2K

yz Kzz

 , (B.13)

K3 =


−1

2K
zz + 1

2K
ϕϕ −

√
3

2 K
ϕϕ

√
3

2 K
yz

−
√

3
2 K

ϕϕ −1
2K

zz − 1
2K

ϕϕ −1
2K

yz

√
3

2 K
yz −1

2K
yz Kzz

 . (B.14)

We need the energy of rigidly rotated positive and negative chirality spin configurations.

The two starting configurations are:

σ+
1 =


√

3
2

−1
2

0

 σ+
2 =


0
1
0

 σ+
3 =


−
√

3
2

−1
2

0

 and (B.15)

σ−1 =


−
√

3
2

−1
2

0

 σ−2 =


0
1
0

 σ−3 =


√

3
2

−1
2

0

 (B.16)

where the ‘+’ and the ‘−’ superscripts refer to κz = +1 and κz = −1 chirality of the

configurations, respectively. For the definition of κ see eq. (1.5) in the Introduction. The

matrices of rotations abount the y and the z axis are:

Ry(ϑ) =


cos(ϑ) 0 sin(ϑ)

0 1 0
− sin(ϑ) 0 cos(ϑ)

 , Rz(ϕ) =


cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 . (B.17)

The rotational energy used in the main text is defined in terms of the Heisenberg model by:

E±y (ϑ) =
∑

ij=12,23,31

(
Ry(ϑ)σ±i

)T
Jij
(
Ry(ϑ)σ±j

)
+

∑
i=1,2,3

(
Ry(ϑ)σ±i

)T
Ki

(
Ry(ϑ)σ±i

)
,

(B.18)

E±z (ϕ) =
∑

ij=12,23,31

(
Rz(ϕ)σ±i

)T
Jij
(
Rz(ϕ)σ±j

)
+

∑
i=1,2,3

(
Rz(ϕ)σ±i

)T
Ki

(
Rz(ϕ)σ±i

)
.

(B.19)
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Substituting (B.9)–(B.17) into (B.18) and (B.19) and performing the operatios one gets the

following formulas for the rotational energies:

E+
z (ϕ) = − 3

2J + 3
4
(
Szz − 2Kzz)+ 3

√
3

2 Dz, (B.20)

E−z (ϕ) = − 3
2J + 3

4
(
Szz − 2Kzz)− 3

√
3

2 Dz + 3
(
Sϕϕ +Kϕϕ) cos(2ϕ), (B.21)

E±y (ϑ) = − 3
2J + 3

16
(
Szz − 2Kzz)+ 3

4
(
Sϕϕ +Kϕϕ)

±
[

3
√

3
2 Dz − 3

2
(
Sϕϕ +Kϕϕ)] cos(ϑ)

+
[3

8
(
Sϕϕ +Kϕϕ)+ 9

16
(
Szz − 2Kzz)] cos(2ϑ). (B.22)

Note, that the chirality vector rotates simultaneously with the spin directions, therefore during

the rotation about the y axis at the point of ϑ = π κz is of opposite sign than in the starting

configuration. The rotation about the z axis does not alter the chirality.

Three sub-lattice monolayer

In this chapter the spin model of a 2 dimensional triangular lattice will be derived. The

coupling matrices and the on-site anisotropy matrices corresponding to the symmetry of the

system and the resulting rotational energy functions will be given. The investigations will

be restricted to magnetic states with 3 atoms per magnetic unit cell (3-sublattice magnetic

structures), for an example see fig. B.2. Note, that description of different spin structures

requires different size magnetic unit cell in the spin models.

The atomic positions of the 3-sublattice structure is given by the Ri + rp vectors where

Ri gives the origin of the i-th magnetic unit cell and rp (p = 1, 2, 3) is the atomic position in-

terpreted inside the magnetic unit cell. The magnetization directions, σpi, and the interaction

matrices, Jpi,qj and Kpi, therefore have composite (unit cell plus sub-lattice) indices. The

Heisenberg model for the monolayer reads:

H =
∑
〈pi,qj〉

σT
piJpi,qjσqj +

∑
p,i

σT
piKpiσpi, (B.23)

where the first summation runs over the interacting spin pairs, Jpi,qj are the generalized ex-

change interaction matrices between the atoms at Ri + rp and Rj + rq positions and Kpi is

the on-site anisotropy matrix at the Ri + rp site.

Assuming only 3-sublattice structures the degrees of freedom of the monolayer spin model

is the directions of the magnetization at each sublattices thus σpi = σp. The on-site anisot-

ropy matrix must be uniform at every site of the monolayer, i.e., Kpi = K. Taking these into
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2 3 1 2

3 1 2 3 1

2 3 1 2

3 1 2 3 1

11 21

22

23

A B C (top)

Figure B.2 Three atoms per magnetic unit cell spin structure: the Néel
state of the fcc stacked monolayer. ‘A’ denotes the magnetic layer and
‘C’ and ‘B’ denote the first and the second layer of the supporter in the
ABCABCA stacking. The directions of the magnetizations are drawn by
red arrows and the sublattice indices (‘1’, ‘2’, ‘3’) of the atoms are writ-
ten in red. The magnetic unit cell of the structure (red hexagon) contains
3 atoms while the chemical unit cell (shaded rhomb) contains only one. In
the text the interaction of the 1st atom of the 1st sub-lattice (blue ‘11’ la-
bel) and the first three atoms of the 2nd sublattice (blue ‘21’, ‘22’ and ‘23’
labels) is analyzed.

account and rearranging the summations in eq. (B.23):

H =
∑

pq=12,23,31
σT
p

∑
ij

Jpi,qj

σq +
∑

p=1,2,3
σT
p

1
2
∑
i 6=j

Jpi,pj

σp +
∑

p=1,2,3
i

σT
p Kσp.

(B.24)

Using the fact that the system exhibits discrete translational invariance by the Ri mag-

netic lattice vectors, the Jp,i,q,j = Jp,0,q,(j−i) identity is obvious. The sublattice–sublattice

exchange interaction matrices are introduced as:

Jpq =


∑
j

Jp0,qj if p 6= q,

1
2
∑
j 6=0

Jp0,pj if p = q.
(B.25)

Substituting this quantity into eq. (B.24) every term is independent of i and the summation

over i simplifies into a multiplication by the number of atoms in one sublattice, N , i.e., the

number of magnetic unit cells. The energy per magnetic unit cell is then:

H
N

=
∑

pq=12,23,31
σT
p Jpqσq +

∑
p=1,2,3

σT
p (Jpp + K)σp. (B.26)

Since the environment of a particular atom exhibits C3v symmetry only uniaxial on-site

anisotropy is allowed up to second order. One complete sublattice also exhibits the C3v sym-

metry so the Jpp intra-sublattice coupling matrices have the same symmetry properties as the
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on-site anisotropy matrix, K, and are independent of p because the sublattices are equivalent.

These two uniaxial, one-sublattice energy contributions are incorporated into one term in the

spin model:

Jpp + K =


−1

2K
zz 0 0

0 −1
2K

zz 0
0 0 Kzz

 . (p = 1, 2, 3) (B.27)

Confronting with the parameters of the spin model of the trimer [eqs. (B.12)–(B.14)] this can

be interpreted as the following extra requirements:

Kyz = 0 and Kϕϕ = 0. (B.28)

C3v symmetry with the C3 axis in the center of an elementary triangle takes the 3 sub-

lattices into each other in the same way as it takes atoms into each other in the case of the

trimer. Therefore the inter-sublattice coupling matrices have at least the same symmetry prop-

erties as the atom–atom coupling matrices in the case of the trimers. [Eqs. (B.9)–(B.11).] The

monolayer possesses extra symmetry compared to the trimer: C3v symmetry with the C3 axis

intersecting a chromium atom. The latter symmetry operations takes every sub-lattice into

itself but transforms the exchange interaction matrices. The effect is presented by the trans-

formation of the 1st atom of the 1st sub-lattice and the first three atoms of the 2nd sublattice,

see the blue bonds in fig. B.2:

σT
1
(
J11,21 + J11,22 + J11,23

)
σ2

=
(
Cz2π

3
σ1
)T(J11,21 + J11,22 + J11,23

)(
Cz2π

3
σ2
)

= σT
1

[(
Cz2π

3

)T(J11,21 + J11,22 + J11,23
)
Cz2π

3

]
σ2. (B.29)

The matrix of the Cz2π
3

transformation is given in eq. (B.4). The above equation holds for any

value of σ1 and σ2 so the sum of the exchange coupling matrices must be invariant under the

Cz2π
3

transformation. By writing down this conception for the complete sub-lattice one gets

the following requirements for the inter-sub-lattice couplings:

Jpq =
(
Cz2π

3

)TJpqCz2π
3

= Cz2π
3

Jpq
(
Cz2π

3

)T (pq = 12, 23, 31) (B.30)

which implies

Syz = 0, Sϕϕ = 0, Dy = 0. (B.31)

Finally, I give the form of the inter-sublattice exchange matrices:

Jpq =


J − 1

2S
zz Dz 0

−Dz J − 1
2S

zz 0
0 0 J + Szz

 . (pq = 12, 23, 31) (B.32)
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The rotational energy of the layer Néel structure is the same as that of the trimers [eqs. (B.20)–

(B.22)] with taking into account the (B.28) and the (B.31) restrictions:

E±z (ϕ) = −3
2J + 3

4
(
Szz − 2Kzz) ± 3

√
3

2 Dz, (B.33)

E±y (ϑ) = −3
2J + 3

16
(
Szz − 2Kzz)± 3

√
3

2 Dz cos(ϑ) + 9
16
(
Szz − 2Kzz) cos(2ϑ).

(B.34)

Note that because of the non-vanishing z component of the DM vector the energy of the

layer Néel structures with opposite chiralities are different.
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